Genesis of Porphyry Cu–Mo Deposits: Geochemistry, Mineralogy and Geochronology

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (31 August 2023) | Viewed by 10016

Special Issue Editor


E-Mail Website
Guest Editor
School of Earth and Space Sciences, Peking University, Beijing 100871, China
Interests: porphyry deposits

Special Issue Information

Dear Colleagues,

Research of porphyry Cu, Mo, Au, and Pb–Zn deposits mainly focuses on tectonic setting, source of ore-forming materials, transportation, magmatic oxygen fugacity, and metal precipitation mechanisms. Porphyry deposits are mainly formed in three tectonic settings: (1) climax type, which is associated with intraplate rifts; (2) Endako type, which is associated with plate subduction; and (3) collision type, which is related to continental collision. Although they are all related to porphyry, the magmatism in different tectonic settings can induce different magmatic–fluid–metal mineralization processes. In the past decade, due to the application of in situ isotope analysis techniques, the characterization of the mineralization process has become more precise and accurate. This Special Issue seeks reviews and summaries on the characterization of the mineralization process.

Prof. Dr. Yong Lai
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • porphyry deposits
  • magmatic evolution
  • ore-forming fluid
  • water-rock reaction
  • metallogenic age
  • metallogenic mechanism
  • fluid inclusion
  • mantle wedge
  • orogenic belt

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 6633 KiB  
Article
Metallogenesis of Porphyry Copper Deposit Indicated by In Situ Zircon U-Pb-Hf-O and Apatite Sr Isotopes
by Hong Zhang, Fang An, Mingxing Ling, Xiaolin Feng and Weidong Sun
Minerals 2022, 12(11), 1464; https://0-doi-org.brum.beds.ac.uk/10.3390/min12111464 - 19 Nov 2022
Cited by 1 | Viewed by 1500
Abstract
The origin of the Dexing porphyry Cu deposit is hotly debated. Zircon and apatite are important accessory minerals that record key information of mineralization processes. SHRIMP zircon U-Pb analyses of granodiorite porphyries yield ages of 168.9 ± 1.2 Ma, 168.0 ± 1.0 Ma, [...] Read more.
The origin of the Dexing porphyry Cu deposit is hotly debated. Zircon and apatite are important accessory minerals that record key information of mineralization processes. SHRIMP zircon U-Pb analyses of granodiorite porphyries yield ages of 168.9 ± 1.2 Ma, 168.0 ± 1.0 Ma, and 172.8 ± 1.3 Ma, whereas zircons in the volcanic rocks of the Shuangqiaoshan Group have Neoproterozoic ages of 830 ± 7 Ma, 829 ± 8 Ma, and 899 ± 12 Ma. The porphyry displays zircon in situ δ18O of mantle values (5.5 ± 0.2‰), low apatite 87Sr/86Sr ratios (0.7058 ± 0.0005), and high εHf values (5.1 ± 1.5), which are consistent with mantle-derived magmatic rocks. Apatite from the porphyries has relatively high total rare earth elements (REEs) and negative Eu anomalies, with relatively high Cl and As contents. These features are distinctly different from apatite in the Shuangqiaoshan Group, which shows lower total REE, Cl, and As contents but higher F content and positive Eu anomalies. Zircon in porphyries yields a relative high oxygen fugacity of ∆FMQ + 1.5 based on zircon Ce4+/Ce3+. Apatite in porphyries also shows high oxygen fugacity based on its SO3 and Mn compositions, reaching ∆FMQ + 2, which is different from that of the lower continental crust in general, but similar to subduction-related magmas. In contrast, the oxygen fugacity of the Shuangqiaoshan Group is much lower, suggesting a different origin for its wall rock. Therefore, the Dexing porphyries were not derived from the lower crust but derived from partial melting of the subducting Paleo-Pacific plate. Full article
Show Figures

Figure 1

16 pages, 6740 KiB  
Article
Re Variation Triggered from the Paleo-Pacific Plate Evolution: Constrains from Mo Polymetallic Deposits in Zhejiang Province, South China Mo Province
by Xiangcai Li, Yongbin Wang, Xuance Wang, Jiaqi Cai, Yunkang Guo and Song Lin
Minerals 2022, 12(9), 1129; https://0-doi-org.brum.beds.ac.uk/10.3390/min12091129 - 05 Sep 2022
Cited by 1 | Viewed by 1320
Abstract
Although highly dispersed, critical Re metal has attracted lots of attention from geoscientists, the controlling factors of Re-content variation are not completely understood, especially with regards to the genetic relationship between Re-bearing Mo polymetallic deposits and plate subduction evolution. It is well documented [...] Read more.
Although highly dispersed, critical Re metal has attracted lots of attention from geoscientists, the controlling factors of Re-content variation are not completely understood, especially with regards to the genetic relationship between Re-bearing Mo polymetallic deposits and plate subduction evolution. It is well documented that the South China Mo Province, in Zhejiang Province, is characterized by multi-stage Mo polymetallic mineralization associated with Paleo-Pacific plate subduction. The Xianlin Mo(Cu)–Fe deposit occurs in Western Zhejiang as porphyry mineralization or skarn mineralization between the granodiorite and limestone. Zircon U–Pb analysis of the ore-forming granodiorite yields a Concordia age of 150.8 ± 1.1 Ma. Six molybdenite samples have relatively high Re contents (128.9~155.7 ppm) and deliver a weighted mean model age of 149.6 ± 1.3 Ma. These geochronological data suggest the Xianlin polymetallic mineralization was genetically related to the granodiorite in the Late Jurassic. Moreover, a new compilation of reliable Re contents and Re–Os isotope age data in Zhejiang Province indicates a decreasing trend in Re contents of molybdenite from the Jurassic Fe-/Cu-dominated Mo mineralization stage to the Cretaceous PbZn-enriched Mo mineralization stage in the South China Mo Province. Based on previously proposed models relating tectonic, magmatic, and hydrothermal processes, it is suggested that the Jurassic Re-enriched Mo mineralization, associated with I-type granitoids, formed in a compressive setting during the low-angle subduction of the Paleo-Pacific slab, whilst the Cretaceous Re-poorer Mo/Mo–Pb–Zn mineralization, related to both I- and A-type granitoids, formed in an extensional back-arc setting triggered by the rollback of the Paleo-Pacific slab. Full article
Show Figures

Graphical abstract

21 pages, 6850 KiB  
Article
Genesis and Metallogenic Characteristics of the Zhunsujihua Granitic Intrusions in Sonid Left Banner, Inner Mongolia, China
by Qianxiong Shi, Hu Guo, Cong Liu and Yong Lai
Minerals 2022, 12(5), 606; https://0-doi-org.brum.beds.ac.uk/10.3390/min12050606 - 11 May 2022
Viewed by 1345
Abstract
The Zhunsujihua porphyry Mo-Cu deposit is located in the Erenhot–East Ujimqin metallogenic belt in northeastern China. Granodioritic intrusions in the mining area are dominated by granodiorite and granodiorite porphyry, but the Mo mineralization is limited within the granodiorite. Zircon LA-ICP-MS U-Pb dating yields [...] Read more.
The Zhunsujihua porphyry Mo-Cu deposit is located in the Erenhot–East Ujimqin metallogenic belt in northeastern China. Granodioritic intrusions in the mining area are dominated by granodiorite and granodiorite porphyry, but the Mo mineralization is limited within the granodiorite. Zircon LA-ICP-MS U-Pb dating yields crystallization ages of 301.5 ± 3.0 Ma for granodiorite and 296.0 ± 3.0 Ma for granodiorite porphyry. These ages constrain the magmatic activity at the Zhunsujihua deposit that took place during the subduction of the Paleo-Asian oceanic plate. Whole-rock geochemical data suggest that the granodioritic intrusions belong to calc-alkaline and high-K calc-alkaline series, and are characterized by enrichment in K, Rb, U, Th, and Pb, and depletion in Nb, Ta, Ti, and P. The negative Eu, Ba, and Sr anomalies suggest that they have experienced extensive fractionation of plagioclase. Trace element compositions of zircons from the Zhunsujihua deposit provide constraints on the oxygen fugacity (ƒO2) of the magma, which is shown to high values with ∆FMQ = +0.5 to +5.6. The wide range of zircon εHf (t) (+1.3~+9.4) values, positive whole-rock εNd (t) (+2.5~+3.9) values, and relatively low initial (87Sr/86Sr)i (0.70367~0.70561) ratios indicate that the magmas mainly originated from a juvenile lower crust source derived from depleted mantle, but mixed with pre-existing crustal components. Moreover, the juvenile lower crust represents the main source of Mo for the Zhunsujihua deposit. A high magmatic oxygen fugacity and fractional crystallization played key roles in forming the Zhunsujihua deposit. Full article
Show Figures

Figure 1

21 pages, 6356 KiB  
Article
Implications for Metallogenesis and Tectonic Evolution of Ore-Hosting Granodiorite Porphyry in the Tongkuangyu Cu Deposit, North China Craton: Evidence from Geochemistry, Zircon U-Pb Chronology, and Hf Isotopes
by Jungang Sun, Ting Liang, Hongying Li, Kun Yan, Yinyin Chao and Zhanbin Wang
Minerals 2022, 12(2), 273; https://0-doi-org.brum.beds.ac.uk/10.3390/min12020273 - 21 Feb 2022
Cited by 1 | Viewed by 1504
Abstract
The Tongkuangyu copper deposit in Zhongtiaoshan at the southern margin of the North China Craton is one of the oldest porphyry Cu deposits in the world and its metallogenesis and tectonic evolution have been debated. Here, porphyritic intrusion geochemical and geochronological data are [...] Read more.
The Tongkuangyu copper deposit in Zhongtiaoshan at the southern margin of the North China Craton is one of the oldest porphyry Cu deposits in the world and its metallogenesis and tectonic evolution have been debated. Here, porphyritic intrusion geochemical and geochronological data are reported to identify the diagenetic age, mineralization, tectonic setting, and evolution of the deposit. Geochemical data show that granodiorite porphyry is a peraluminous rock, with low concentrations of Fe (~3.99%) and Ti (~0.29%) and high concentrations of alkali (~6.13%) and high Al (~15.42%) and Mg numbers (~51). The rocks show comparative enrichment of Na, K, and Mg; higher La/Yb ratios, no significant Eu anomaly, and obvious Nb–Ta–Ti negative anomaly, showing similar geochemical characteristics to Archean TTG and sanukitoid. ΣREE vary greatly, ranging from 33.47 × 10−6 to 277.81 × 10−6 (average 137.09 × 10−6). The characteristics of REE show obvious fractionation of LREE and HREE, enrichment of LREE, and depletion of HREE. Some of the LREE (La and Ce) and LILE (K, Rb, and Ba) are enriched, but some of the LILE (Th and U) are depleted. In addition, some of the HFSE (Nb, Ta, P, and Ti) are depleted while some (Zr and Hf) are enriched. High precision LA–MC–ICP MS zircon U–Pb dating yield concordant ages of 2159 ± 19 Ma, which is broadly coeval with ore formation (~2.1 Ga) in the area. Zircon εHf(t) values range from −3.8 to 1.13, with a model age of 2778 to 2959 Ma, indicating that the formation of porphyry is related to the partial melting of Archean crust (~2.7 Ga) with a minor amount of mantle material added. Tongkuangyu granodiorite porphyry formed in the tectonic setting of the post-orogenic extension in the Paleoproterozoic, and Tongkuangyu Cu deposit may be related to the extension of the North China Craton in the Paleoproterozoic. Full article
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 3032 KiB  
Review
Ranges of Physical Parameters and Geochemical Features of Mineralizing Fluids at Porphyry Deposits of Various Types of the Cu−Mo−Au System: Evidence from Fluid Inclusions Data
by Vsevolod Yu. Prokofiev and Vladimir B. Naumov
Minerals 2022, 12(5), 529; https://0-doi-org.brum.beds.ac.uk/10.3390/min12050529 - 24 Apr 2022
Cited by 2 | Viewed by 3193
Abstract
The paper reviews and summarizes data on the physicochemical parameters and chemical features of mineralizing fluids at porphyry deposits of the Cu–Mo–Au system. The calculated average values and ranges of parameters of the fluids in mineral-hosted fluid inclusions at porphyry deposits are as [...] Read more.
The paper reviews and summarizes data on the physicochemical parameters and chemical features of mineralizing fluids at porphyry deposits of the Cu–Mo–Au system. The calculated average values and ranges of parameters of the fluids in mineral-hosted fluid inclusions at porphyry deposits are as follows: temperature 90–957 °C, average 388 °C; salinity 0.1–88.0 wt % equiv. NaCl, average 29.4 wt % equiv. NaCl; and density 0.38–1.85 g/cm3, average 0.93 g/cm3. The highest average temperature and the highest maximum homogenization temperatures of the fluids were detected at deposits of the Cu (Au) type, with both values systematically decreasing with the transition to the Cu, Mo (Au), and then to Mo and Au types of porphyry deposits. The situations with the average and maximum salinity values of the fluids and their density are analogous. The data in the literature on the concentrations of some elements are still insufficient to reliably characterize variations in these concentrations at all of the discussed types of porphyry deposits. The highest Cu and Fe concentrations were found in the highest temperature fluids at deposits of the Cu (Au) type. The maximum Mo concentrations were detected in fluids at porphyry Mo deposits, and the highest Ag concentrations occurred at porphyry Au deposits. The chemical composition of the mineralizing fluids is, thus, strongly correlated with the types of the porphyry deposits. The hypothesis is discussed: the geochemical specifics of mineralizing fluids at various types of porphyry deposits of the Cu–Mo–Au system are related to the depths at which fluid separated from the magmatic melt. A scenario is proposed for the separation of mineralizing fluids from granite melt at various depths for fluids that form different types of porphyry deposits. Full article
Show Figures

Figure 1

Back to TopTop