Journal Description
International Journal of Turbomachinery, Propulsion and Power
International Journal of Turbomachinery, Propulsion and Power
is an international, peer-reviewed, open access journal on turbomachinery, propulsion and power. It is the journal of the EUROTURBO European turbomachinery society and is published online quarterly by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), Inspec, and many other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 13.9 days after submission; acceptance to publication is undertaken in 5.6 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Multi-Channel High-Dimensional Data Analysis with PARAFAC-GA-BP for Nonstationary Mechanical Fault Diagnosis
Int. J. Turbomach. Propuls. Power 2022, 7(3), 19; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7030019 - 28 Jun 2022
Abstract
►
Show Figures
Conventional signal processing methods such as Principle Component Analysis (PCA) focus on the decomposition of signals in the 2D time–frequency domain. Parallel factor analysis (PARAFAC) is a novel method used to decompose multi-dimensional arrays, which focuses on analyzing the relevant feature information by
[...] Read more.
Conventional signal processing methods such as Principle Component Analysis (PCA) focus on the decomposition of signals in the 2D time–frequency domain. Parallel factor analysis (PARAFAC) is a novel method used to decompose multi-dimensional arrays, which focuses on analyzing the relevant feature information by deleting the duplicated information among the multiple measurement points. In the paper, a novel hybrid intelligent algorithm for the fault diagnosis of a mechanical system was proposed to analyze the multiple vibration signals of the centrifugal pump system and multi-dimensional complex signals created by pressure and flow information. The continuous wavelet transform was applied to analyze the high-dimensional multi-channel signals to construct the 3D tensor, which makes use of the advantages of the parallel factor decomposition to extract feature information of the complex system. The method was validated by diagnosing the nonstationary failure modes under the faulty conditions with impeller blade damage, impeller perforation damage and impeller edge damage. The correspondence between different fault characteristics of a centrifugal pump in a time and frequency information matrix was established. The characteristic frequency ranges of the fault modes are effectively presented. The optimization method for a PARAFAC-BP neural network is proposed using a genetic algorithm (GA) to significantly improve the accuracy of the centrifugal pump fault diagnosis.
Full article
Open AccessArticle
Turbomachine Operation with Magnetic Bearings in Supercritical Carbon Dioxide Environment
Int. J. Turbomach. Propuls. Power 2022, 7(2), 18; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7020018 - 14 Jun 2022
Abstract
In the sCO2-HeRo project, the Chair of Turbomachinery at the University of Duisburg-Essen developed, built and tested a turbomachine with an integral design in which the compressor, generator and turbine are housed in a single hermetic casing. However, ball bearings limited operation because
[...] Read more.
In the sCO2-HeRo project, the Chair of Turbomachinery at the University of Duisburg-Essen developed, built and tested a turbomachine with an integral design in which the compressor, generator and turbine are housed in a single hermetic casing. However, ball bearings limited operation because their lubricants were incompatible with supercritical CO2 (sCO2) and they had to operate in gaseous CO2 instead. To overcome this problem, the turbomachine was redesigned built and tested in the sCO2-4-NPP project. Instead of ball bearings, magnetic bearings are now used to operate the turbomachine with the entire rotor in sCO2. This paper presents the revised design, focusing on the usage of magnetic bearings. It also investigates whether the sCO2 limits the operating range. Test runs show that increasing the density and rotational speed results in greater deflection of the rotor and greater forces on the bearings. Measurements are also analyzed with respect to influence of the density increase on the destabilizing forces in the rotor–stator cavities. The conclusion is that for the operation of the turbomachine, the control parameters of the magnetic bearings must be adjusted not only to the rotor speed, but also to the fluid density. This enabled successful operation of the turbomachine, which reached a speed of about 40,000 rpm during initial tests in CO2.
Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
UHBR Open-Test-Case Fan ECL5/CATANA
by
, , , , , and
Int. J. Turbomach. Propuls. Power 2022, 7(2), 17; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7020017 - 31 May 2022
Abstract
►▼
Show Figures
The application of composite fans enables disruptive design possibilities but increases sensitivity to multi-physical resonance between aerodynamic, structure dynamic and acoustic phenomena. As a result, aeroelastic problems increasingly set the stability limit. Test cases of representative geometries without industrial restrictions are a key
[...] Read more.
The application of composite fans enables disruptive design possibilities but increases sensitivity to multi-physical resonance between aerodynamic, structure dynamic and acoustic phenomena. As a result, aeroelastic problems increasingly set the stability limit. Test cases of representative geometries without industrial restrictions are a key element of an open scientific culture but are currently non-existent in the turbomachinery community. In order to provide a multi-physical validation benchmark representative of near-future UHBR fan concepts, the open-test-case fan stage ECL5 was developed at Ecole Centrale de Lyon. The design intention was to develop a geometry with high efficiency and a wide stability range that can be realized using carbon fibre composites. This publication aims to introduce the final test case, which is currently fabricated and will be experimentally tested. The fan blades are composed of a laminate made of unidirectional carbon fibres and epoxy composite plies. Their structural properties and the ply orientations are presented. To characterize the test case, details are given on the aerodynamic design of the whole stage, structure dynamics of the fan and aeroelastic stability of the fan. These are obtained with a state-of-art industrial design process: static and modal FEM, RANS and LRANS simulations. Aerodynamic analysis focuses on performance and shows critical flow structures such as tip leakage flow, radial flow migration and flow separations. Mechanical modes of the fan are described and discussed in the context of aeroelastic interactions. Their frequency distribution is validated in terms of resonance risk with respect to synchronous vibration. The aeroelastic stability of the fan is evaluated at representative operating points with a systematic approach. Potential instabilities are observed far from the operating line and do not compromise experimental campaigns.
Full article

Figure 1
Open AccessFeature PaperReview
Machine Learning Methods in CFD for Turbomachinery: A Review
Int. J. Turbomach. Propuls. Power 2022, 7(2), 16; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7020016 - 13 May 2022
Abstract
Computational Fluid Dynamics is one of the most relied upon tools in the design and analysis of components in turbomachines. From the propulsion fan at the inlet, through the compressor and combustion sections, to the turbines at the outlet, CFD is used to
[...] Read more.
Computational Fluid Dynamics is one of the most relied upon tools in the design and analysis of components in turbomachines. From the propulsion fan at the inlet, through the compressor and combustion sections, to the turbines at the outlet, CFD is used to perform fluid flow and heat transfer analyses to help designers extract the highest performance out of each component. In some cases, such as the design point performance of the axial compressor, current methods are capable of delivering good predictive accuracy. However, many areas require improved methods to give reliable predictions in order for the relevant design spaces to be further explored with confidence. This paper illustrates recent developments in CFD for turbomachinery which make use of machine learning techniques to augment prediction accuracy, speed up prediction times, analyse and manage uncertainty and reconcile simulations with available data. Such techniques facilitate faster and more robust searches of the design space, with or without the help of optimization methods, and enable innovative designs which keep pace with the demand for improved efficiency and sustainability as well as parts and asset operation cost reduction.
Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Acoustoelastic Modes in Rotor-Cavity Systems: An Overview on Frequency Shift Effects Supported with Measurements
by
and
Int. J. Turbomach. Propuls. Power 2022, 7(2), 15; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7020015 - 06 May 2022
Abstract
With an increase in fluid densities in centrifugal compressors, fluid-structure interaction and coupled acoustoelastic modes receive growing attention to avoid machine failure. Besides the vibrational behavior of the impeller, acoustic modes building up in the side cavities need to be understood to ensure
[...] Read more.
With an increase in fluid densities in centrifugal compressors, fluid-structure interaction and coupled acoustoelastic modes receive growing attention to avoid machine failure. Besides the vibrational behavior of the impeller, acoustic modes building up in the side cavities need to be understood to ensure safe and reliable operation. In a coupled system, these structure and acoustic dominant modes influence each other. Therefore, a comprehensive overview of frequency shift effects in rotor-cavity systems is established based on findings in the literature. Additionally, experimental results on coupled mode pairs in a rotor-cavity test rig with a rotating disk under varying operating conditions are presented. Measurement results for structure dominant modes agree well with theoretical predictions. The development of a forward and a backward traveling wave is demonstrated for each mode in case of disk rotation. Conducted experiments reveal the occurrence of weakly and strongly coupled mode pairs as frequency shifts are observed that cannot solely be explained by “uncoupled mode effects”, such as the added mass, speed of sound, and stiffening effect, but indicate an additional coupling effect. However, the hypothesis of a bigger frequency shift for stronger coupled modes cannot be corroborated consistently. Only for the strongly coupled four nodal diameter mode pair in the “wide cavity” setup, a coupling effect is clearly visible in the form of mode veering.
Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
A Reliable Update of the Ainley and Mathieson Profile and Secondary Correlations
Int. J. Turbomach. Propuls. Power 2022, 7(2), 14; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7020014 - 21 Apr 2022
Abstract
►▼
Show Figures
Empirical correlations are still fundamental in the modern design paradigm of axial turbines. Among these, the prominent Ainley and Mathieson correlation (Ainley D. and Mathieson G., 1951, “A Method of Performance Estimation for Axial-Flow Turbines,” ARC Reports and Memoranda No. 2974) and its
[...] Read more.
Empirical correlations are still fundamental in the modern design paradigm of axial turbines. Among these, the prominent Ainley and Mathieson correlation (Ainley D. and Mathieson G., 1951, “A Method of Performance Estimation for Axial-Flow Turbines,” ARC Reports and Memoranda No. 2974) and its derivatives, plays a crucial role. In this paper, the underlying assumptions of the aforementioned models are discussed by means of a descriptive review, whilst an attempt is made to enhance their reliability and, potentially, accuracy in performance estimations. Closer investigation reveals an intriguing misuse of the lift coefficient in the secondary loss. In light of this, an enhanced model that, notably, builds upon the Zweifel criterion and the vortex penetration depth concept is developed and discussed. The obtained accuracy is subsequently assessed through CFD computations, employing a database comprising 109 cascades. The results indicate a 50% probability of achieving the ±15% error interval, which is twice as good as the most recent Aungier model (Aungier R., 2006, “Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis”, ASME Press, New York). Furthermore, the reliability of the proposed model is demonstrated by a reconstruction of the Smith chart, on the one hand, and a performance analysis, on the other. The reconstruction exhibits contours that conform to the original. The results of the performance study are compared with the CFD solutions of eight cascades working in off design conditions and confirm the need of the additionally included turbine design parameters, such as the axial velocity and the meanline radius ratios.
Full article

Graphical abstract
Open AccessArticle
Two-Dimensional Investigation of the Fundamentals of OGV Buffeting
Int. J. Turbomach. Propuls. Power 2022, 7(2), 13; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7020013 - 02 Apr 2022
Abstract
►▼
Show Figures
The increased demands of compact modern aero engine architectures have highlighted the problem of outlet guide vane (OGV) buffeting in off-design conditions. This structural response to aerodynamic excitations is characterised by increased vibration, risking structural fatigue. Investigations focused on understanding, mitigation and avoidance
[...] Read more.
The increased demands of compact modern aero engine architectures have highlighted the problem of outlet guide vane (OGV) buffeting in off-design conditions. This structural response to aerodynamic excitations is characterised by increased vibration, risking structural fatigue. Investigations focused on understanding, mitigation and avoidance are therefore of high priority. OGV buffet is a type of transonic buffet caused by unsteady shock movement, but the exact parameters driving it are not fully understood. To try and understand them, this paper examines the buffet of a quasi-2D OGV geometry. Parametric studies of the incidence angle and inlet Mach number were performed. Forcing frequencies for both studies were found to be close to the experimentally detected frequency of vibration in the first bow mode, which demonstrates that buffet is driven by quasi-2D flow features. Increasing the inlet Mach number increased the dominant forcing frequency, whereas increasing the incidence yielded little change. Profiles of unsteady pressure amplitudes were shown to smoothly increase in magnitude with an increasing incidence and inlet Mach number.
Full article

Figure 1
Open AccessArticle
Flow in Pillow-Plate Channels for High-Speed Turbomachinery Heat Exchangers
Int. J. Turbomach. Propuls. Power 2022, 7(2), 12; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7020012 - 22 Mar 2022
Abstract
►▼
Show Figures
In numerous turbomachinery applications, e.g., in aero-engines with regenerators for improving specific fuel consumption (SFC), heat exchangers with low-pressure loss are required. Pil low-plate heat exchangers (PPHE) are a novel exchanger type and promising candidates for high-speed flow applications due to their smooth
[...] Read more.
In numerous turbomachinery applications, e.g., in aero-engines with regenerators for improving specific fuel consumption (SFC), heat exchangers with low-pressure loss are required. Pil low-plate heat exchangers (PPHE) are a novel exchanger type and promising candidates for high-speed flow applications due to their smooth profiles avoiding blunt obstacles in the flow path. This work deals with the overall system behavior and gas dynamics of pillow-plate channels. A pillow-plate channel was placed in the test section of a blow-down wind tunnel working with dry air, and compressible flow phenomena were investigated utilizing conventional and focusing schlieren optics; furthermore, static and total pressure measurements were performed. The experiments supported the assumption that the system behavior can be described through a Fanno–Rayleigh flow model. Since only wavy walls with smooth profiles were involved, linearized gas dynamics was able to cover important flow features within the channel. The effects of the wavy wall structures on pressure drop and Mach number distribution within the flow path were investigated, and a good qualitative agreement with theoretical and numerical predictions was found. The present analysis demonstrates that pressure losses in pillow-plate heat exchangers are rather low, although their strong turbulent mixing enables high convective heat transfer coefficients.
Full article

Figure 1
Open AccessArticle
The Profile Loss of Additive Manufactured Blades for Organic Rankine Cycle Turbines
Int. J. Turbomach. Propuls. Power 2022, 7(1), 11; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010011 - 21 Mar 2022
Abstract
►▼
Show Figures
Results from an experimental profile loss study are presented of an additive manufactured linear turbine cascade placed in the test section of a closed-loop organic vapor wind tunnel. This test facility at Muenster University of Applied Sciences allows the investigation of high subsonic
[...] Read more.
Results from an experimental profile loss study are presented of an additive manufactured linear turbine cascade placed in the test section of a closed-loop organic vapor wind tunnel. This test facility at Muenster University of Applied Sciences allows the investigation of high subsonic and transonic organic vapor flows under ORC turbine flow conditions at elevated pressure and temperature levels. An airfoil from the open literature was chosen for the cascade, and the organic vapor was Novec 649TM. Pitot probes measured the flow field upstream and downstream of the cascade. The inflow turbulence level was 0.5%. The roughness parameters of the metal-printed blades were determined, and the first set of flow measurements was performed. Then, the blade surfaces were further finished, and the impact of roughness on profile losses was assessed in the second flow measurement set. Although the Reynolds number level was relatively high, further surface treatment reduces the profile loss noticeably in organic vapor flows through the printed cascade.
Full article

Figure 1
Open AccessArticle
Stall Margin Improvement in an Axial Compressor by Continuous and Pulsed Tip Injection
Int. J. Turbomach. Propuls. Power 2022, 7(1), 10; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010010 - 16 Mar 2022
Abstract
►▼
Show Figures
Stall and surge are strong limitations in the operating range of compressors and thus one of the major limits of jet engine performance. A promising way to push the stability limit of compression machines is to inject a small amount of flow at
[...] Read more.
Stall and surge are strong limitations in the operating range of compressors and thus one of the major limits of jet engine performance. A promising way to push the stability limit of compression machines is to inject a small amount of flow at the blade tip to alter the physical mechanism responsible for stall onset. This study focuses on the experimental performance of such a system. To do so, an axial compressor test bench was equipped with 40 actuators connected to an auxiliary pressurised air supply system. They were able to generate high-speed jet blowing just at the tip of the rotor blades. The opening of each actuator was controlled by an electromagnetic valve. This allowed generating continuous or pulsed jets with frequencies up to 500 Hz at different duty cycles. The performance of the control system was investigated for various control strategies, where the injected flow rate, the injection angle, the number of injectors, the jet frequency and the duty cycle were systematically varied. This paper is concluded by a study of the energy balance of the system for various configurations. To the best of the authors’ knowledge, this constitutes a rarely seen analysis in the literature.
Full article

Graphical abstract
Open AccessArticle
Experimental Validation of an Analytical Condensation Model for Application in Steam Turbine Design
Int. J. Turbomach. Propuls. Power 2022, 7(1), 9; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010009 - 03 Mar 2022
Abstract
►▼
Show Figures
This paper presents experimental data on shear-stress-driven liquid water films on a horizontal plate formed by the condensation of superheated steam. The experimental results were obtained in the Experimental Multi-phase Measurement Application (EMMA) at the University of Duisburg-Essen. The liquid film thickness was
[...] Read more.
This paper presents experimental data on shear-stress-driven liquid water films on a horizontal plate formed by the condensation of superheated steam. The experimental results were obtained in the Experimental Multi-phase Measurement Application (EMMA) at the University of Duisburg-Essen. The liquid film thickness was spatially and temporally investigated with an optical measurement system. Furthermore, the resulting local heat transfer coefficient in the case of film condensation was determined for a variety of steam velocities and temperatures. Subsequently, the presented data are compared to the results of an analytical condensation model for shear-stress-driven liquid films developed by Cess and Koh. Thus, the model is qualitatively validated, with explicable remaining disparities between the model and experiment that are further discussed. The presented results are an important contribution to the contemporary research into steady-state, single-component multiphase flow considering phase-change phenomena including heat transfer.
Full article

Figure 1
Open AccessArticle
Reynolds Sensitivity of the Wake Passing Effect on a LPT Cascade Using Spectral/hp Element Methods
by
, , , , and
Int. J. Turbomach. Propuls. Power 2022, 7(1), 8; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010008 - 22 Feb 2022
Abstract
►▼
Show Figures
Reynolds-Averaged Navier–Stokes (RANS) methods continue to be the backbone of CFD-based design; however, the recent development of high-order unstructured solvers and meshing algorithms, combined with the lowering cost of HPC infrastructures, has the potential to allow for the introduction of high-fidelity simulations in
[...] Read more.
Reynolds-Averaged Navier–Stokes (RANS) methods continue to be the backbone of CFD-based design; however, the recent development of high-order unstructured solvers and meshing algorithms, combined with the lowering cost of HPC infrastructures, has the potential to allow for the introduction of high-fidelity simulations in the design loop, taking the role of a virtual wind tunnel. Extensive validation and verification is required over a broad design space. This is challenging for a number of reasons, including the range of operating conditions, the complexity of industrial geometries and their relative motion. A representative industrial low pressure turbine (LPT) cascade subject to wake passing interactions is analysed, adopting the incompressible Navier–Stokes solver implemented in the spectral/hp element framework Nektar++. The bar passing effect is modelled by leveraging a spectral-element/Fourier Smoothed Profile Method. The Reynolds sensitivity is analysed, focusing in detail on the dynamics of the separation bubble on the suction surface as well as the mean flow properties, wake profiles and loss estimations. The main findings are compared with experimental data, showing agreement in the prediction of wake traverses and losses across the entire range of flow regimes, the latter within 5% of the experimental measurements.
Full article

Figure 1
Open AccessFeature PaperArticle
Aeroelastic Stability of Combined Plunge-Pitch Mode Shapes in a Linear Compressor Cascade
Int. J. Turbomach. Propuls. Power 2022, 7(1), 7; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010007 - 14 Feb 2022
Abstract
►▼
Show Figures
Modern aeroengine designs strive for peak specific fuel and thermal efficiency. To achieve these goals, engines have more highly loaded compressor stages, thinner aerofoils, and blended titanium integrated disks (blisks) to reduce weight. These configurations promote the occurrence of aeroelastic phenomena such as
[...] Read more.
Modern aeroengine designs strive for peak specific fuel and thermal efficiency. To achieve these goals, engines have more highly loaded compressor stages, thinner aerofoils, and blended titanium integrated disks (blisks) to reduce weight. These configurations promote the occurrence of aeroelastic phenomena such as flutter. Two important parameters known to influence flutter stability are the reduced frequency and the ratio of plunge and pitch components in a combined flap mode shape. These are used as design criteria in the engine development process. However, the limit of these criteria is not fully understood. The following research aims to bridge the gap between semi-analytical models and modern compressors by systematically investigating the flutter stability of a linear compressor cascade. This paper introduces the plunge-to-pitch incidence ratio, which is defined as a function of reduced frequency and pitch axis setback for a first flap (1F) mode shape. Using numerical simulations, in addition to experimental validation, aerodynamic damping is computed for many modes to build stability maps. The results confirm the importance of these two parameters in compressor aeroelastic stability as well as demonstrate the significance of the plunge-to-pitch incidence ratio for predicting the flutter limit.
Full article

Figure 1
Open AccessArticle
Trapped Acoustic Modes in an Axial Multi-Stage Compressor Leading to Non-Synchronous Blade Vibrations
Int. J. Turbomach. Propuls. Power 2022, 7(1), 6; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010006 - 04 Feb 2022
Abstract
►▼
Show Figures
Non-synchronous blade vibrations have been observed in an experimental multi-stage high-speed compressor setup at part-speed conditions. A detailed numerical study has been carried out to understand the observed phenomenon by performing unsteady full-annulus Reynolds-Averaged Navier–Stokes (RANS) simulations of the whole setup using the
[...] Read more.
Non-synchronous blade vibrations have been observed in an experimental multi-stage high-speed compressor setup at part-speed conditions. A detailed numerical study has been carried out to understand the observed phenomenon by performing unsteady full-annulus Reynolds-Averaged Navier–Stokes (RANS) simulations of the whole setup using the solver elsA. Several operating conditions have been simulated to observe this kind of phenomena along a speedline of interest. Based on the simulation results, the physical source of the non-synchronous blade vibration is identified: An aerodynamic disturbance appears in a highly loaded downstream rotor and excites a spinning acoustic mode. A “lock-in” phenomenon occurs between the blade boundary layer oscillations and the spinning acoustic mode. The establishment of axially propagating acoustic waves can lead to a complex coupling mechanism and this phenomenon is highly relevant in understanding the multi-physical interactions appearing in modern compressors. It is shown that aerodynamic disturbances occurring downstream can lead to critical excitation of rotor blades in upstream stages due to an axially propagating acoustic wave. The paper includes the analysis of a relevant transient test and a detailed analysis of the numerical results. The study shows the capability and necessity of a full-annulus multistage simulation to understand the phenomenon.
Full article

Figure 1
Open AccessArticle
A Low Order Flow Network Model for Double-Wall Effusion Cooling Systems
Int. J. Turbomach. Propuls. Power 2022, 7(1), 5; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010005 - 02 Feb 2022
Abstract
►▼
Show Figures
The high pressure turbine nozzle guide vane of a modern aeroengine experiences large heat loads and thus requires both highly effective internal and external cooling. This can be accomplished with double-wall effusion cooling, which combines impingement, pin-fin and effusion cooling. The combination of
[...] Read more.
The high pressure turbine nozzle guide vane of a modern aeroengine experiences large heat loads and thus requires both highly effective internal and external cooling. This can be accomplished with double-wall effusion cooling, which combines impingement, pin-fin and effusion cooling. The combination of three cooling mechanisms causes high pressure losses, increasing potential for the migration of coolant towards low pressure regions, subsequently starving effusion holes on the leading edge of coolant supply. This paper presents a low order flow network model to rapidly assess the pressure and mass flow distributions through such cooling schemes for a flexible set of geometric and flow conditions. The model is subsequently validated by a series of experiments with varying mainstream pressure gradients. Results from the model are used to indicate design parameters to reduce the effect of coolant migration, and to minimise the risk of destructive hot gas ingestion.
Full article

Figure 1
Open AccessEditorial
Acknowledgment to Reviewers of IJTPP in 2021
Int. J. Turbomach. Propuls. Power 2022, 7(1), 4; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010004 - 31 Jan 2022
Abstract
Rigorous peer-reviews are the basis of high-quality academic publishing [...]
Full article
Open AccessArticle
Retrofittable Solutions Capability for Gas Turbine Compressors
by
, , , , and
Int. J. Turbomach. Propuls. Power 2022, 7(1), 3; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010003 - 11 Jan 2022
Cited by 2
Abstract
►▼
Show Figures
The increasing introduction of renewable energy capacity has changed the perspective on the operation of conventional power plants, introducing the necessity of reaching extreme off-design conditions. There is a strong interest in the development and optimization of technologies that can be retrofitted to
[...] Read more.
The increasing introduction of renewable energy capacity has changed the perspective on the operation of conventional power plants, introducing the necessity of reaching extreme off-design conditions. There is a strong interest in the development and optimization of technologies that can be retrofitted to an existing power plant to enhance flexibility as well as increase performance and lower emissions. Under the framework of the European project TURBO-REFLEX, a typical F-class gas turbine compressor designed and manufactured by Ansaldo Energia has been studied. Numerical analyses were performed using the TRAF code, which is a state-of-the-art 3D CFD RANS/URANS flow solver. In order to assess the feasibility of lower minimum environmental load operation, by utilizing a reduction in the compressor outlet mass-flow rate, with a safe stability margin, two different solutions have been analyzed: blow-off extractions and extra-closure of Variable Inlet Guide Vanes. The numerical steady-state results are compared and discussed in relation to an experimental campaign, which was performed by Ansaldo Energia. The purpose is to identify the feasibility of the technologies and implementation opportunity in the existing thermal power plant fleet.
Full article

Figure 1
Open AccessArticle
Preliminary Design Guidelines for Considering the Vibration and Noise of Low-Speed Axial Fans Due to Profile Vortex Shedding
by
and
Int. J. Turbomach. Propuls. Power 2022, 7(1), 2; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010002 - 07 Jan 2022
Abstract
►▼
Show Figures
This paper presents a critical overview on worst-case design scenarios for which low-speed axial flow fans may exhibit an increased risk of blade resonance due to profile vortex shedding. To set up a design example, a circular-arc-cambered plate of 8% relative curvature is
[...] Read more.
This paper presents a critical overview on worst-case design scenarios for which low-speed axial flow fans may exhibit an increased risk of blade resonance due to profile vortex shedding. To set up a design example, a circular-arc-cambered plate of 8% relative curvature is investigated in twofold approaches of blade mechanics and aerodynamics. For these purposes, the frequency of the first bending mode of a plate of arbitrary circular camber is expressed by modeling the fan blade as a cantilever beam. Furthermore, an iterative blade design method is developed for checking the risky scenarios for which spanwise and spatially coherent shed vortices, stimulating pronounced vibration and noise, may occur. Coupling these two approaches, cases for vortex-induced blade resonance are set up. Opposing this basis, design guidelines are elaborated upon for avoiding such resonance. Based on the approach presented herein, guidelines are also developed for moderating the annoyance due to the vortex shedding noise.
Full article

Figure 1
Open AccessArticle
Design and Parametric Analysis of a Supersonic Turbine for Rotating Detonation Engine Applications
Int. J. Turbomach. Propuls. Power 2022, 7(1), 1; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp7010001 - 04 Jan 2022
Abstract
►▼
Show Figures
Pressure gain combustion is a promising alternative to conventional gas turbine technologies and within this class the Rotating Detonation Engine has the greatest potential. The Fickett–Jacobs cycle can theoretically increase the efficiency by 15% for medium pressure ratios, but the combustion chamber delivers
[...] Read more.
Pressure gain combustion is a promising alternative to conventional gas turbine technologies and within this class the Rotating Detonation Engine has the greatest potential. The Fickett–Jacobs cycle can theoretically increase the efficiency by 15% for medium pressure ratios, but the combustion chamber delivers a strongly non-uniform flow; in these conditions, conventionally designed turbines are inadequate with an efficiency below 30%. In this paper, an original mean-line code was developed to perform an advanced preliminary design of a supersonic turbine; self-starting capability of the supersonic channel has been verified through Kantrowitz and Donaldson theory; the design of the supersonic profile was carried out employing the Method of Characteristics; an accurate evaluation of the aerodynamic losses has been achieved by considering shock waves, profile, and mixing losses. Afterwards, an automated Computational Fluid Dynamics (CFD) based optimization process was developed to find the optimal loading condition that minimizes losses while delivering a sufficiently uniform flow at outlet. Finally, a novel parametric analysis was performed considering the effect of inlet angle, Mach number, reaction degree, peripheral velocity, and blade height ratio on the turbine stage performance. This analysis has revealed for the first time, in authors knowledge, that this type of machines can achieve efficiencies over 70%.
Full article

Figure 1
Open AccessArticle
Numerical Steady and Transient Evaluation of a Confined Swirl Stabilized Burner
Int. J. Turbomach. Propuls. Power 2021, 6(4), 46; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp6040046 - 30 Nov 2021
Abstract
►▼
Show Figures
Lean premixed combustion technology became state of the art in recent heavy-duty gas turbines and aeroengines. In combustion chambers operating under fuel-lean conditions, unsteady heat release can augment pressure amplitudes, resulting in component engine damages. In order to achieve deeper knowledge concerning combustion
[...] Read more.
Lean premixed combustion technology became state of the art in recent heavy-duty gas turbines and aeroengines. In combustion chambers operating under fuel-lean conditions, unsteady heat release can augment pressure amplitudes, resulting in component engine damages. In order to achieve deeper knowledge concerning combustion instabilities, it is necessary to analyze in detail combustion processes. The current study supports this by conducting a numerical investigation of combustion in a premixed swirl-stabilized methane burner with operating conditions taken from experimental data that were recently published. It is a follow-up of a previous paper from Farisco et al., 2019 where a different combustion configuration was studied. The commercial code ANSYS Fluent has been used with the aim to perform steady and transient calculations via Large Eddy Simulation (LES) of the current confined methane combustor. A validation of the numerical data has been performed against the available experiments. In this study, the numerical temperature profiles have been compared with the measurements. The heat release parameter has been experimentally and numerically estimated in order to point out the position of the main reaction zone. Several turbulence and combustion models have been investigated with the aim to come into accord with the experiments. The outcome showed that the combustion model Flamelet Generated Manifold (FGM) with the k- turbulence model was able to correctly simulate flame lift-off.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics

Conferences
Special Issues
Special Issue in
IJTPP
Fan Noise, Aerodynamics, Applications and Systems
Guest Editor: Thomas CarolusDeadline: 31 August 2022
Special Issue in
IJTPP
Advances in Critical Aspects of Turbomachinery Components and Systems
Guest Editors: Tony Arts, Rodolfo BontempoDeadline: 31 December 2022