Skeletal Muscle Atrophy and Metabolic Adaptation

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Endocrinology and Clinical Metabolic Research".

Deadline for manuscript submissions: closed (15 July 2021) | Viewed by 28878

Special Issue Editors

Institute of Nanotechnology, National Research Council (CNR), Rome, Italy
Interests: skeletal muscle homeostasis; epigenetics; histone deacetylases; muscle stem cells
Special Issues, Collections and Topics in MDPI journals
DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
Interests: skeletal muscle homeostasis; muscle stem cells; muscle atrophy; muscular dystrophy
Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
Interests: skeletal muscle homeostasis; mitochondrial calcium signaling; metabolism; cancer

Special Issue Information

Dear Colleagues,

Skeletal muscle atrophy is characterized by a decrease in muscle mass, which leads to muscle weakness and disability. It occurs in response to numerous events (e.g., denervation, starvation, aging, unloading, or disuse) and is associated with numerous diseases (e.g., amyotrophic lateral sclerosis, diabetes, and cancer cachexia). Regardless of the trigger, muscle atrophy appears when an unbalance between protein synthesis and proteolysis occurs. Among the skeletal muscle adaptative responses, changes in metabolism often occur in parallel to changes in muscle mass. Beyond being just a consequence, metabolic adaptation may actively regulate muscle mass. Metabolism and mitochondrial activity indeed may affect the muscle stem cell state and lineage specification, as well as control proteostatic pathways, thereby modulating muscle homeostasis. Casting light on the regulatory mechanisms underlying skeletal muscle atrophy and metabolic adaptation is important for understanding tissue homeostasis during diseases and for potentially leading to therapeutic steps forward in medicine. In this Special Issue, we seek manuscripts that aim to address the role of metabolic alteration in regulating muscle mass. Potential topics include, but are not limited to, metabolic remodeling in skeletal muscle atrophy, metabolic regulation of stem cell biology or catabolic pathways, and nutritional intervention or exercise to counteract muscle wasting.

Dr. Viviana Moresi
Dr. Luca Madaro
Dr. Cristina Mammucari
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • muscle atrophy
  • muscle metabolism
  • mitochondrial dysfunction
  • protein degradation

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2896 KiB  
Article
Ranolazine Counteracts Strength Impairment and Oxidative Stress in Aged Sarcopenic Mice
by Alessio Torcinaro, Donato Cappetta, Francesca De Santa, Marialucia Telesca, Massimiliano Leigheb, Liberato Berrino, Konrad Urbanek, Antonella De Angelis and Elisabetta Ferraro
Metabolites 2022, 12(7), 663; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo12070663 - 18 Jul 2022
Cited by 3 | Viewed by 2011
Abstract
Sarcopenia is defined as the loss of muscle mass associated with reduced strength leading to poor quality of life in elderly people. The decline of skeletal muscle performance is characterized by bioenergetic impairment and severe oxidative stress, and does not always strictly correlate [...] Read more.
Sarcopenia is defined as the loss of muscle mass associated with reduced strength leading to poor quality of life in elderly people. The decline of skeletal muscle performance is characterized by bioenergetic impairment and severe oxidative stress, and does not always strictly correlate with muscle mass loss. We chose to investigate the ability of the metabolic modulator Ranolazine to counteract skeletal muscle dysfunctions that occur with aging. For this purpose, we treated aged C57BL/6 mice with Ranolazine/vehicle for 14 days and collected the tibialis anterior and gastrocnemius muscles for histological and gene expression analyses, respectively. We found that Ranolazine treatment significantly increased the muscle strength of aged mice. At the histological level, we found an increase in centrally nucleated fibers associated with an up-regulation of genes encoding MyoD, Periostin and Osteopontin, thus suggesting a remodeling of the muscle even in the absence of physical exercise. Notably, these beneficial effects of Ranolazine were also accompanied by an up-regulation of antioxidant and mitochondrial genes as well as of NADH-dehydrogenase activity, together with a more efficient protection from oxidative damage in the skeletal muscle. These data indicate that the protection of muscle from oxidative stress by Ranolazine might represent a valuable approach to increase skeletal muscle strength in elderly populations. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Figure 1

11 pages, 1305 KiB  
Communication
Reticulon-1C Involvement in Muscle Regeneration
by Federica Rossin, Elena Avitabile, Giorgia Catarinella, Ersilia Fornetti, Stefano Testa, Serafina Oliverio, Cesare Gargioli, Stefano Cannata, Lucia Latella and Federica Di Sano
Metabolites 2021, 11(12), 855; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo11120855 - 08 Dec 2021
Viewed by 2015
Abstract
Skeletal muscle is a very dynamic and plastic tissue, being essential for posture, locomotion and respiratory movement. Muscle atrophy or genetic muscle disorders, such as muscular dystrophies, are characterized by myofiber degeneration and replacement with fibrotic tissue. Recent studies suggest that changes in [...] Read more.
Skeletal muscle is a very dynamic and plastic tissue, being essential for posture, locomotion and respiratory movement. Muscle atrophy or genetic muscle disorders, such as muscular dystrophies, are characterized by myofiber degeneration and replacement with fibrotic tissue. Recent studies suggest that changes in muscle metabolism such as mitochondrial dysfunction and dysregulation of intracellular Ca2+ homeostasis are implicated in many adverse conditions affecting skeletal muscle. Accumulating evidence also suggests that ER stress may play an important part in the pathogenesis of inflammatory myopathies and genetic muscle disorders. Among the different known proteins regulating ER structure and function, we focused on RTN-1C, a member of the reticulon proteins family localized on the ER membrane. We previously demonstrated that RTN-1C expression modulates cytosolic calcium concentration and ER stress pathway. Moreover, we recently reported a role for the reticulon protein in autophagy regulation. In this study, we found that muscle differentiation process positively correlates with RTN-1C expression and UPR pathway up-regulation during myogenesis. To better characterize the role of the reticulon protein alongside myogenic and muscle regenerative processes, we performed in vivo experiments using either a model of muscle injury or a photogenic model for Duchenne muscular dystrophy. The obtained results revealed RTN-1C up-regulation in mice undergoing active regeneration and localization in the injured myofibers. The presented results strongly suggested that RTN-1C, as a protein involved in key aspects of muscle metabolism, may represent a new target to promote muscle regeneration and repair upon injury. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Figure 1

13 pages, 4368 KiB  
Article
Preliminary Observations on Skeletal Muscle Adaptation and Plasticity in Homer 2-/- Mice
by Paola Lorenzon, Sandra Furlan, Barbara Ravara, Alessandra Bosutti, Gabriele Massaria, Annalisa Bernareggi, Marina Sciancalepore, Gabor Trautmann, Katharina Block, Dieter Blottner, Paul F. Worley, Sandra Zampieri, Michele Salanova and Pompeo Volpe
Metabolites 2021, 11(9), 642; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo11090642 - 19 Sep 2021
Cited by 2 | Viewed by 2390
Abstract
Homer represents a diversified family of scaffold and transduction proteins made up of several isoforms. Here, we present preliminary observations on skeletal muscle adaptation and plasticity in a transgenic model of Homer 2-/- mouse using a multifaceted approach entailing morphometry, quantitative RT-PCR [...] Read more.
Homer represents a diversified family of scaffold and transduction proteins made up of several isoforms. Here, we present preliminary observations on skeletal muscle adaptation and plasticity in a transgenic model of Homer 2-/- mouse using a multifaceted approach entailing morphometry, quantitative RT-PCR (Reverse Transcription PCR), confocal immunofluorescence, and electrophysiology. Morphometry shows that Soleus muscle (SOL), at variance with Extensor digitorum longus muscle (EDL) and Flexor digitorum brevis muscle (FDB), displays sizable reduction of fibre cross-sectional area compared to the WT counterparts. In SOL of Homer 2-/- mice, quantitative RT-PCR indicated the upregulation of Atrogin-1 and Muscle ring finger protein 1 (MuRF1) genes, and confocal immunofluorescence showed the decrease of neuromuscular junction (NMJ) Homer content. Electrophysiological measurements of isolated FDB fibres from Homer 2-/- mice detected the exclusive presence of the adult ε-nAChR isoform excluding denervation. As for NMJ morphology, data were not conclusive, and further work is needed to ascertain whether the null Homer 2 phenotype induces any endplate remodelling. Within the context of adaptation and plasticity, the present data show that Homer 2 is a co-regulator of the normotrophic status in a muscle specific fashion. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Figure 1

12 pages, 1364 KiB  
Communication
The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells
by Virve Cavallucci and Giovambattista Pani
Metabolites 2021, 11(8), 512; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo11080512 - 04 Aug 2021
Cited by 7 | Viewed by 3742
Abstract
β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing [...] Read more.
β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing muscle wasting in cancer and chronic lung disease, as well as in age-dependent sarcopenia. However, the molecular cascades underlying these beneficial effects are largely unknown. HMB bears a significant structural similarity with Butyrate and β-Hydroxybutyrate (βHB), two compounds recognized for important epigenetic and histone-marking activities in multiple cell types including muscle cells. We asked whether similar chromatin-modifying actions could be assigned to HMB as well. Exposure of murine C2C12 myoblasts to millimolar concentrations of HMB led to an increase in global histone acetylation, as monitored by anti-acetylated lysine immunoblotting, while preventing myotube differentiation. In these effects, HMB resembled, although with less potency, the histone deacetylase (HDAC) inhibitor Sodium Butyrate. However, initial studies did not confirm a direct inhibitory effect of HMB on HDACs in vitro. β-Hydroxybutyrate, a ketone body produced by the liver during starvation or intense exercise, has a modest effect on histone acetylation of C2C12 cells or in vitro HDAC inhibitor activities, and, unlike Butyrate and HMB, did not interfere with myotube formation in a myoblast differentiation assay. Instead, βHB dramatically increased lysine β-hydroxybutyrylation (Kbhb) of histone tails, an epigenetic mark associated with fasting responses and muscle catabolic states. However, when C2C12 cells were exposed to βHB in the presence of equimolar HMB this chromatin modification was drastically reduced, pointing to a role for HMB in attenuating ketosis-associated muscle wasting. In conclusion, while their mechanistic underpinnings remain to be clarified, these preliminary observations highlight novel and potentially important activities of HMB as an epigenetic regulator and βHB antagonist in muscle precursor cells, to be further explored in their biomedical implications. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Figure 1

16 pages, 2807 KiB  
Article
Lifelong Aerobic Exercise Alleviates Sarcopenia by Activating Autophagy and Inhibiting Protein Degradation via the AMPK/PGC-1α Signaling Pathway
by Jiling Liang, Hu Zhang, Zhengzhong Zeng, Liangwen Wu, Ying Zhang, Yanju Guo, Jun Lv, Cenyi Wang, Jingjing Fan and Ning Chen
Metabolites 2021, 11(5), 323; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo11050323 - 18 May 2021
Cited by 33 | Viewed by 4931
Abstract
Sarcopenia is an aging-induced syndrome characterized by a progressive reduction of skeletal muscle mass and strength. Increasing evidence has attested that appropriate and scientific exercise could induce autophagy or optimize the functional status of autophagy, which plays a critical role in senescent muscular [...] Read more.
Sarcopenia is an aging-induced syndrome characterized by a progressive reduction of skeletal muscle mass and strength. Increasing evidence has attested that appropriate and scientific exercise could induce autophagy or optimize the functional status of autophagy, which plays a critical role in senescent muscular dystrophy. As a publicly recognized strategy for extending lifespan and improving the health of the elderly, the underlying mechanisms of lifelong regular aerobic exercise for the prevention of sarcopenia have not been fully elucidated. To explore the role of lifelong aerobic exercise in the beneficial regulation of autophagic signaling pathways in senescent skeletal muscle, the natural aging mice were used as the sarcopenia model and subjected to lifelong treadmill running to evaluate corresponding parameters related to skeletal muscle atrophy and autophagic signaling pathways. Compared with the young control mice, the aged mice showed a significant reduction in skeletal muscle mass, gastrocnemius muscle weight/body weight (GMW/BW) ratio, and cross-sectional areas (CSA) of skeletal muscle fibers (p < 0.01). In contrast, lifelong aerobic exercise effectively rescued these reduced biomarkers associated with muscle atrophy. Moreover, as shown in the activated AMPK/PGC-1α signaling pathway, lifelong aerobic exercise successfully prevented the aging-induced impairment of the ubiquitin-proteasome system (UPS), excessive apoptosis, defective autophagy, and mitochondrial dysfunction. The exercise-induced autophagy suppressed the key regulatory components of the UPS, inhibited excessive apoptosis, and optimized mitochondrial quality control, thereby preventing and delaying aging-induced skeletal muscle atrophy. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Graphical abstract

Review

Jump to: Research

11 pages, 846 KiB  
Review
Thyroid Hormone Action in Muscle Atrophy
by Maria Angela De Stefano, Raffaele Ambrosio, Tommaso Porcelli, Gianfranco Orlandino, Domenico Salvatore and Cristina Luongo
Metabolites 2021, 11(11), 730; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo11110730 - 25 Oct 2021
Cited by 9 | Viewed by 3289
Abstract
Skeletal muscle atrophy is a condition associated with various physiological and pathophysiological conditions, such as denervation, cachexia, and fasting. It is characterized by an altered protein turnover in which the rate of protein degradation exceeds the rate of protein synthesis, leading to substantial [...] Read more.
Skeletal muscle atrophy is a condition associated with various physiological and pathophysiological conditions, such as denervation, cachexia, and fasting. It is characterized by an altered protein turnover in which the rate of protein degradation exceeds the rate of protein synthesis, leading to substantial muscle mass loss and weakness. Muscle protein breakdown reflects the activation of multiple proteolytic mechanisms, including lysosomal degradation, apoptosis, and ubiquitin–proteasome. Thyroid hormone (TH) plays a key role in these conditions. Indeed, skeletal muscle is among the principal TH target tissue, where TH regulates proliferation, metabolism, differentiation, homeostasis, and growth. In physiological conditions, TH stimulates both protein synthesis and degradation, and an alteration in TH levels is often responsible for a specific myopathy. Intracellular TH concentrations are modulated in skeletal muscle by a family of enzymes named deiodinases; in particular, in muscle, deiodinases type 2 (D2) and type 3 (D3) are both present. D2 activates the prohormone T4 into the active form triiodothyronine (T3), whereas D3 inactivates both T4 and T3 by the removal of an inner ring iodine. Here we will review the present knowledge of TH action in skeletal muscle atrophy, in particular, on the molecular mechanisms presiding over the control of intracellular T3 concentration in wasting muscle conditions. Finally, we will discuss the possibility of exploiting the modulation of deiodinases as a possible therapeutic approach to treat muscle atrophy. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Figure 1

25 pages, 1913 KiB  
Review
Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target
by Alessandra Renzini, Carles Sánchez Riera, Isidora Minic, Chiara D’Ercole, Biliana Lozanoska-Ochser, Alessia Cedola, Giuseppe Gigli, Viviana Moresi and Luca Madaro
Metabolites 2021, 11(8), 517; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo11080517 - 05 Aug 2021
Cited by 6 | Viewed by 4801
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, [...] Read more.
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Figure 1

19 pages, 1913 KiB  
Review
Altered Ca2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease
by Antonio Michelucci, Chen Liang, Feliciano Protasi and Robert T. Dirksen
Metabolites 2021, 11(7), 424; https://0-doi-org.brum.beds.ac.uk/10.3390/metabo11070424 - 28 Jun 2021
Cited by 25 | Viewed by 3818
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). [...] Read more.
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation–contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Figure 1

Back to TopTop