Advances in Quantitative LA-ICP-MS Analysis Promoting New Understanding of Gold Ore Genesis

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (31 March 2021) | Viewed by 14773

Special Issue Editors


E-Mail Website
Guest Editor
University of Tromsø – The Arctic University of Norway, N-9037 Tromsø, Norway
Interests: mineralogy; economic geology; metamorphic petrology; tectonics

Special Issue Information

Call for contributions to a Special Issue:

Esteemed Colleagues,

We are excited to announce a call for papers for an upcoming Special Issue to be published in Minerals with the title “Advances in Quantitative LA-ICP-MS Analysis Promoting New Understanding of Gold Ore Genesis”. This Special Issue will delve into the new breadth of knowledge brought about by the recent advances in in-situ high-precision analysis and element mapping of trace and ultra-trace elements in free gold and auriferous sulfides in orogenic, Carlin-type, IOCG, epithermal, skarn, Au-VMS, porphyry, and intrusion-related gold deposits.   

This Special Issue seeks to explore the upshot of high-resolution spatial and depth-profile analysis of gold and gold-bearing minerals in revealing minute genetic details of each of these gold deposit types. Thus, the issue’s central question might be framed as,  How does LA-ICP-MS analysis shape, reinforce, and abet genetic studies of gold deposits?

The target date for publication of this Special Issue is March 2021, although accepted manuscripts will be published online in advance of the issue completion.

Questions and related inquiries can be made to the Guest Editors: Tamer Abu Alam ([email protected]) and Basem Zoheir ([email protected]).

Dr. Tamer Abu-Alam
Prof. Dr. Basem Zoheir
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gold deposits
  • LA-ICPMS
  • geochemical fingerprinting
  • genetic models
  • physicochemical conditions
  • ore fluids

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

25 pages, 12943 KiB  
Article
Genesis of the Weizigou Au Deposit, Heilongjiang Province, NE China: Constraints from LA-ICP-MS Trace Element Analysis of Magnetite, Pyrite and Pyrrhotite, Pyrite Re-Os Dating and S-Pb Isotopes
by Yu Gao, Yujie Hao and Siyu Lu
Minerals 2021, 11(12), 1380; https://0-doi-org.brum.beds.ac.uk/10.3390/min11121380 - 07 Dec 2021
Cited by 2 | Viewed by 2665
Abstract
The Weizigou Au deposit in Heilongjiang Province, NE China, located in the southern Jiamusi Massif, shows similarities to IOCG deposits. To determine the mineralization age, sources of ore-forming materials and genetic type, pyrite Re-Os dating, S-Pb isotopic analysis, in situ sulfur analysis and [...] Read more.
The Weizigou Au deposit in Heilongjiang Province, NE China, located in the southern Jiamusi Massif, shows similarities to IOCG deposits. To determine the mineralization age, sources of ore-forming materials and genetic type, pyrite Re-Os dating, S-Pb isotopic analysis, in situ sulfur analysis and LA-ICP-MS analysis of trace elements in magnetite, pyrite and pyrrhotite were conducted. Four pyrite samples yielded a Re-Os isochron age of 197 ± 11 Ma, implying the occurrence a metallogenic event in the Early Jurassic. The δ34S values of sulfides display a relatively narrow range from 4.70‰ to 12.83‰ (mainly 9.90‰ to 12.83‰), which may be accounted for the extensively exposed granitic gneiss and meta-gabbro, with δ34S values of 7.44‰ to 8.44‰ and 4.37‰ to 10.54‰, respectively. Sulfide lead isotopic compositions have 206Pb/204Pb = 18.605–20.136, 207Pb/204Pb = 15.637–15.710 and 208Pb/204Pb = 38.534–39.129, indicating that the lead was derived from a mixed source. Magnetite has the characteristics of a lower Ti content and higher Zn content, indicating that it should be of hydrothermal origin, which may be related to IOCG-type mineralization. Pyrite and pyrrhotite have a Co/Ni ratio greater than 1 and a lower As content, indicating that they are of magmatic hydrothermal origin. Integrating the above analysis results, we inferred that the Weizigou Au deposit experienced the IOCG-type mineralization in the Middle-Late Permian, associated with magmatic-hydrothermal mineralization in the Early Jurassic. Full article
Show Figures

Figure 1

24 pages, 9800 KiB  
Article
Gold in the Farallones Block of the Shale-Hosted, Clastic-Dominated Castellanos Zinc-Lead Deposit (Northwest Cuba)
by David Gómez-Vivo, Fernando Gervilla, Rubén Piña, Rebeca Hernández-Díaz and Antonio Azor
Minerals 2021, 11(4), 414; https://0-doi-org.brum.beds.ac.uk/10.3390/min11040414 - 14 Apr 2021
Cited by 1 | Viewed by 2194
Abstract
The Zn-Pb ores of the Castellanos shale-hosted, clastic-dominated deposit in northwest Cuba average nearly 1 g/t Au, with local maximum concentrations up to 34 g/t Au. This deposit is stratiform with respect to the bedding in the host black shales and shows a [...] Read more.
The Zn-Pb ores of the Castellanos shale-hosted, clastic-dominated deposit in northwest Cuba average nearly 1 g/t Au, with local maximum concentrations up to 34 g/t Au. This deposit is stratiform with respect to the bedding in the host black shales and shows a bottom to top zoning of ore assemblages made up of a stockwork underlying the main orebody, a basal pyrite-rich zone and a disseminated to massive Zn-Pb ore zone capped by a discontinuous, thin barite-rich zone. Petrographic data and textural relations allow distinguishing five textural types of pyrite (framboidal Py I, colloform Py IIa, euhedral Py IIb, massive Py IIc and banded colloform Py III) successively formed during ore deposition. The main Zn-Pb ore formed after the crystallization of disseminated, sedimentary framboidal pyrite (Py I) in black shales by the superimposition of several crystallization events. The crystallization sequence of the main ore-forming stage evolved from the precipitation of colloform sphalerite and pyrite (Py IIa) with skeletal galena and interstitial dolomite-ankerite to similar ore assemblages but showing subhedral to euhedral crystal habits (Py IIb) and interstitial calcite-rich carbonates. This stage ended with the development of massive pyrite (Py IIc), mainly occurring at the base of the stratiform orebody. A late fracturing stage gave way to the development of a new generation of colloform banded pyrite (Py III) just preceding the crystallization of early barite. Au is mainly concentrated in pyrite showing variable contents in the different textural types of pyrite and a bottom to top enrichment trend. Minimum contents occur in massive pyrite (Py IIc) from the basal pyrite-rich zone (0.18 ppm Au average), increasing in pyrite IIa (from 0.29 to 2.86 ppm Au average) and in euhedral pyrite (Py IIb) (from 0.82 to 9.02 ppm Au average), reaching maxima in colloform banded pyrite (Py III) formed just before the crystallization of early barite at the top of the orebody. Au enrichment in pyrite correlates with that of Sb (0.08–4420 ppm), As (0.7–35,000 ppm), Ag (0.03–1560 ppm) and to a lesser extent Cu (3–25,000 ppm), Ni (0.02–1600 ppm) and Mn (0.6–5030 ppm). Au deposition should have taken place by oxidation and, probably cooling, of reduced (H2S-dominated) fluids buffered by organic matter-rich black shales of the host sedimentary sequence. The input of such reduced fluids in the ore-forming environment most probably occurred alternating with that of the main oxidized fluids which leached Zn and Pb from the large volume of sandstones and siltstones making up the enclosing sequence, thus being responsible for the precipitation of the majority Zn-Pb ore. Supply of Au-carrying reduced fluids might progressively increase over the course of ore formation, reaching a maximum at the beginning of the late fracturing stage. This evolution of Au supply is consistent with the early crystallization of barite since Ba can also only be transported at low temperature by highly reduced fluids. These results highlight the potential of medium-sized, shale-hosted, clastic-dominated deposits to contain economic (by product) Au amounts and show that ore-forming fluids can change from oxidized (SO42+ dominated) to reduced (H2S-dominated), and vice versa, throughout the evolutionary history of a single deposit. Full article
Show Figures

Figure 1

23 pages, 10032 KiB  
Article
Evolution of Pyrite Compositions at the Sizhuang Gold Deposit, Jiaodong Peninsula, Eastern China: Implications for the Genesis of Jiaodong-Type Orogenic Gold Mineralization
by Zhankun Liu, Xiancheng Mao, Andrew Jedemann, Richard C. Bayless, Hao Deng, Jin Chen and Keyan Xiao
Minerals 2021, 11(4), 344; https://0-doi-org.brum.beds.ac.uk/10.3390/min11040344 - 26 Mar 2021
Cited by 22 | Viewed by 3507
Abstract
Gold deposits in the Jiaodong Peninsula represent a primary gold resource in China and mostly exhibit similar ore-forming features related to sericite-quartz-pyrite alteration and other controls from (micro-)structural deformation. This study investigates the pyrite textures and trace elements in the Sizhuang gold deposit [...] Read more.
Gold deposits in the Jiaodong Peninsula represent a primary gold resource in China and mostly exhibit similar ore-forming features related to sericite-quartz-pyrite alteration and other controls from (micro-)structural deformation. This study investigates the pyrite textures and trace elements in the Sizhuang gold deposit (>100 t Au) to document the key factors impacting on the genesis of the Jiaodong-type orogenic deposits. Three main types of pyrite are identified: (1) the first generation of pyrite (Py1) occurs as disseminated euhedral to subhedral grains in K-feldspar-albite-rutile-hematite and sericite alteration (stage 1), (2) Py2 as aggregates in quartz-sericite-pyrite altered rocks or quartz-pyrite veins (stage 2) can be subdivided into Py2a as irregular cores, Py2b as a zoned overgrowth on Py2a, and Py2c as overgrowth on early pyrite, and (3) Py3 as fine-grained crystals in siderite-polymetallic veins (stage 3). Primary gold at the Sizhuang deposit is coevally or slightly later deposited with Py2b, Py2c, and Py3. Laser ablation–inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses show that the highest Co and Ni contents in Py1 and high but variable Co in Py2b favors the involvement of deep high-temperature magmatic waters at stage 1 and middle stage 2. The elevated As contents from Py2a to Py2c and depletion of trace elements (e.g., Co, Ni, As and Te) and high Au/Co, Cu/Ni, and As/Ni values in Py2a and Py3, combined with published H-O isotope data, imply a meteoric water ingress during stage 2–3. Thus, the fluid evolution at Sizhuang is a consequence of pulsed deep magmatic fluid release plus progressive meteoric fluid ingress. The rhythmic Co–As–Ni–Au bands of Py2b additionally suggest episodic changes in the composition of ore-forming fluids. Moreover, the sharp textural features (e.g., pyrite overgrowth on previously cataclastic crystals) of Py2 and As-Cu-rich and Co-poor bands in zoned Py2b probably also reflect rapid metal deposition and self-organization and subsequent mineral crystal growth due to the pressure release during phase separation in the Sizhuang deposit. Considering the significantly concentrated gold (>1300 t) in the regional Jiaojia fault zone and Au-bearing mineral formation related to phase separation (boiling) in the Sizhuang deposit, gold mineralization in the Sizhuang deposit was interpreted to be controlled by the pressure-driver owing to the seismic activities in the Jiaojia fault system. Full article
Show Figures

Figure 1

21 pages, 9319 KiB  
Article
Ore Mineralogy, Trace Element Geochemistry and Geochronological Constraints at the Mollehuaca and San Juan de Chorunga Au-Ag Vein Deposits in the Nazca-Ocoña Metallogenic Belt, Arequipa, Peru
by Jorge Crespo, Elizabeth Holley, Katharina Pfaff, Madeleine Guillen and Roberto Huamani
Minerals 2020, 10(12), 1112; https://0-doi-org.brum.beds.ac.uk/10.3390/min10121112 - 11 Dec 2020
Cited by 6 | Viewed by 4099
Abstract
The Mollehuaca and San Juan de Chorunga deposits are hosted in the poorly explored gold and copper trends of the Nazca-Ocoña metallogenic belt in Arequipa, Perú, which extends from Trujillo (9 °S) to Nazca-Ocoña (14 °S). The aim of this study is to [...] Read more.
The Mollehuaca and San Juan de Chorunga deposits are hosted in the poorly explored gold and copper trends of the Nazca-Ocoña metallogenic belt in Arequipa, Perú, which extends from Trujillo (9 °S) to Nazca-Ocoña (14 °S). The aim of this study is to characterize the age, occurrence, and distribution of quartz vein-hosted Au-Ag mineralization and associated trace elements (e.g., Hg, Pb, Cu, Zn, and Bi) in these deposits. Here, we present geological mapping, geochemical whole rock inductively coupled plasma (ICP)-MS data of the veins, petrographic observations, backscattered electron images, quantitative SEM-based automated mineralogy, and electron microprobe analyses (EMPA). Despite the fact that there are numerous small-scale gold mines in the Nazca-Ocoña metallogenic belt, there have been few studies that document the origin and geological evolution of these deposits or the implications for decision-making in exploration, metallurgical processing, and environmental management. In this research, we document the host rock age of the mineralized veins (129.2 ± 1.0 Ma; U-Pb in zircon), the mineralization age (95.86 ± 0.05 Ma; 40Ar/39Ar in secondary biotite), the occurrence and distribution of Au-Ag in the veins, the mineral zonation present in the vein system, and the zircon geochemistry, in order to provide tools for natural resource management in the metallogenic belt. Full article
Show Figures

Figure 1

Other

Jump to: Research

1 pages, 150 KiB  
Erratum
Erratum: Crespo et al. Ore Mineralogy, Trace Element Geochemistry and Geochronological Constraints at the Mollehuaca and San Juan de Chorunga Au-Ag Vein Deposits in the Nazca-Ocoña Metallogenic Belt, Arequipa, Peru. Minerals 2020, 10, 1112
by Jorge Crespo, Elizabeth Holley, Katharina Pfaff, Madeleine Guillen and Roberto Huamani
Minerals 2021, 11(5), 543; https://0-doi-org.brum.beds.ac.uk/10.3390/min11050543 - 20 May 2021
Viewed by 1401
Abstract
In the published article [...] Full article
Back to TopTop