Native Gold as a Specific Indicator Mineral for Gold Deposits

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 27804

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

1. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
2. Department of Geology and Geophysics, Novosibirsk State University, 630090 Novosibirsk, Russia
Interests: ore-forming processes; experiment; thermodynamic modeling; minerals-indicators; fluid−mineral−rock interactions; gold mineralization; gold deposits; mechanisms of ore formation; reconstruction of T,P,X-conditions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

You are welcome to contribute papers to this Special Issue entitled Native Gold as a Specific Indicator Mineral for Gold Deposits.

Gold is mostly found in its native state in nature. Pure native gold without impurities is rare. The main impurity in gold is silver, which forms a continuous solid solution AuxAg1-x (0<x<1), the fineness of which is characterized from 0 to 1000 ‰. At some deposits, the fineness of native gold is high and varies over a narrow range, whereas at others, it is low and covers a wide range of values. In addition to Ag, such isomorphic impurities as Cu, Hg, and Pd are also present. Au–Cu, Au–Hg, and other gold intermetallics are known. Native gold contains a wide range of impurities, including Pt, Rh, Ir, Fe, As, Sb, S, Se, Te, Bi, Ti, Cr, Ni, Co, Mn, W, Sn, U, Th, He, rare earth, alkaline, alkaline earth, and other elements. The chemical composition of native gold is one of the most important typomorphic features, allowing for the prediction of possible original sources of metal for placers. The number and quantity of impurities in native gold vary greatly between different formation types of deposits and depend to a large extent on the physicochemical conditions of their formation and the metallogenic features of gold-bearing provinces.

Gold and impurities can be transported not only by hydrothermal solutions and supercritical fluids but also by gas mixtures, sulfide, silicate, and carbonate melts. The analysis of data on proto-, syn- and epigenetic mineral microinclusions in native gold, satellite minerals, and concentrator-minerals can be used for identifying the features of the crystallization processes, and post-crystallization and post-ore transformations. It is also important to analyze changes in the native gold composition in hypergene processes during the formation of weathering crusts and placers.

The aim of this Special Issue is to identify and generalize the reasons for the variety of compositions of native gold.

Dr. Galina Palyanova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • macro-, micro-, trace impurities
  • fineness
  • mineralogical-geochemical features of native gold
  • heterogeneity
  • gold intermetallics
  • mineral inclusions in native gold
  • native gold inclusions in minerals
  • microstructures
  • lode and placer gold
  • nugget formation
  • indicator mineral

Related Special Issue

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

4 pages, 186 KiB  
Editorial
Editorial for the Special Issue “Native Gold as a Specific Indicator Mineral for Gold Deposits”
by Galina A. Palyanova
Minerals 2023, 13(10), 1323; https://0-doi-org.brum.beds.ac.uk/10.3390/min13101323 - 13 Oct 2023
Viewed by 700
Abstract
Native gold is the most common and significant industrial gold mineral [...] Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)

Research

Jump to: Editorial, Review

33 pages, 28729 KiB  
Article
Native Gold and Unique Gold–Brannerite Nuggets from the Placer of the Kamenny Stream, Ozerninsky Ore Cluster (Western Transbakalia, Russia) and Possible Sources
by Sergey M. Zhmodik, Evgeniya V. Airiyants, Dmitriy K. Belyanin, Bulat B. Damdinov, Nikolay S. Karmanov, Olga N. Kiseleva, Alexander V. Kozlov, Alexander A. Mironov, Tatyana N. Moroz and Victor A. Ponomarchuk
Minerals 2023, 13(9), 1149; https://0-doi-org.brum.beds.ac.uk/10.3390/min13091149 - 30 Aug 2023
Cited by 1 | Viewed by 833
Abstract
We carried out a comprehensive study of native gold (morphology, composition, intergrowths, and microinclusions) from alluvial deposits of the Kamenny stream (Ozerninsky ore cluster, Western Transbaikalia, Russia). The study showed that there were four types of native gold, which differed significantly in their [...] Read more.
We carried out a comprehensive study of native gold (morphology, composition, intergrowths, and microinclusions) from alluvial deposits of the Kamenny stream (Ozerninsky ore cluster, Western Transbaikalia, Russia). The study showed that there were four types of native gold, which differed significantly in their characteristics and probably had different primary sources from which placers were formed: gold–quartz, oxidized gold–sulfide, gold–silver, and zones of listvenites with copper–gold and gold–brannerite (Elkon-type). Particular attention was paid to the study of unique, both in size and in composition, gold–brannerite nuggets of the Kamenny stream. It was established that the gold in the gold–brannerite nuggets (GBNs) had wide variations in chemical composition and mineral features. According to them, there were five different fineness types of native gold: 750–800‰; 850–880‰; 880–920‰; 930–960‰; and 980–1000‰. The data obtained indicated a multistage, possibly polygenic, and probably polychronous formation of GBN gold–uranium mineralization. The first stage was the formation of early quartz–nasturanium–gold–W–rutile–magnetite association (Middle–Late Paleozoic age). The second was the crystallization of brannerite and the replacement of an earlier pitchblende with brannerite (Late Triassic (T3)–Early Jurassic (J1) age). The third was the formation of the hematite–barite–rutile–gold association as a result of deformation–hydrothermal processes, which was associated with the appearance of zones of alteration in brannerite in contact with native gold with 8–15 wt.% Ag. The fourth was hypergene or the low-temperature hydrothermal alteration of minerals of early stages with the development of iron hydroxides (goethite) with impurities of manganese, tellurium, arsenic, phosphorus, and other elements. The carbon isotopic composition of an organic substance indicates the involvement of a biogenic carbon source. In the OOC area, there were signs that the composition of the GBNs and the quartz–chlorite–K–feldspar-containing rocks corresponded to Elkon-type deposits. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

32 pages, 7386 KiB  
Article
Compositional Signatures of Gold from Different Deposit Types in British Columbia, Canada
by Rob Chapman, James Kenneth Mortensen and Rory Murphy
Minerals 2023, 13(8), 1072; https://0-doi-org.brum.beds.ac.uk/10.3390/min13081072 - 13 Aug 2023
Cited by 2 | Viewed by 1163
Abstract
A study of both in situ and detrital gold from different deposit types in British Columbia was undertaken to establish deposit-specific compositional characteristics in terms of alloy composition and suites of mineral inclusions. The study is based on 11,840 particles from 160 localities [...] Read more.
A study of both in situ and detrital gold from different deposit types in British Columbia was undertaken to establish deposit-specific compositional characteristics in terms of alloy composition and suites of mineral inclusions. The study is based on 11,840 particles from 160 localities in which nine gold deposit types are represented, although there is a strong bias towards gold of orogenic, low-sulphidation epithermal, and alkalic porphyry origin. In general, Ag values in gold alloys are not a powerful discriminator for deposit type, but minor metals may prove useful where detectable, e.g., Cu in gold from ultramafic associations and Pd and Hg in gold from alkalic porphyry systems. The characterization of inclusion suites is far more illuminating, as they correlate strongly with the mineralogy of auriferous ores from different deposit types. This outcome has confirmed the validity of designing an indicator methodology based on inclusion suites and has permitted the prediction of inclusion suites for gold from other deposit types where data are more scarce. The compositional templates generated in the study were applied to identify the source deposit type(s) of gold from 41 localities (a total of 2916 detrital gold particles) where gold genesis was previously unknown. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

21 pages, 3711 KiB  
Article
Gold–Sulfide Mineralization in the Manitanyrd Region, Polar Urals, Russia
by Tatiana Petrovna Mayorova, Sergei Karpovich Kuznetsov, Ludmila Ivanovna Efanova and Natalia Vladimirovna Sokerina
Minerals 2023, 13(6), 747; https://0-doi-org.brum.beds.ac.uk/10.3390/min13060747 - 30 May 2023
Cited by 1 | Viewed by 953
Abstract
This article describes the characteristics of gold–sulfide–quartz and gold–sulfide (gold–arsenic) ore occurrences in the Manitanyrd region of the Polar Urals. Ore occurrences are confined to NE-trending shear zones and have the common features of a geological structure. The host rocks are metamorphosed volcanic [...] Read more.
This article describes the characteristics of gold–sulfide–quartz and gold–sulfide (gold–arsenic) ore occurrences in the Manitanyrd region of the Polar Urals. Ore occurrences are confined to NE-trending shear zones and have the common features of a geological structure. The host rocks are metamorphosed volcanic and volcanic–sedimentary rocks. We analyzed the mineral and chemical composition of the ore mineralization in all studied ore occurrences, showing that they belong to the same mineral type—pyrite–arsenopyrite, with a variable ratio of the main minerals. Arsenic pyrite is present in all ore occurrences. Two stages of ore formation were distinguished: early gold–pyrite–arsenopyrite with finely dispersed gold and late gold–galena–chalcopyrite–sphalerite with coarse gold, fahlore, and sulfosalts Pb, Cu, Bi, Sb. Native gold of the first generation, finely dispersed in arsenopyrite and pyrite, had an average to high fineness (800‰–1000‰) with a relatively low dispersion. Native gold of the second generation was larger, and its fineness in ore occurrences varied; in one of them, it varied from 300‰ to 950‰, while in others, it varied from 800‰ to 950‰. The isotope composition of sulfur in sulfides (δ34S) ranged between −0.2‰ and −8.0‰. δ34S values of sulfides in the range of −0.2‰ to −3.5‰ were similar to meteorite, indicating the participation of a single deep magmatic source of sulfur in the ore formation. According to the study of fluid inclusions, the formation of ore quartz veins occurs in the temperature range of 467–109 °C. The similarity of the geological–structural, mineralogical–geochemical, and isotope–geochemical features of the gold–sulfide–quartz and gold–sulfide occurrences in the area suggest their formation in a single hydrothermal system. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

23 pages, 21306 KiB  
Article
Typomorphic Features and Source of Native Gold from the Sykhoi Log Area Placer Deposits, Bodaibo Gold-Bearing District, Siberia, Russia
by Alexander Lalomov, Antonina Grigorieva, Alexei Kotov and Lidiya Ivanova
Minerals 2023, 13(5), 707; https://0-doi-org.brum.beds.ac.uk/10.3390/min13050707 - 22 May 2023
Cited by 3 | Viewed by 1269
Abstract
The Bodaibo gold-bearing district in the Lena gold province of Siberia is one of the largest and oldest placer gold-bearing provinces in the world. Approximately 1650 tons of gold has been extracted from the region. Precise studies on the source of these unique [...] Read more.
The Bodaibo gold-bearing district in the Lena gold province of Siberia is one of the largest and oldest placer gold-bearing provinces in the world. Approximately 1650 tons of gold has been extracted from the region. Precise studies on the source of these unique placer deposits are lacking and still controversial. Native gold from four different locations was gathered to investigate its morphology, chemical signatures, structure and inclusions. Some data on primary bedrock mineralization were obtained from the published literature. The linear weathering crusts developed along the zones of disjunctive dislocations near the Sukhoi Log gold deposit were researched. If they coincided with zones of low-grade veinlet-disseminated gold–quartz–sulphide mineralization with small gold grain sizes, a supergene replacement of primary mineralization was known to have occurred, accompanied by the formation of gold-rich rims and an increase in the size, content and purity of gold. Such mineralization associated with linear weathering crusts can be a source of local eluvial–proluvial placers, while placers of large valleys are formed due to low-sulphide gold–quartz lodes. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

25 pages, 7199 KiB  
Article
Pd,Hg-Rich Gold and Compounds of the Au-Pd-Hg System at the Itchayvayam Mafic-Ultramafic Complex (Kamchatka, Russia) and Other Localities
by Galina Palyanova, Anton Kutyrev, Tatiana Beliaeva, Vladimir Shilovskikh, Pavel Zhegunov, Elena Zhitova and Yurii Seryotkin
Minerals 2023, 13(4), 549; https://0-doi-org.brum.beds.ac.uk/10.3390/min13040549 - 13 Apr 2023
Cited by 2 | Viewed by 1356
Abstract
The unique minerals of the Au-Pd-Hg system in gold grains from heavy concentrates of the Itchayvayam placers and watercourses draining and ore samples of the Barany outcrop at the Itchayvayam mafic–ultramafic complex (Kamchatka, Russia) were investigated. Gold grains from watercourses draining and heavy [...] Read more.
The unique minerals of the Au-Pd-Hg system in gold grains from heavy concentrates of the Itchayvayam placers and watercourses draining and ore samples of the Barany outcrop at the Itchayvayam mafic–ultramafic complex (Kamchatka, Russia) were investigated. Gold grains from watercourses draining and heavy concentrates of the Itchayvayam placers contain substitution structures formed by Pd,Hg-rich low-fineness gold (Au0.59–0.52Pd0.24–0.25Hg0.17–0.23, 580‰–660‰) and Pd,Hg-poor high-fineness gold (Au0.94–0.90Pd0.02–0.04Hg0.03, 910‰–960‰). Potarite (PdHg) without and with impurities (Au < 7.9, Cu < 3.5, Ag < 1.2 wt.%), Ag-poor high-fineness gold (Au0.91Ag0.09, 950‰), Ag,Pd,Hg-bearing middle-fineness gold (Au0.75Ag0.08Pd0.09Hg0.08—Au0.88Ag0.09Pd0.02Hg0.01, 820‰–930‰), and Pd,Hg-rich low-fineness gold with minor contents Ag and Cd (Au0.51–0.55Pd0.25–0.22Hg0.21–0.16Ag0.03–0.06Cd0.01, fineness 580‰–630‰) were observed as individual microinclusions in the ore samples of the Barany outcrop. XRD and EBSD study results show that the Pd,Hg-rich low-fineness gold is isotypic to gold and has the same structure type, but different cell dimensions. According to data obtained for the Itchayvayam and some deposits and ore occurrences with Pd,Hg-bearing gold, the stable ternary phases and solid solutions of the following compositions in the Au-Pd-Hg system have been identified: Pd,Hg-poor gold (Au0.94–0.90Pd0.02–0.04Hg0.03), Pd,Hg-rich gold (Au0.59–0.52Pd0.24–0.25Hg0.17–0.23), Au-potarite (PdHg0.62Au0.38—Pd1.04Hg0.96—Au0.80Pd0.68Hg0.52), and Au,Hg-bearing palladium (Pd0.7Au0.3Hg0.1). The genesis of Pd,Hg-rich gold is insufficiently studied. We supposed that the meteoric waters or low-temperature hydrotherms rich in Pd and Hg could lead to the replacement Pd,Hg-poor gold by Pd,Hg-rich gold. High concentrations of Pd in Pd,Hg-bearing gold indicate a genetic relationship with mafic–ultramafic rocks. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

17 pages, 14857 KiB  
Article
Ore Mineralogy and Typomorphism of Native Gold of the Spokoininsky Cluster of the Aldan–Stanovoy Gold Province
by Larisa A. Kondratieva, Galina S. Anisimova and Veronika N. Kardashevskaia
Minerals 2023, 13(4), 543; https://0-doi-org.brum.beds.ac.uk/10.3390/min13040543 - 12 Apr 2023
Cited by 2 | Viewed by 1043
Abstract
The ore mineralogy of a new promising target of the Aldan–Stanovoy gold province—the Spokoininsky cluster—is considered. Gold mineralization is represented by a volumetric, nonlinear type, unconventional for the region; it is related to elements of fold structures and reverse fault in the enclosing [...] Read more.
The ore mineralogy of a new promising target of the Aldan–Stanovoy gold province—the Spokoininsky cluster—is considered. Gold mineralization is represented by a volumetric, nonlinear type, unconventional for the region; it is related to elements of fold structures and reverse fault in the enclosing metamorphic basement rocks. Vein-disseminated sulfide–(pyrite)–quartz ores build up deposit-like bodies in beresites from gneisses and granite gneisses and are associated with Mesozoic igneous rocks of subalkaline formations. Mineralization is characterized by polysulfide (Fe-Cu-Pb); gold–bismuth (Au-Bi) and gold–silver–telluride (Au-Ag-Te) mineral types. Different mineral types have their own typomorphic minerals and typochemistry (fineness and impurities) of native gold. The widespread distribution of telluride mineralization and its great importance in the formation of gold mineralization on the Aldan shield is confirmed. The distribution area of bismuth (including tellurium–bismuth) mineralization in the southern part of the Aldan shield, in the zone of influence of the Stanovoy deep fault, has been identified. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

19 pages, 40601 KiB  
Article
The Use of Typomorphic Features of Placer Gold of the Anabar Region for Determining Its Sources
by Boris Gerasimov
Minerals 2023, 13(4), 480; https://0-doi-org.brum.beds.ac.uk/10.3390/min13040480 - 29 Mar 2023
Cited by 3 | Viewed by 966
Abstract
Typomorphic features of placer gold of the Anabar region were studied as predictive-exploration criteria. The target of the study was to determine the typomorphic features of placer gold related to the intermediate sources (paleo-placers) and the supposed nearby primary ore occurrences. Two varieties [...] Read more.
Typomorphic features of placer gold of the Anabar region were studied as predictive-exploration criteria. The target of the study was to determine the typomorphic features of placer gold related to the intermediate sources (paleo-placers) and the supposed nearby primary ore occurrences. Two varieties of placer gold were identified. The first variety is well-rounded high-fineness lamellar gold with a highly modified internal structure. This native gold is associated with intermediate sources, Neogene–Quaternary watershed pebble beds. The second type includes slightly rounded gold with a wide variation in fineness (494‰–999‰). Its indicator is a block heterophase internal structure. The set of typomorphic features of this variety of placer gold indicates the vicinity of the primary source, what was the prerequisite for constructing prospecting traverses in order to find ore occurrences. As a result of these studies, hydrothermal-metasomatic formations with gold-sulfide mineralization were identified. The main primary substrate for them is fractured near-fault carbonate rocks of the Cambrian and Vendian–Cambrian age. Along with this, hydrothermalites developed on slightly cemented fine-pebble quartz conglomerates of the Middle Permian age were found in the core of exploration wells. Two types of metasomatic rocks are identified: quartz-potassium feldspar and jasperoid. The main ore minerals were galena and pyrite, different ratios by sites were revealed. Gold was identified in the form of small particles in the carbonate and siliceous substrate of hydrothermal-metasomatic formations. The lithological factor was one of the leading favorable factors for the ore formation due to the presence of near-fault highly permeable fractured carbonate and slightly cemented terrigenous rocks. The structural control of the studied ore occurrences is determined by their localization in the Mayat–Logoy and Dogoy–Kuoy faults of the Molodo–Popigay system of discontinuous faults. We assume a two-stage formation of the gold ore occurrences: during the first stage, the ore components in the form of primary hydrothermal-sedimentary ores in the near-gault zones were formed. The second stage was related to the processes of the Mesozoic tectonic-magmatic activation, when the intrusion of basite dikes initiated the mobilization of ore components the gold-sulfide occurrences were formed in the near-fault zone as a result of silicic-potassic metasomatosis of the carbonate and terrigenous rocks. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

40 pages, 25955 KiB  
Article
Origin of Disseminated Gold-Sulfide Mineralization from Proximal Alteration in Orogenic Gold Deposits in the Central Sector of the Yana–Kolyma Metallogenic Belt, NE Russia
by Valery Yurievich Fridovsky, Lena Idenenovna Polufuntikova and Maxim Vasilievich Kudrin
Minerals 2023, 13(3), 394; https://0-doi-org.brum.beds.ac.uk/10.3390/min13030394 - 11 Mar 2023
Cited by 8 | Viewed by 2050
Abstract
The Yana–Kolyma metallogenic belt, NE Russia, is a world-class gold belt with resources numbering ~8300 tons of gold. The belt is localized in the central part of the Verkhoyansk–Kolyma orogen, formed by a collage of diverse terranes. The Tithonian-to-Early-Cretaceous orogenic gold deposits are [...] Read more.
The Yana–Kolyma metallogenic belt, NE Russia, is a world-class gold belt with resources numbering ~8300 tons of gold. The belt is localized in the central part of the Verkhoyansk–Kolyma orogen, formed by a collage of diverse terranes. The Tithonian-to-Early-Cretaceous orogenic gold deposits are hosted in a sequence of Permian–Triassic and Jurassic clastic rocks and altered Late Jurassic andesite, dacite, granodiorite, trachyandesite, and trachybasalt dykes. High-fineness gold (800–900‰) in quartz veins and invisible gold in disseminated arsenian pyrite-3 (Py3) and arsenopyrite-1 (Apy1) are present in ores. Here, we present new data about microtextures; the chemical composition and stable sulfur isotopes of auriferous pyrite-3 and arsenopyrite-1 from proximal alterations in sediment-hosted (Malo–Taryn, Badran, Khangalas); and intrusion-hosted (V’yun, Shumniy) orogenic Au deposits in the central sector of the Yana–Kolyma metallogenic belt to better constrain the ore-forming process and tracking their evolution. Detailed petrography defined the following generations of pyrite: syn-sedimentary/diagenetic Py1, metamorphic Py2 and hydrothermal Py3, and Apy1. Hydrothermal Py3 and Apy1 are localized in the proximal pyrite–arsenopyrite–sericite–carbonate–quartz alteration in ore zones and make a major contribution to the economic value of the veinlet-disseminated mineralization with “invisible” gold in the orogenic deposits of the Yana–Kolyma metallogenic belt. Electron microprobe analysis (EMPA) of Py3 in both types of deposits shows concentrations of As (up to 3.16 wt%), Co, Ni, Cu, Sb, and Pb. Py3 in intrusion-hosted orogenic gold deposits reveals elevated concentrations of Co (up to 0.87 wt%), Ni (up to 3.52 wt%), and Cu (up to 2.31 wt%). The identified negative correlation between S and As indicates an isomorphic substitution of sulfur by As1−. Py3 from igneous rocks is characterized by a high degree of correlation for the pairs Fe2+→ Co2+ and Fe2+→ Ni2+. For hydrothermal Apy1, Co (up to 0.27 wt%), Ni (up to 0.30 wt%), Cu (up to 0.04 wt%), and Sb (up to 0.76 wt%) are typomorphic. According to atomic absorption spectrometry, the concentration of Au in Py3 reaches 159.5 ppm; in Apy1, it reaches 168.5 ppm. The determination of the precise site of the invisible gold within Py3 and Apy1 showed the predominance of solid-solution Au+ in the crystal lattice. The values of δ34S in Py3 and Apy1 (from −6.4 to +5.6‰, mean value of about +0.6‰), both from sediment-hosted and from intrusion-hosted deposits, display a relatively narrow range and are characteristic of the hydrothermal ore stage. Our analytical results showed no systematic differences between the chemical and stable sulfur isotope compositions of both auriferous pyrite-3 and arsenopyrite-1 from the proximal alteration in sediment-hosted (Malo–Taryn, Badran, Khangalas) and intrusion-hosted (V’yun, Shumniy) orogenic Au deposits, indicating that the primary source of sulfur, gold, and mineralizing fluids was likely from subcrustal and metamorphic systems in the Late-Jurassic-to-Early-Cretaceous Verkhoyansk–Kolyma orogen. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

22 pages, 3923 KiB  
Article
Insights into Regional Metallogeny from Detailed Compositional Studies of Alluvial Gold: An Example from the Loch Tay Area, Central Scotland
by Robert Chapman, Taija Torvela and Lucia Savastano
Minerals 2023, 13(2), 140; https://0-doi-org.brum.beds.ac.uk/10.3390/min13020140 - 18 Jan 2023
Cited by 6 | Viewed by 2346
Abstract
Compositional features of a total of 1887 gold alluvial particles from six localities to the south of Loch Tay in central Scotland were interpreted to establish different types of source mineralization. Populations of gold particles from each locality were grouped according to alloy [...] Read more.
Compositional features of a total of 1887 gold alluvial particles from six localities to the south of Loch Tay in central Scotland were interpreted to establish different types of source mineralization. Populations of gold particles from each locality were grouped according to alloy and inclusion signatures. Inclusion suites provided the primary discriminant with gold from Group 1 localities showing a narrow range of simple sulphide and sulphoarsenide inclusion species, whereas a wide range of minerals including molybdenite, bornite and various Bi and Te- bearing species were identified in gold from Group 2 localities. Whilst the range of Ag in alloys in all populations was similar, higher incidences of measurable Hg and Cu were detected in Group 1 and Group 2 gold samples respectively. The application of compositional templates of gold from other localities worldwide indicated that Group 1 gold is orogenic and Group 2 gold is a mixture of porphyry and epithermal origin; a result that is sympathetic to the spatial relationships of sample localities with local lithologies. This approach both provides an enhanced level of understanding of regional gold metallogeny where in situ sources remain undiscovered, and permits clearer targeting of deposit types during future exploration. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

13 pages, 10049 KiB  
Article
Paragenetic Association of Platinum and Gold Minerals in Placers of the Anabar River in the Northeast of the Siberian Platform
by Alexander Okrugin and Boris Gerasimov
Minerals 2023, 13(1), 96; https://0-doi-org.brum.beds.ac.uk/10.3390/min13010096 - 07 Jan 2023
Cited by 5 | Viewed by 1721
Abstract
Areal placers of diamond and precious metals (platinum and gold) of unknown origin are widespread in the Anabar River basin on the northeastern part of the Siberian Platform. This article discusses the typomorphic features of palladium gold (porpezite) and ferroan platinum, which, in [...] Read more.
Areal placers of diamond and precious metals (platinum and gold) of unknown origin are widespread in the Anabar River basin on the northeastern part of the Siberian Platform. This article discusses the typomorphic features of palladium gold (porpezite) and ferroan platinum, which, in addition to fragmented individual grains, sometimes form close growths, which indicates their obvious genetic relationship. This can be used to delimit the primary sources of commercial components of complex placers by their genetic types. The composition of minerals was determined on a Camebax-Micro (Cameca, France) microprobe analyzer, and their microstructural relationships were studied using the scanning microscope JSM-6480LV JEOL. Determination of the structure and parameters of elementary lattices of minerals was carried out on the D8 Discover diffractometer. According to microprobe analysis, the Pd content in porpezite ranges from 0.73% to 12.83%, Ag does not exceed 2.75% and Cu reaches 3–4%. Considering the composition, such a gold–platinum mineral association from placers of the Anabar river is close to precious metals from placers of the Gulinsky massif, as well as Au–PGE ore occurrences related to ultramafic–mafic intrusions of other regions of the world. Complex gold–platinum-metal mineralizations are usually closely related to parent rocks and are often observed in sulfide and chromite ores of layered ultramafic–mafic intrusions with complex metasomatic and hydrothermal transformations. It is shown that in such cases gold and platinum form a magmatogenic paragenesis of minerals that coexist until the separation of hydrothermal solutions from magma, which, as a rule, transports Au and Ag with a small fraction of PGE from the fluid-ore-magmatic system in accordance with the model of the formation of gold–porphyry deposits. Within the Anabar diamond-bearing region, according to modern geophysical data, a significant number of local gravimagnetic anomalies associated with the presence of intrusive massifs of basic and alkaline-ultrabasic rocks in the cover and within the basement have been identified. This allows us to assume that the buried parent rocks of the Anabar Au–Pt placers may be located in both the Precambrian and Phanerozoic strata. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

15 pages, 8719 KiB  
Article
Internal Structures of Placer Gold as an Indicator of Endogenous and Exogenous Processes
by Zinaida Nikiforova
Minerals 2023, 13(1), 68; https://0-doi-org.brum.beds.ac.uk/10.3390/min13010068 - 30 Dec 2022
Cited by 3 | Viewed by 1149
Abstract
The study of the internal structures of placer gold on the territory of the east of the Siberian platform, overlain by a thick cover of Mz-Kz deposits, where traditional methods of searching for gold deposits are not effective, allowed us to determine, for [...] Read more.
The study of the internal structures of placer gold on the territory of the east of the Siberian platform, overlain by a thick cover of Mz-Kz deposits, where traditional methods of searching for gold deposits are not effective, allowed us to determine, for the first time, the stages of ore formation and conditions of its occurrence. The identified indicators of the internal structures of placer gold (structures of primary recrystallization, secondary recrystallization, thick high-grade shells) indicate that placer gold content is formed mainly due to the supply and repeated redeposition of native gold from ancient gold-bearing deposits of the Precambrian stage of ore formation to younger ones. The discovered coarse-, medium-grained, mono-grained, unclear-zonal, granulation and disintegration structures suggest a supply of gold from nearby ore sources of the Mesozoic stage of ore formation. In the weathering crust, a high-grade shell is formed. In the hydrodynamic environment, the internal structures of gold practically do not change and fully correspond to the internal structures of endogenous gold. In aeolian conditions, the internal structures are transformed. In ancient gold-bearing conglomerates, under the impact of lithostatic pressure, as well as in metamorphogenic conditions, when the PT conditions change, the internal structure changes. Thus, for the first time, on a huge factual material, it is proved that the internal structures contain extensive information both about the endogenous origin of gold (the stages of ore formation—Precambrian and Mesozoic) and about its transformation in various exogenous conditions. The identified indicator of the internal structures of placer gold for certain types of sources contribute to a more correct selection of methods for searching for ore and placer gold deposits in closed territories and assessing their prospects. The use of this method makes it possible to develop criteria for forecasting different sources and types of gold deposits based on internal structures. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

35 pages, 11186 KiB  
Article
Geological Constraints on the Genesis of Jagpura Au-Cu Deposit NW India: Implications from Magnetite-Apatite Mineral Chemistry, Fluid Inclusion and Sulfur Isotope Study
by Abhishek Anand, Sahendra Singh, Arindam Gantait, Amit Srivastava, Girish Kumar Mayachar and Manoj Kumar
Minerals 2022, 12(11), 1345; https://0-doi-org.brum.beds.ac.uk/10.3390/min12111345 - 24 Oct 2022
Cited by 1 | Viewed by 1604
Abstract
The Jagpura Au-Cu deposit is situated within the Aravalli craton in the northwestern part of India. In the present work, petrography, mineral chemistry, fluid inclusion and sulfur isotopic compositions were used to study the Jagpura Au-Cu deposit. The ore mineral association of the [...] Read more.
The Jagpura Au-Cu deposit is situated within the Aravalli craton in the northwestern part of India. In the present work, petrography, mineral chemistry, fluid inclusion and sulfur isotopic compositions were used to study the Jagpura Au-Cu deposit. The ore mineral association of the deposit is arsenopyrite, loellingite, chalcopyrite, pyrrhotite and pyrite, along with native gold, magnetite and apatite. The gold fineness ranges from 914–937‰ (avg. 927‰). The presence of Au-Bi-Te phases, pyrite (>1 Co/Ni ratio), magnetite (≥1 Ni/Cr ratio, <1 Co/Ni ratio) and apatite (>1 F/Cl ratio) suggest the hydrothermal origin Au-Cu mineralization. A fluid inclusion study indicates the different episodes of fluid immiscibility with the homogenization temperatures varying between 120–258 °C and salinities range within the 8.86–28.15 wt% NaCl eq. The sulfur isotopic composition of sulfides varies from 8.98 to 14.58‰ (avg. 11.16‰). It is inferred that the variation in the sulfur isotopic compositions of sulfides is due to the cooling and dilution of the metalliferous fluid of mixed origin, derived from the basement meta-sedimentary rocks and the high saline basinal fluid. The iron oxide-copper-gold-apatite associations, structural control of mineralization, pervasive hydrothermal alteration, fluid salinity and sulfur isotope compositions indicate that the Jagpura Au-Cu deposit is similar to the iron oxide-copper-gold (IOCG)-iron oxide-apatite (IOA)types of deposits. Based on the ore geochemistry and the trace elements systematic of magnetite, the deposit is further classified as an IOCG-IOA type: IOCG-Co (reduced) subtype. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

16 pages, 13284 KiB  
Article
Gold Provenance in Placers from Pureo Area, Southern Chile Coastal Cordillera, and Their Relationship with Paleozoic Metamorphic Rocks
by Pablo Becerra, Pablo Sanchez-Alfaro, José Piquer, Gaëlle Plissart, Belén Garroz and Daniela Kunstmann
Minerals 2022, 12(9), 1147; https://0-doi-org.brum.beds.ac.uk/10.3390/min12091147 - 10 Sep 2022
Cited by 2 | Viewed by 1829
Abstract
Southern Chile placer gold deposits have been known and exploited since Spanish colonial times. Despite this, precise knowledge about their origin is scarce. This work aims to identify possible primary sources of the gold in the Pureo placers by studying the morphological and [...] Read more.
Southern Chile placer gold deposits have been known and exploited since Spanish colonial times. Despite this, precise knowledge about their origin is scarce. This work aims to identify possible primary sources of the gold in the Pureo placers by studying the morphological and chemical characteristics of gold particles according to their spatial distribution. The former was determined by measurements and classification under a binocular microscope, allowing us to acquire a set of parameters related to the amount of transport that had affected the samples. The microchemical characteristics were determined by studying gold particles using optical microscopy, scanning electron microscopy (SEM) and electron microprobe (EMPA), where the native gold composition (in terms of major and minor elements) and the suite of mineral inclusions were obtained. The results regarding morphological characteristics suggest a low amount of transport from a primary source (<15 km). Microchemical data from gold particles indicate two compositional sub-populations, distinguished in both native gold composition (<15 Ag wt% with up to 4 Hg wt% and >15 Ag wt% with Hg bellow 1 wt%) and mineral inclusions (pyrite-galena rich and arsenopyrite rich, respectively), indicating two different primary gold sources. These results suggest a local origin of gold in the Coastal Cordillera, where the possible primary sources are associated with (i) massive sulfide deposits present in Paleozoic–Triassic metamorphic rocks and (ii) hydrothermal deposits associated with more recent Cenozoic intrusive activity. These conclusions have implications for the exploration of new placer deposits and of gold-bearing hypogene deposits (e.g., metamorphosed VMS deposits) in unexplored zones of southern Chile Coastal Cordillera. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

25 pages, 7539 KiB  
Article
The Gold–Palladium Ozernoe Occurrence (Polar Urals, Russia): Mineralogy, Conditions of Formation, Sources of Ore Matter and Fluid
by Valery Murzin, Galina Palyanova, Tatiana Mayorova and Tatiana Beliaeva
Minerals 2022, 12(6), 765; https://0-doi-org.brum.beds.ac.uk/10.3390/min12060765 - 16 Jun 2022
Cited by 8 | Viewed by 2020
Abstract
We studied the mineralization and sulfur isotopic composition of sulfides of gold–palladium ores in olivine clinopyroxenites from the Dzelyatyshor massif made up of a continuous layered series of rocks: olivine-free clinopyroxenite–olivine clinopyroxenite–wehrlite. The primary igneous layering of rocks, manifested as different quantitative ratios [...] Read more.
We studied the mineralization and sulfur isotopic composition of sulfides of gold–palladium ores in olivine clinopyroxenites from the Dzelyatyshor massif made up of a continuous layered series of rocks: olivine-free clinopyroxenite–olivine clinopyroxenite–wehrlite. The primary igneous layering of rocks, manifested as different quantitative ratios of clinopyroxene and olivine in them, controls the local trends of variability in the chemistry of mineral-forming medium and the concentrations of ore components, including noble metals, and sulfur in each separate layer during its cooling. The replacement of primary rock-forming minerals by secondary minerals, when the temperature decreases, is a characteristic trend for pyroxenites: (a) olivine → serpentine, secondary magnetite, and (b) clinopyroxene → amphibole, secondary magnetite → chlorite. The deposition of native gold in parageneses with PGM and sulfides at the Ozernoe occurrence took place during the replacement of earlier rock-forming minerals by chlorite. This process completed mineral formation at the deposit and took place at temperatures 150–250 °C and at the high activity of S, Te, Sb, and As of fluid. The variability of mineral formation conditions during chloritization is reflected in the change of native-sulfide forms of Pd by arsenide-antimonide forms and the sulfur isotopic composition of sulfides. The Pd content in native gold increases in the series—Au-Ag solid solution (<1.5 wt.% Pd)—Au-Cu intermetallides (to 6 wt.% Pd)—Cu-Au-Pd solid solutions (16.2–16.9 wt.% Pd). The sulfur isotopic composition of pyrite, chalcopyrite, and bornite varies from −2.1 to −2.9‰. It is assumed that a deep-seated magmatic basic melt was the source of fluid, ore components, and sulfur. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

23 pages, 9136 KiB  
Article
Typomorphism of Native Gold (Geological-Industrial Types of Gold Deposits in the North-East of Russia)
by Natalia E. Savva, Raisa G. Kravtsova, Galina S. Anisimova and Galina A. Palyanova
Minerals 2022, 12(5), 561; https://0-doi-org.brum.beds.ac.uk/10.3390/min12050561 - 29 Apr 2022
Cited by 11 | Viewed by 2250
Abstract
This study presents the typomorphic features of native gold grains from three different geological-industrial types (GIT) of gold deposits in the North-East of Russia: (1) gold–arsenic-sulfide in black shale strata (Natalka, Degdekan, Karalveem, Maldyak deposits), (2) gold–quartz veins in granitoids (Dorozhnoye, Butarnoye, Shkolnoye, [...] Read more.
This study presents the typomorphic features of native gold grains from three different geological-industrial types (GIT) of gold deposits in the North-East of Russia: (1) gold–arsenic-sulfide in black shale strata (Natalka, Degdekan, Karalveem, Maldyak deposits), (2) gold–quartz veins in granitoids (Dorozhnoye, Butarnoye, Shkolnoye, Maltan deposits), and (3) gold–silver adularia in volcanogenic strata (Kupol, Olcha, Kubaka, Burgali, Primorskoe, Dalnee deposits). The reliability of the geological interpretation is directly related to mineral associations, fineness variations, its internal structure and the content of microimpurities. Native gold is a reliable indicator for identifying various GIT of gold deposits at the early geological-prospecting stages of studying gold-bearing areas. Typomorphic features of native gold for each of the considered GIT are stable and do not depend on the age and scale of mineralization. It is shown that using an integrated approach obtains genetic information about a particular ore object, which makes it possible to predict the vertical range of mineralization and outline the technology for processing ores. The information obtained can also be effectively used in the search for placer deposits in nearby watercourses. Identification of typomorphic features of ore and placer native gold opens up wide opportunities for delineating the distribution areas of placer deposits. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

38 pages, 5802 KiB  
Review
Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits
by Galina A. Palyanova, Pavel S. Zhegunov, Tatiana V. Beliaeva, Valery V. Murzin, Andrey A. Borovikov and Nikolay A. Goryachev
Minerals 2023, 13(8), 1019; https://0-doi-org.brum.beds.ac.uk/10.3390/min13081019 - 30 Jul 2023
Cited by 2 | Viewed by 1305
Abstract
This paper reviews and summarizes the available information on the composition of palladian gold with various contents and sets of isomorphic impurities (Ag, Cu, Hg) at 50 deposits and ore occurrences with Au-Pd mineralization. It is revealed that Palladian gold is represented by [...] Read more.
This paper reviews and summarizes the available information on the composition of palladian gold with various contents and sets of isomorphic impurities (Ag, Cu, Hg) at 50 deposits and ore occurrences with Au-Pd mineralization. It is revealed that Palladian gold is represented by the systems Au–Pd, Au–Pd–Hg, Au–Pd–Cu, and Au–Pd–Ag–Hg, but more frequently corresponds to Au–Pd–Ag, Au–Pd–Ag–Cu, and Au–Pd–Ag–Cu–Hg. Objects with palladian gold belong to different types of gold deposits and to the deposits at which the main components of ores are PGE, Cr, Cu, Ni, V, and Ti. We propose a classification of the types of deposits with palladian gold: (1) PGE ore deposits related to mafic–ultramafic magmatic complexes (two subtypes—(a) low-sulfide-grade (less than 2%–5% sulfides) Alaskan, and (b) high-sulfide-grade (more than 5% sulfides) Norilsk); (2) orogenic gold deposits (OG); (3) epithermal (porphyry) gold–copper deposits (EPGC); (4) iron oxide copper gold deposits (IOCG); (5) ferruginous quartzite deposits; (6) volcanic exhalation; and (7) gold-PGE placers of five subtypes corresponding to the types of 1–5 primary sources. Physicochemical conditions of the formation of palladian gold at some deposits of type 1 cover two areas—magmatic high-temperature and hydrothermal low-temperature. At the majority of deposits of types 2–4, its formation proceeds with the participation of hydrothermal fluids (300–60 °C) of various salinities (0.2–30 wt.% NaCl eq.). Palladian gold is mainly high-fineness (910‰–990‰), is less frequently medium-fineness, and contains Ag and Cu, but does not contain Hg at the deposits of types 1, 3, and 4. The only exception is the Au-Pd-Hg Itchayvayam ore occurrence (Kamchatka, Russia), for which two varieties of Pd,Hg-bearing native gold (fineness 816‰–960‰ and 580‰–660‰) are determined. Low-fineness palladian gold with the major content of Ag is typical of OGD deposits. Medium-fineness palladian gold occurs at ferruginous quartzite deposits and in volcanic exhalations. Hg, Ag, Cu-bearing high-fineness palladian gold is present mainly in placer deposits (type 7). The most common minerals in association with palladian gold are arsenides, stibioarsenides, sulfides, stannides, bismuthides, tellurides, and selenides of Pd and Pt. These are typical of deposit types 1 and 7. The minerals of Au, Ag, and Cu (tetra-auricupride, aurostibite, chalcopyrite, bornite, chalcocite, eucairite, etc.) are in association with palladian gold at OG, EPGC, and IOCG deposits. Hg minerals (cinnabar, tiemannite, coloradoite, potarite) are at some deposits (types 1, 2, 7-1, 7-4). Cu, Fe, and Pd oxides (tenorite, hematite, magnetite, PdO, (Pd,Cu)O) and Fe and Pd hydroxides (goethite, (Fe,Pd)OOH) occur at the deposits of the 3, 4, and 7 groups and indicate the highly oxidizing conditions of ore formation. The most common minerals among host minerals are quartz and muscovite, including fuchsite (Cr-Ms), chlorite, albite, K-feldspar, hornblende, and carbonates (calcite, siderite, etc.). The fineness, content, and set of impurities in palladian gold and minerals in association with it reflect the mineralogy of Au-Pd ores and allow them to be used as indicators for the deposit types. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

Back to TopTop