molecules-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

12 pages, 1376 KiB  
Article
Detection of 4a,5-dihydropravastatin as Impurity in the Cholesterol Lowering Drug Pravastatin
by Wibo B. van Scheppingen, Peter P. Lankhorst, Marcus Hans and Marco A. van den Berg
Molecules 2021, 26(15), 4685; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26154685 - 03 Aug 2021
Viewed by 2083
Abstract
Dihydro analogues are known byproducts of the fermentative production of statins and cannot be detected with existing pharmacopoeia analysis methods. We detected dihydropravastatin in most commercial formulations of pravastatin with LC-MS, in some cases in levels requiring identification. In fermentation broth samples of [...] Read more.
Dihydro analogues are known byproducts of the fermentative production of statins and cannot be detected with existing pharmacopoeia analysis methods. We detected dihydropravastatin in most commercial formulations of pravastatin with LC-MS, in some cases in levels requiring identification. In fermentation broth samples of the single step production of pravastatin, we detected and identified for the first time 4a,5-dihydropravastatin, and confirmed that after several recrystallization steps this impurity can be fully removed from the pravastatin powder. Full article
(This article belongs to the Special Issue Drug Analysis in Pharmaceutical Development and Drug Manufacturing)
Show Figures

Figure 1

12 pages, 2994 KiB  
Article
Operando Raman Shift Replaces Current in Electrochemical Analysis of Li-ion Batteries: A Comparative Study
by Mariusz Radtke and Christian Hess
Molecules 2021, 26(15), 4667; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26154667 - 01 Aug 2021
Cited by 3 | Viewed by 2918
Abstract
Li-rich and catalytically active γ-LixV2O5 (x = 1.48) was investigated as a cathode for its heterogeneous charge transfer kinetics. Using a specially designed two-electrode system lithium half cell, Butler–Volmer analysis was performed, and Raman spectra [...] Read more.
Li-rich and catalytically active γ-LixV2O5 (x = 1.48) was investigated as a cathode for its heterogeneous charge transfer kinetics. Using a specially designed two-electrode system lithium half cell, Butler–Volmer analysis was performed, and Raman spectra were acquired in 18 mV intervals. A direct correlation was observed between the Raman shift of the active modes Ag,Bg, Au, and Bu, and the development of the Faraday current at the working electrode. The Raman intensity and the Raman shift were implemented to replace the current in a Tafel plot used for the analysis of Butler–Volmer kinetics. Striking similarities in the charge transfer proportionality constants α were found for current and Raman-based analysis. The potential of this new method of Raman-aided electrochemical detection at the diffraction limit is discussed. Full article
(This article belongs to the Special Issue Cutting-Edge Physical Chemistry Research in Europe)
Show Figures

Figure 1

12 pages, 1178 KiB  
Article
Cyanovinylation of Aldehydes: Organocatalytic Multicomponent Synthesis of Conjugated Cyanomethyl Vinyl Ethers
by Samuel Delgado-Hernández, Fernando García-Tellado and David Tejedor
Molecules 2021, 26(14), 4120; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26144120 - 06 Jul 2021
Cited by 3 | Viewed by 2407
Abstract
A novel organocatalytic multicomponent cyanovinylation of aldehydes was designed for the synthesis of conjugated cyanomethyl vinyl ethers. The reaction was implemented for the synthesis of a 3-substituted 3-(cyanomethoxy)acrylates, using aldehydes as substrates, acetone cyanohydrin as the cyanide anion source, and methyl propiolate as [...] Read more.
A novel organocatalytic multicomponent cyanovinylation of aldehydes was designed for the synthesis of conjugated cyanomethyl vinyl ethers. The reaction was implemented for the synthesis of a 3-substituted 3-(cyanomethoxy)acrylates, using aldehydes as substrates, acetone cyanohydrin as the cyanide anion source, and methyl propiolate as the source of the vinyl component. The multicomponent reaction is catalyzed by N-methyl morpholine (2.5 mol%) to deliver the 3-(cyanomethoxy)acrylates in excellent yields and with preponderance of the E-isomer. The multicomponent reaction manifold is highly tolerant to the structure and composition of the aldehyde (aliphatic, aromatic, heteroaromatics), and it is instrumentally simple (one batch, open atmospheres), economic (2.5 mol% catalyst, stoichiometric reagents), environmentally friendly (no toxic waste), and sustainable (easy scalability). Full article
(This article belongs to the Special Issue New Approach in Multicomponent Reactions)
Show Figures

Scheme 1

11 pages, 11306 KiB  
Article
Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen Candida glabrata
by Juan Ernesto López-Ramos, Elihú Bautista, Guadalupe Gutiérrez-Escobedo, Gabriela Mancilla-Montelongo, Irene Castaño, Marco Martín González-Chávez and Alejandro De Las Peñas
Molecules 2021, 26(13), 3881; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26133881 - 25 Jun 2021
Cited by 3 | Viewed by 2399
Abstract
Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis are the four most common human fungal pathogens isolated that can cause superficial and invasive infections. It has been shown that specific metabolites present in the secretomes of these fungal pathogens are important [...] Read more.
Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis are the four most common human fungal pathogens isolated that can cause superficial and invasive infections. It has been shown that specific metabolites present in the secretomes of these fungal pathogens are important for their virulence. C. glabrata is the second most common isolate world-wide and has an innate resistance to azoles, xenobiotics and oxidative stress that allows this fungal pathogen to evade the immune response and persist within the host. Here, we analyzed and compared the C. glabrata secretome with those of C. albicans, C. parapsilosis, C. tropicalis and the non-pathogenic yeast Saccharomyces cerevisiae. In C. glabrata, we identified a different number of metabolites depending on the growth media: 12 in synthetic complete media (SC), 27 in SC-glutamic acid and 23 in rich media (YPD). C. glabrata specific metabolites are 1-dodecene (0.09 ± 0.11%), 2,5-dimethylundecane (1.01 ± 0.19%), 3,7-dimethyldecane (0.14 ± 0.15%), and octadecane (0.4 ± 0.53%). The metabolites that are shared with C. albicans, C. glabrata, C. parapsilosis, C. tropicalis and S. cerevisiae are phenylethanol, which is synthesized from phenylalanine, and eicosane and nonanoic acid (identified as trimethylsilyl ester), which are synthesized from fatty acid metabolism. Phenylethanol is the most abundant metabolite in all fungi tested: 26.36 ± 17.42% (C. glabrata), 46.77 ± 15.58% (C. albicans), 49.76 ± 18.43% (C. tropicalis), 5.72 ± 0.66% (C. parapsilosis.) and 44.58 ± 27.91% (S. cerevisiae). The analysis of C. glabrata’s secretome will allow us to further our understanding of the possible role these metabolites could play in its virulence. Full article
Show Figures

Figure 1

18 pages, 991 KiB  
Article
Trends in the Use of Botanicals in Anti-Aging Cosmetics
by Marta Salvador Ferreira, Maria Catarina Magalhães, Rita Oliveira, José Manuel Sousa-Lobo and Isabel Filipa Almeida
Molecules 2021, 26(12), 3584; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26123584 - 11 Jun 2021
Cited by 42 | Viewed by 44627
Abstract
Botanical ingredients have been used for thousands of years in skincare for their convenience as well as the diversity and abundance in compounds with biological activity. Among these, polyphenols and especially flavonoids have gained increasing prominence due to their antioxidant and anti-inflammatory properties. [...] Read more.
Botanical ingredients have been used for thousands of years in skincare for their convenience as well as the diversity and abundance in compounds with biological activity. Among these, polyphenols and especially flavonoids have gained increasing prominence due to their antioxidant and anti-inflammatory properties. In this study, the most used botanical preparations in anti-aging products marketed in 2011 were determined. The analysis was repeated in 2018 for new and reformulated products. The scientific evidence for their application as active ingredients in anti-aging cosmetics and their flavonoid content was also compiled by searching in online scientific databases. Overall, in 2018, there was a noticeable increase in the use of botanical preparations in anti-aging cosmetics. However, the top three botanical species in both years were Vitis vinifera, Butyrospermum parkii, and Glycine soja, which is consistent with the greater amount of scientific evidence supporting their efficacy. Regarding the function of botanical preparations, there is a clear preference for DNA-protecting ingredients. The most prevalent flavonoids were flavan-3-ols, proanthocyanidins, and anthocyanins. This study provided an updated overview of the market trends regarding the use of botanicals in anti-aging products and documented the state of the art of scientific evidence for the most used plants. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

20 pages, 4646 KiB  
Article
The Physico-Chemical Properties of Glipizide: New Findings
by Giovanna Bruni, Ines Ghione, Vittorio Berbenni, Andrea Cardini, Doretta Capsoni, Alessandro Girella, Chiara Milanese and Amedeo Marini
Molecules 2021, 26(11), 3142; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26113142 - 24 May 2021
Cited by 4 | Viewed by 6038
Abstract
The present work is a concrete example of how physico-chemical studies, if performed in depth, are crucial to understand the behavior of pharmaceutical solids and constitute a solid basis for the control of the reproducibility of the industrial batches. In particular, a deep [...] Read more.
The present work is a concrete example of how physico-chemical studies, if performed in depth, are crucial to understand the behavior of pharmaceutical solids and constitute a solid basis for the control of the reproducibility of the industrial batches. In particular, a deep study of the thermal behavior of glipizide, a hypoglycemic drug, was carried out with the aim of clarifying whether the recognition of its polymorphic forms can really be done on the basis of the endothermic peak that the literature studies attribute to the melting of the compound. A number of analytical techniques were used: thermal techniques (DSC, TGA), X-ray powder diffraction (XRPD), FT-IR spectroscopy and scanning electron microscopy (SEM). Great attention was paid to the experimental design and to the interpretation of the combined results obtained by all these techniques. We proved that the attribution of the endothermic peak shown by glipizide to its melting was actually wrong. The DSC peak is no doubt triggered by a decomposition process that involves gas evolution (cyclohexanamine and carbon dioxide) and formation of 5-methyl-N-[2-(4-sulphamoylphenyl) ethyl] pyrazine-2-carboxamide, which remains as decomposition residue. Thermal treatments properly designed and the combined use of DSC with FT-IR and XRPD led to identifying a new polymorphic form of 5-methyl-N-[2-(4-sulphamoylphenyl) ethyl] pyrazine-2-carboxamide, which is obtained by crystallization from the melt. Hence, our results put into evidence that the check of the polymorphic form of glipizide cannot be based on the temperature values of the DSC peak, since such a peak is due to a decomposition process whose Tonset value is strongly affected by the particle size. Kinetic studies of the decomposition process show the high stability of solid glipizide at room temperature. Full article
Show Figures

Figure 1

23 pages, 4293 KiB  
Article
A Combined Experimental and Computational Study of Halogen and Hydrogen Bonding in Molecular Salts of 5-Bromocytosine
by Massimiliano Aschi, Giorgia Toto Brocchi and Gustavo Portalone
Molecules 2021, 26(11), 3111; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26113111 - 23 May 2021
Cited by 1 | Viewed by 3553
Abstract
Although natural or artificial modified pyrimidine nucleobases represent important molecules with valuable properties as constituents of DNA and RNA, no systematic analyses of the structural aspects of bromo derivatives of cytosine have appeared so far in the literature. In view of the biochemical [...] Read more.
Although natural or artificial modified pyrimidine nucleobases represent important molecules with valuable properties as constituents of DNA and RNA, no systematic analyses of the structural aspects of bromo derivatives of cytosine have appeared so far in the literature. In view of the biochemical and pharmaceutical relevance of these compounds, six different crystals containing proton-transfer derivatives of 5-bromocytosine are prepared and analyzed in the solid-state by single crystal X-ray diffraction. All six compounds are organic salts, with proton transfer occurring to the Nimino atom of the pyridine ring. Experimental results are then complemented with Hirshfeld surface analysis to quantitively evaluate the contribution of different intermolecular interactions in the crystal packing. Furthermore, theoretical calculations, based on different arrangements of molecules extracted from the crystal structure determinations, are carried out to analyze the formation mechanism of halogen bonds (XBs) in these compounds and provide insights into the nature and strength of the observed interactions. The results show that the supramolecular architectures of the six molecular salts involve extensive classical intermolecular hydrogen bonds. However, in all but one proton-transfer adducts, weak to moderate XBs are revealed by C–BrO short contacts between the bromine atom in the fifth position, which acts as XB donor (electron acceptor). Moreover, the lone pair electrons of the oxygen atom of adjacent pyrimidine nucleobases and/or counterions or water molecules, which acts as XB acceptor (electron donor). Full article
Show Figures

Graphical abstract

13 pages, 1941 KiB  
Article
Selenoxide Elimination Triggers Enamine Hydrolysis to Primary and Secondary Amines: A Combined Experimental and Theoretical Investigation
by Giovanni Ribaudo, Marco Bortoli, Erika Oselladore, Alberto Ongaro, Alessandra Gianoncelli, Giuseppe Zagotto and Laura Orian
Molecules 2021, 26(9), 2770; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26092770 - 08 May 2021
Cited by 6 | Viewed by 3269
Abstract
We discuss a novel selenium-based reaction mechanism consisting in a selenoxide elimination-triggered enamine hydrolysis. This one-pot model reaction was studied for a set of substrates. Under oxidative conditions, we observed and characterized the formation of primary and secondary amines as elimination products of [...] Read more.
We discuss a novel selenium-based reaction mechanism consisting in a selenoxide elimination-triggered enamine hydrolysis. This one-pot model reaction was studied for a set of substrates. Under oxidative conditions, we observed and characterized the formation of primary and secondary amines as elimination products of such compounds, paving the way for a novel strategy to selectively release bioactive molecules. The underlying mechanism was investigated using NMR, mass spectrometry and density functional theory (DFT). Full article
Show Figures

Graphical abstract

17 pages, 5785 KiB  
Article
Predicting Accurate Lead Structures for Screening Molecular Libraries: A Quantum Crystallographic Approach
by Suman Kumar Mandal and Parthapratim Munshi
Molecules 2021, 26(9), 2605; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26092605 - 29 Apr 2021
Cited by 1 | Viewed by 2706
Abstract
Optimization of lead structures is crucial for drug discovery. However, the accuracy of such a prediction using the traditional molecular docking approach remains a major concern. Our study demonstrates that the employment of quantum crystallographic approach-counterpoise corrected kernel energy method (KEM-CP) can improve [...] Read more.
Optimization of lead structures is crucial for drug discovery. However, the accuracy of such a prediction using the traditional molecular docking approach remains a major concern. Our study demonstrates that the employment of quantum crystallographic approach-counterpoise corrected kernel energy method (KEM-CP) can improve the accuracy by and large. We select human aldose reductase at 0.66 Å, cyclin dependent kinase 2 at 2.0 Å and estrogen receptor β at 2.7 Å resolutions with active site environment ranging from highly hydrophilic to moderate to highly hydrophobic and several of their known ligands. Overall, the use of KEM-CP alongside the GoldScore resulted superior prediction than the GoldScore alone. Unlike GoldScore, the KEM-CP approach is neither environment-specific nor structural resolution dependent, which highlights its versatility. Further, the ranking of the ligands based on the KEM-CP results correlated well with that of the experimental IC50 values. This computationally inexpensive yet simple approach is expected to ease the process of virtual screening of potent ligands, and it would advance the drug discovery research. Full article
Show Figures

Graphical abstract

20 pages, 2912 KiB  
Article
Synthesis of New Triazolopyrazine Antimalarial Compounds
by Daniel J. G. Johnson, Ian D. Jenkins, Cohan Huxley, Mark J. Coster, Kah Yean Lum, Jonathan M. White, Vicky M. Avery and Rohan A. Davis
Molecules 2021, 26(9), 2421; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26092421 - 21 Apr 2021
Cited by 3 | Viewed by 3730
Abstract
A radical approach to late-stage functionalization using photoredox and Diversinate chemistry on the Open Source Malaria (OSM) triazolopyrazine scaffold (Series 4) resulted in the synthesis of 12 new analogues, which were characterized by NMR, UV, and MS data analysis. The structures of [...] Read more.
A radical approach to late-stage functionalization using photoredox and Diversinate chemistry on the Open Source Malaria (OSM) triazolopyrazine scaffold (Series 4) resulted in the synthesis of 12 new analogues, which were characterized by NMR, UV, and MS data analysis. The structures of four triazolopyrazines were confirmed by X-ray crystal structure analysis. Several minor and unexpected side products were generated during these studies, including two resulting from a possible disproportionation reaction. All compounds were tested for their ability to inhibit the growth of the malaria parasite Plasmodium falciparum (3D7 and Dd2 strains) and for cytotoxicity against a human embryonic kidney (HEK293) cell line. Moderate antimalarial activity was observed for some of the compounds, with IC50 values ranging from 0.3 to >20 µM; none of the compounds displayed any toxicity against HEK293 at 80 µM. Full article
(This article belongs to the Special Issue Organic Synthesis in Drug Discovery)
Show Figures

Graphical abstract

15 pages, 3753 KiB  
Article
New Bioconjugated Technetium and Rhenium Folates Synthesized by Transmetallation Reaction with Zinc Derivatives
by Jordi Borràs, Julie Foster, Roxana Kashani, Laura Meléndez-Alafort, Jane Sosabowski, Joan Suades and Ramon Barnadas-Rodríguez
Molecules 2021, 26(8), 2373; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26082373 - 19 Apr 2021
Cited by 3 | Viewed by 2158
Abstract
The zinc dithiocarbamates functionalized with folic acid 2Zn and 3Zn were synthesized with a simple straightforward method, using an appropriated folic acid derivative and a functionalized zinc dithiocarbamate (1Zn). Zinc complexes 2Zn and 3Zn show very [...] Read more.
The zinc dithiocarbamates functionalized with folic acid 2Zn and 3Zn were synthesized with a simple straightforward method, using an appropriated folic acid derivative and a functionalized zinc dithiocarbamate (1Zn). Zinc complexes 2Zn and 3Zn show very low solubilities in water, making them useful for preparing Tc-99m radiopharmaceuticals with a potentially high molar activity. Thus, the transmetallation reaction in water medium between the zinc complexes 2Zn or 3Zn and the cation fac-[99mTc(H2O)3(CO)3]+, in the presence of the monodentate ligand TPPTS, leads to the formation of the 2 + 1 complexes fac-[99mTc(CO)3(SS)(P)] bioconjugated to folic acid (2Tc and 3Tc). In spite of the low solubility of 2Zn and 3Zn in water, the reaction yield is higher than 95%, and the excess zinc reagent is easily removed by centrifugation. The Tc-99m complexes were characterized by comparing their HPLC with those of the homologous rhenium complexes (2Re and 3Re) previously synthesized and characterized by standard methods. Preliminary in vivo studies with 2Tc and 3Tc indicate low specific binding to folate receptors. In summary, Tc-99m folates 2Tc and 3Tc were prepared in high yields, using a one-pot transmetallation reaction with low soluble zinc dithiocarbamates (>1 ppm), at moderate temperature, without needing a subsequent purification step. Full article
(This article belongs to the Special Issue Technetium and Rhenium in Chemistry and Their Advanced Applications)
Show Figures

Figure 1

14 pages, 31352 KiB  
Article
Hydrophilic and Functionalized Nanographene Oxide Incorporated Faster Dissolving Megestrol Acetate
by Mohammad Saiful Islam, Faradae Renner, Kimberly Foster, Martin S. Oderinde, Kevin Stefanski and Somenath Mitra
Molecules 2021, 26(7), 1972; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26071972 - 31 Mar 2021
Cited by 2 | Viewed by 2369
Abstract
The aim of this work is to present an approach to enhance the dissolution of progestin medication, megestrol acetate (also known as MEGACE), for improving the dissolution rate and kinetic solubility by incorporating nano graphene oxide (nGO). An antisolvent precipitation process was investigated [...] Read more.
The aim of this work is to present an approach to enhance the dissolution of progestin medication, megestrol acetate (also known as MEGACE), for improving the dissolution rate and kinetic solubility by incorporating nano graphene oxide (nGO). An antisolvent precipitation process was investigated for nGO-drug composite preparation, where prepared composites showed crystalline properties that were similar to the pure drug but enhanced aqueous dispersibility and colloidal stability. To validate the efficient release profile of composite, in vitro dissolution testing was carried out using United States Pharmacopeia, USP-42 paddle method, with gastric pH (1.4) and intestinal pH (6.5) solutions to mimic in vivo conditions. Pure MA is practically insoluble (2 µg/mL at 37 °C). With the incorporation of nGO, it was possible to dissolve nearly 100% in the assay. With the incorporation of 1.0% of nGO, the time required to dissolve 50% and 80% of drug, namely T50 and T80, decreased from 138.0 min to 27.0 min, and the drug did not dissolve for 97.0 min in gastric media, respectively. Additionally, studies done in intestinal media have revealed T50 did not dissolve for 92.0 min. This work shows promise in incorporating functionalized nanoparticles into the crystal lattice of poorly soluble drugs to improve dissolution rate. Full article
(This article belongs to the Collection Poorly Soluble Drugs)
Show Figures

Graphical abstract

8 pages, 1824 KiB  
Article
Comparison of Electropolishing of Aluminum in a Deep Eutectic Medium and Acidic Electrolyte
by Tarek M. Abdel-Fattah and J. Derek Loftis
Molecules 2020, 25(23), 5712; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25235712 - 03 Dec 2020
Cited by 11 | Viewed by 3749
Abstract
Research advances in electropolishing, with respect to the field of metalworking, have afforded significant improvements in the surface roughness and conductivity properties of aluminum polished surfaces in ways that machine polishing and simple chemical polishing cannot. The effects of a deep eutectic medium [...] Read more.
Research advances in electropolishing, with respect to the field of metalworking, have afforded significant improvements in the surface roughness and conductivity properties of aluminum polished surfaces in ways that machine polishing and simple chemical polishing cannot. The effects of a deep eutectic medium as an acid-free electrolyte were tested to determine the potential energy thresholds during electropolishing treatments based upon temperature, experiment duration, current, and voltage. Using voltammetry and chronoamperometry tests during electropolishing to supplement representative recordings via atomic force microscopy (AFM), surface morphology comparisons were performed regarding the electropolishing efficiency of phosphoric acid and acid-free ionic liquid treatments for aluminum. This eco-friendly solution produced polished surfaces superior to those surfaces treated with industry standard acid electrochemistry treatments of 1 M phosphoric acid. The roughness average of the as-received sample became 6.11 times smoother, improving from 159 nm to 26 nm when electropolished with the deep eutectic solvent. This result was accompanied by a mass loss of 0.039 g and a 7.2 µm change in step height along the edge of the electropolishing interface, whereas the acid treatment resulted in a slight improvement in surface roughness, becoming 1.63 times smoother with an average post-electropolishing roughness of 97.7 nm, yielding a mass loss of 0.0458 g and a step height of 8.1 µm. Full article
(This article belongs to the Special Issue Ionic Liquids for Materials and Energy)
Show Figures

Graphical abstract

14 pages, 1493 KiB  
Article
New Natural Oxygenated Sesquiterpenes and Chemical Composition of Leaf Essential Oil from Ivoirian Isolona dewevrei (De Wild. & T. Durand) Engl. & Diels
by Didjour Albert Kambiré, Jean Brice Boti, Thierry Acafou Yapi, Zana Adama Ouattara, Ange Bighelli, Joseph Casanova and Félix Tomi
Molecules 2020, 25(23), 5613; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25235613 - 29 Nov 2020
Cited by 4 | Viewed by 2351
Abstract
This study aimed to investigate the chemical composition of the leaf essential oil from Ivoirian Isolona dewevrei. A combination of chromatographic and spectroscopic techniques (GC(RI), GC-MS and 13C-NMR) was used to analyze two oil samples (S1 and S2). Detailed analysis by [...] Read more.
This study aimed to investigate the chemical composition of the leaf essential oil from Ivoirian Isolona dewevrei. A combination of chromatographic and spectroscopic techniques (GC(RI), GC-MS and 13C-NMR) was used to analyze two oil samples (S1 and S2). Detailed analysis by repetitive column chromatography (CC) of essential oil sample S2 was performed, leading to the isolation of four compounds. Their structures were elucidated by QTOF-MS, 1D and 2D-NMR as (10βH)-1β,8β-oxido-cadin-4-ene (38), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (cis-germacrene D-8-ol) (52), 4-methylene-(7αH)-germacra-1(10),5-dien-8α-ol (trans-germacrene D-8-ol) (53) and cadina-1(10),4-dien-8β-ol (56). Compounds 38, 52 and 53 are new, whereas NMR data of 56 are reported for the first time. Lastly, 57 constituents accounting for 95.5% (S1) and 97.1% (S2) of the whole compositions were identified. Samples S1 and S2 were dominated by germacrene D (23.6 and 20.5%, respectively), followed by germacrene D-8-one (8.9 and 8.7%), (10βH)-1β,8β-oxido-cadin-4-ene (7.3 and 8.7), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (7.8 and 7.4%) and cadina-1(10),4-dien-8β-ol (7.6 and 7.2%). Leaves from I. dewevrei produced sesquiterpene-rich essential oil with an original chemical composition, involving various compounds reported for the first time among the main components. Integrated analysis by GC(RI), GC-MS and 13C-NMR appeared fruitful for the knowledge of such a complex essential oil. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Figure 1

18 pages, 2297 KiB  
Article
Influence of Triazole Pesticides on Wine Flavor and Quality Based on Multidimensional Analysis Technology
by Ouli Xiao, Minmin Li, Jieyin Chen, Ruixing Li, Rui Quan, Zezhou Zhang, Zhiqiang Kong and Xiaofeng Dai
Molecules 2020, 25(23), 5596; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25235596 - 28 Nov 2020
Cited by 16 | Viewed by 2967
Abstract
Triazole pesticides are widely used to control grapevine diseases. In this study, we investigated the impact of three triazole pesticides—triadimefon, tebuconazole, and paclobutrazol—on the concentrations of wine aroma compounds. All three triazole pesticides significantly affected the ester and acid aroma components. Among them, [...] Read more.
Triazole pesticides are widely used to control grapevine diseases. In this study, we investigated the impact of three triazole pesticides—triadimefon, tebuconazole, and paclobutrazol—on the concentrations of wine aroma compounds. All three triazole pesticides significantly affected the ester and acid aroma components. Among them, paclobutrazol exhibited the greatest negative influence on the wine aroma quality through its effect on the ester and acid aroma substances, followed by tebuconazole and triadimefon. Qualitative and quantitative analysis by solid-phase micro-extraction gas chromatography coupled with mass spectrometry revealed that the triazole pesticides also changed the flower and fruit flavor component contents of the wines. This was attributed to changes in the yeast fermentation activity caused by the pesticide residues. The study reveals that triazole pesticides negatively impact on the volatile composition of wines with a potential undesirable effect on wine quality, underlining the desirability of stricter control by the food industry over pesticide residues in winemaking. Full article
(This article belongs to the Special Issue Wine Sensory Faults: Origin, Prevention and Removal)
Show Figures

Graphical abstract

11 pages, 2435 KiB  
Article
High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor
by Alistair S. Brown, David F. Ackerley and Mark J. Calcott
Molecules 2020, 25(20), 4666; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25204666 - 13 Oct 2020
Cited by 28 | Viewed by 5679
Abstract
The global SARS-CoV-2 pandemic started late 2019 and currently continues unabated. The lag-time for developing vaccines means it is of paramount importance to be able to quickly develop and repurpose therapeutic drugs. Protein-based biosensors allow screening to be performed using routine molecular laboratory [...] Read more.
The global SARS-CoV-2 pandemic started late 2019 and currently continues unabated. The lag-time for developing vaccines means it is of paramount importance to be able to quickly develop and repurpose therapeutic drugs. Protein-based biosensors allow screening to be performed using routine molecular laboratory equipment without a need for expensive chemical reagents. Here we present a biosensor for the 3-chymotrypsin-like cysteine protease from SARS-CoV-2, comprising a FRET-capable pair of fluorescent proteins held in proximity by a protease cleavable linker. We demonstrate the utility of this biosensor for inhibitor discovery by screening 1280 compounds from the Library of Pharmaceutically Active Compounds collection. The screening identified 65 inhibitors, with the 20 most active exhibiting sub-micromolar inhibition of 3CLpro in follow-up EC50 assays. The top hits included several compounds not previously identified as 3CLpro inhibitors, in particular five members of a family of aporphine alkaloids that offer promise as new antiviral drug leads. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

20 pages, 808 KiB  
Article
Super Secondary Structures of Proteins with Post-Translational Modifications in Colon Cancer
by Dmitry Tikhonov, Liudmila Kulikova, Arthur Kopylov, Kristina Malsagova, Alexander Stepanov, Vladimir Rudnev and Anna Kaysheva
Molecules 2020, 25(14), 3144; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25143144 - 09 Jul 2020
Cited by 12 | Viewed by 4734
Abstract
New advances in protein post-translational modifications (PTMs) have revealed a complex layer of regulatory mechanisms through which PTMs control cell signaling and metabolic pathways, contributing to the diverse metabolic phenotypes found in cancer. Using conformational templates and the three-dimensional (3D) environment investigation of [...] Read more.
New advances in protein post-translational modifications (PTMs) have revealed a complex layer of regulatory mechanisms through which PTMs control cell signaling and metabolic pathways, contributing to the diverse metabolic phenotypes found in cancer. Using conformational templates and the three-dimensional (3D) environment investigation of proteins in patients with colorectal cancer, it was demonstrated that most PTMs (phosphorylation, acetylation, and ubiquitination) are localized in the supersecondary structures (helical pairs). We showed that such helical pairs are represented on the outer surface of protein molecules and characterized by a largely accessible area for the surrounding solvent. Most promising and meaningful modifications were observed on the surface of vitamin D-binding protein (VDBP), complement C4-A (CO4A), X-ray repair cross-complementing protein 6 (XRCC6), Plasma protease C1 inhibitor (IC1), and albumin (ALBU), which are related to colorectal cancer developing. Based on the presented data, we propose the impact of the observed modifications in immune response, inflammatory reaction, regulation of cell migration, and promotion of tumor growth. Here, we suggest a computational approach in which high-throughput analysis for identification and characterization of PTM signature, associated with cancer metabolic reprograming, can be improved to prognostic value and bring a new strategy to the targeted therapy. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

31 pages, 7314 KiB  
Article
Exploring the Characteristics of an Aroma-Blending Mixture by Investigating the Network of Shared Odors and the Molecular Features of Their Related Odorants
by Anne Tromelin, Florian Koensgen, Karine Audouze, Elisabeth Guichard and Thierry Thomas-Danguin
Molecules 2020, 25(13), 3032; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25133032 - 02 Jul 2020
Cited by 7 | Viewed by 4230
Abstract
The perception of aroma mixtures is based on interactions beginning at the peripheral olfactory system, but the process remains poorly understood. The perception of a mixture of ethyl isobutyrate (Et-iB, strawberry-like odor) and ethyl maltol (Et-M, caramel-like odor) was investigated previously in both [...] Read more.
The perception of aroma mixtures is based on interactions beginning at the peripheral olfactory system, but the process remains poorly understood. The perception of a mixture of ethyl isobutyrate (Et-iB, strawberry-like odor) and ethyl maltol (Et-M, caramel-like odor) was investigated previously in both human and animal studies. In those studies, the binary mixture of Et-iB and Et-M was found to be configurally processed. In humans, the mixture was judged as more typical of a pineapple odor, similar to allyl hexanoate (Al-H, pineapple-like odor), than the odors of the individual components. To explore the key features of this aroma blend, we developed an in silico approach based on molecules having at least one of the odors—strawberry, caramel or pineapple. A dataset of 293 molecules and their related odors was built. We applied the notion of a “social network” to describe the network of the odors. Additionally, we explored the structural properties of the molecules in this dataset. The network of the odors revealed peculiar links between odors, while the structural study emphasized key characteristics of the molecules. The association between “strawberry” and “caramel” notes, as well as the structural diversity of the “strawberry” molecules, were notable. Such elements would be key to identifying potential odors/odorants to form aroma blends. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Graphical abstract

26 pages, 5122 KiB  
Article
Unveiling the Lewis Acid Catalyzed Diels–Alder Reactions Through the Molecular Electron Density Theory
by Luis R. Domingo, Mar Ríos-Gutiérrez and Patricia Pérez
Molecules 2020, 25(11), 2535; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25112535 - 29 May 2020
Cited by 32 | Viewed by 4335
Abstract
The effects of metal-based Lewis acid (LA) catalysts on the reaction rate and regioselectivity in polar Diels–Alder (P-DA) reactions has been analyzed within the molecular electron density theory (MEDT). A clear linear correlation between the reduction of the activation energies and the increase [...] Read more.
The effects of metal-based Lewis acid (LA) catalysts on the reaction rate and regioselectivity in polar Diels–Alder (P-DA) reactions has been analyzed within the molecular electron density theory (MEDT). A clear linear correlation between the reduction of the activation energies and the increase of the polar character of the reactions measured by analysis of the global electron density transfer at the corresponding transition state structures (TS) is found, a behavior easily predictable by analysis of the electrophilicity ω and nucleophilicity N indices of the reagents. The presence of a strong electron-releasing group in the diene changes the mechanism of these P-DA reactions from a two-stage one-step to a two-step one via formation of a zwitterionic intermediate. However, this change in the reaction mechanism does not have any chemical relevance. This MEDT study makes it possible to establish that the more favorable nucleophilic/electrophilic interactions taking place at the TSs of LA catalyzed P-DA reactions are responsible for the high acceleration and complete regioselectivity experimentally observed. Full article
(This article belongs to the Special Issue Advances in Cycloadditions: Theory, Practice, and Applications)
Show Figures

Graphical abstract

11 pages, 2802 KiB  
Article
Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer–Tropsch Synthesis
by Anna Stavitskaya, Kristina Mazurova, Mikhail Kotelev, Oleg Eliseev, Pavel Gushchin, Aleksandr Glotov, Ruslan Kazantsev, Vladimir Vinokurov and Yuri Lvov
Molecules 2020, 25(8), 1764; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25081764 - 11 Apr 2020
Cited by 28 | Viewed by 4190
Abstract
Halloysite aluminosilicate nanotubes loaded with ruthenium particles were used as reactors for Fischer–Tropsch synthesis. To load ruthenium inside clay, selective modification of the external surface with ethylenediaminetetraacetic acid, urea, or acetone azine was performed. Reduction of materials in a flow of hydrogen at [...] Read more.
Halloysite aluminosilicate nanotubes loaded with ruthenium particles were used as reactors for Fischer–Tropsch synthesis. To load ruthenium inside clay, selective modification of the external surface with ethylenediaminetetraacetic acid, urea, or acetone azine was performed. Reduction of materials in a flow of hydrogen at 400 °C resulted in catalysts loaded with 2 wt.% of 3.5 nm Ru particles, densely packed inside the tubes. Catalysts were characterized by N2-adsorption, temperature-programmed desorption of ammonia, transmission electron microscopy, X-ray fluorescence, and X-ray diffraction analysis. We concluded that the total acidity and specific morphology of reactors were the major factors influencing activity and selectivity toward CH4, C2–4, and C5+ hydrocarbons in the Fischer–Tropsch process. Use of ethylenediaminetetraacetic acid for ruthenium binding gave a methanation catalyst with ca. 50% selectivity to methane and C2–4. Urea-modified halloysite resulted in the Ru-nanoreactors with high selectivity to valuable C5+ hydrocarbons containing few olefins and a high number of heavy fractions (α = 0.87). Modification with acetone azine gave the slightly higher CO conversion rate close to 19% and highest selectivity in C5+ products. Using a halloysite tube with a 10–20-nm lumen decreased the diffusion limitation and helped to produce high-molecular-weight hydrocarbons. The extremely small C2–C4 fraction obtained from the urea- and azine-modified sample was not reachable for non-templated Ru-nanoparticles. Dense packing of Ru nanoparticles increased the contact time of olefins and their reabsorption, producing higher amounts of C5+ hydrocarbons. Loading of Ru inside the nanoclay increased the particle stability and prevented their aggregation under reaction conditions. Full article
(This article belongs to the Special Issue Recent Research Advance in the Halloysite Nanotubes Field)
Show Figures

Graphical abstract

15 pages, 1945 KiB  
Article
Interactions among Odorants, Phenolic Compounds, and Oral Components and Their Effects on Wine Aroma Volatility
by María Perez-Jiménez, Adelaida Esteban-Fernández, Carolina Muñoz-González and María Angeles Pozo-Bayón
Molecules 2020, 25(7), 1701; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25071701 - 08 Apr 2020
Cited by 32 | Viewed by 3826
Abstract
To determine the impact of oral physiology on the volatility of typical wine aroma compounds, mixtures of a synthetic wine with oral components (centrifuged human saliva (HS), artificial saliva with mucin (AS), and buccal epithelial cells (BC)) were prepared. Each wine type was [...] Read more.
To determine the impact of oral physiology on the volatility of typical wine aroma compounds, mixtures of a synthetic wine with oral components (centrifuged human saliva (HS), artificial saliva with mucin (AS), and buccal epithelial cells (BC)) were prepared. Each wine type was independently spiked with four relevant wine odorants (guaiacol, β-phenyl ethanol, ethyl hexanoate, and β-ionone). Additionally, the impact of four types of phenolic compounds (gallic acid, catechin, grape seed extract, and a red wine extract) on aroma volatility in the HS, AS, and BC wines was also assessed. Static headspace was measured at equilibrium by solid phase microextraction–GC/MS analysis. Results showed a significant impact of oral components on the volatility of the four tested odorants. Independently of the type of aroma compound, aroma volatility was in general, higher in wines with BC. Moreover, while guaiacol and ethyl hexanoate volatility was significantly lower in wines with HS compared to wines with AS, β-ionone showed the opposite behavior, which might be related to metabolism and retention of mucin, respectively. Phenolic compounds also showed a different effect on aroma volatility depending on the type of compound and wine. Gallic acid had little effect on polar compounds but it enhanced the volatility of the most hydrophobic ones (ethyl hexanoate and β-ionone). In general, flavonoid type polyphenols significantly reduced the volatility of both polar (guaiacol and β-phenyl ethanol) and hydrophobic compounds (β-ionone in HS and BC wines), but through different mechanisms (e.g., π–π interactions and hydrophobic binding for polar and apolar odorants respectively). On the contrary, flavonoids enhanced the volatility of ethyl hexanoate, which might be due to the inhibition exerted on some salivary enzymes (e.g., carboxyl esterase) involved in the metabolism of this odorant molecule. Full article
(This article belongs to the Special Issue Food Oral Processing and Flavour)
Show Figures

Figure 1

22 pages, 4759 KiB  
Article
In Situ Assessment of Intrinsic Strength of X-I⋯OA-Type Halogen Bonds in Molecular Crystals with Periodic Local Vibrational Mode Theory
by Yunwen Tao, Yue Qiu, Wenli Zou, Sadisha Nanayakkara, Seth Yannacone and Elfi Kraka
Molecules 2020, 25(7), 1589; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25071589 - 30 Mar 2020
Cited by 25 | Viewed by 4101
Abstract
Periodic local vibrational modes were calculated with the rev-vdW-DF2 density functional to quantify the intrinsic strength of the X-I⋯OA-type halogen bonding (X = I or Cl; OA: carbonyl, ether and N-oxide groups) in 32 model systems originating from 20 molecular crystals. We [...] Read more.
Periodic local vibrational modes were calculated with the rev-vdW-DF2 density functional to quantify the intrinsic strength of the X-I⋯OA-type halogen bonding (X = I or Cl; OA: carbonyl, ether and N-oxide groups) in 32 model systems originating from 20 molecular crystals. We found that the halogen bonding between the donor dihalogen X-I and the wide collection of acceptor molecules OA features considerable variations of the local stretching force constants (0.1–0.8 mdyn/Å) for I⋯O halogen bonds, demonstrating its powerful tunability in bond strength. Strong correlations between bond length and local stretching force constant were observed in crystals for both the donor X-I bonds and I⋯O halogen bonds, extending for the first time the generalized Badger’s rule to crystals. It is demonstrated that the halogen atom X controlling the electrostatic attraction between the σ -hole on atom I and the acceptor atom O dominates the intrinsic strength of I⋯O halogen bonds. Different oxygen-containing acceptor molecules OA and even subtle changes induced by substituents can tweak the n σ (X-I) charge transfer character, which is the second important factor determining the I⋯O bond strength. In addition, the presence of the second halogen bond with atom X of the donor X-I bond in crystals can substantially weaken the target I⋯O halogen bond. In summary, this study performing the in situ measurement of halogen bonding strength in crystalline structures demonstrates the vast potential of the periodic local vibrational mode theory for characterizing and understanding non-covalent interactions in materials. Full article
(This article belongs to the Special Issue Halogen Bonding: Insights from Computational Tools)
Show Figures

Graphical abstract

14 pages, 1980 KiB  
Article
Disordered Residues and Patterns in the Protein Data Bank
by Mikhail Yu. Lobanov, Ilya V. Likhachev and Oxana V. Galzitskaya
Molecules 2020, 25(7), 1522; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25071522 - 27 Mar 2020
Cited by 7 | Viewed by 2456
Abstract
We created a new library of disordered patterns and disordered residues in the Protein Data Bank (PDB). To obtain such datasets, we clustered the PDB and obtained the groups of chains with different identities and marked disordered residues. We elaborated a new procedure [...] Read more.
We created a new library of disordered patterns and disordered residues in the Protein Data Bank (PDB). To obtain such datasets, we clustered the PDB and obtained the groups of chains with different identities and marked disordered residues. We elaborated a new procedure for finding disordered patterns and created a new version of the library. This library includes three sets of patterns: unique patterns, patterns consisting of two kinds of amino acids, and homo-repeats. Using this database, the user can: (1) find homologues in the entire Protein Data Bank; (2) perform a statistical analysis of disordered residues in protein structures; (3) search for disordered patterns and homo-repeats; (4) search for disordered regions in different chains of the same protein; (5) download clusters of protein chains with different identity from our database and library of disordered patterns; and (6) observe 3D structure interactively using MView. A new library of disordered patterns will help improve the accuracy of predictions for residues that will be structured or unstructured in a given region. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

14 pages, 1804 KiB  
Article
Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS
by Vittorio Capozzi, Valentina Lonzarich, Iuliia Khomenko, Luca Cappellin, Luciano Navarini and Franco Biasioli
Molecules 2020, 25(5), 1242; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25051242 - 10 Mar 2020
Cited by 21 | Viewed by 5509
Abstract
Mascarpone, a soft-spread cheese, is an unripened dairy product manufactured by the thermal-acidic coagulation of milk cream. Due to the mild flavor and creamy consistency, it is a base ingredient in industrial, culinary, and homemade preparations (e.g., it is a key constituent of [...] Read more.
Mascarpone, a soft-spread cheese, is an unripened dairy product manufactured by the thermal-acidic coagulation of milk cream. Due to the mild flavor and creamy consistency, it is a base ingredient in industrial, culinary, and homemade preparations (e.g., it is a key constituent of a widely appreciated Italian dessert ‘Tiramisù’). Probably due to this relevance as an ingredient rather than as directly consumed foodstuff, mascarpone has not been often the subject of detailed studies. To the best of our knowledge, no investigation has been carried out on the volatile compounds contributing to the mascarpone cheese aroma profile. In this study, we analyzed the Volatile Organic Compounds (VOCs) in the headspace of different commercial mascarpone cheeses by two different techniques: Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME GC-MS) and Proton-Transfer Reaction-Mass Spectrometry coupled to a Time of Flight mass analyzer (PTR-ToF-MS). We coupled these two approaches due to the complementarity of the analytical potential—efficient separation and identification of the analytes on the one side (HS-SPME GC-MS), and effective, fast quantitative analysis without any sample preparation on the other (PTR-ToF-MS). A total of 27 VOCs belonging to different chemical classes (9 ketones, 5 alcohols, 4 organic acids, 3 hydrocarbons, 2 furans, 1 ester, 1 lactone, 1 aldehyde, and 1 oxime) have been identified by HS-SPME GC-MS, while PTR-ToF-MS allowed a rapid snapshot of volatile diversity confirming the aptitude to rapid noninvasive quality control and the potential in commercial sample differentiation. Ketones (2-heptanone and 2-pentanone, in particular) are the most abundant compounds in mascarpone headspace, followed by 2-propanone, 2-nonanone, 2-butanone, 1-pentanol, 2-ethyl-1-hexanol, furfural and 2-furanmethanol. The study also provides preliminary information on the differentiation of the aroma of different brands and product types. Full article
(This article belongs to the Special Issue Volatile Compounds and Smell Chemicals (Odor and Aroma) of Food)
Show Figures

Figure 1

13 pages, 1635 KiB  
Article
Revealing the Iron-Catalyzed β-Methyl Scission of tert-Butoxyl Radicals via the Mechanistic Studies of Carboazidation of Alkenes
by Mong-Feng Chiou, Haigen Xiong, Yajun Li, Hongli Bao and Xinhao Zhang
Molecules 2020, 25(5), 1224; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25051224 - 09 Mar 2020
Cited by 10 | Viewed by 4633
Abstract
We describe here a mechanistic study of the iron-catalyzed carboazidation of alkenes involving an intriguing metal-assisted β-methyl scission process. Although t-BuO radical has frequently been observed in experiments, the β-methyl scission from a t-BuO radical into a methyl radical and acetone is still [...] Read more.
We describe here a mechanistic study of the iron-catalyzed carboazidation of alkenes involving an intriguing metal-assisted β-methyl scission process. Although t-BuO radical has frequently been observed in experiments, the β-methyl scission from a t-BuO radical into a methyl radical and acetone is still broadly believed to be thermodynamically spontaneous and difficult to control. An iron-catalyzed β-methyl scission of t-BuO is investigated in this work. Compared to a free t-BuO radical, the coordination at the iron atom reduces the activation energy for the scission from 9.3 to 3.9 ~ 5.2 kcal/mol. The low activation energy makes the iron-catalyzed β-methyl scission of t-BuO radicals almost an incomparably facile process and explains the selective formation of methyl radicals at low temperature in the presence of some iron catalysts. In addition, a radical relay process and an outer-sphere radical azidation process in the iron-catalyzed carboazidation of alkenes are suggested by density functional theory (DFT) calculations. Full article
(This article belongs to the Special Issue Recent Advances in Iron Catalysis)
Show Figures

Graphical abstract

11 pages, 1230 KiB  
Article
Design of Deep Eutectic Systems: A Simple Approach for Preselecting Eutectic Mixture Constituents
by Ahmad Alhadid, Liudmila Mokrushina and Mirjana Minceva
Molecules 2020, 25(5), 1077; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25051077 - 28 Feb 2020
Cited by 54 | Viewed by 4953
Abstract
Eutectic systems offer a wide range of new (green) designer solvents for diverse applications. However, due to the large pool of possible compounds, selecting compounds that form eutectic systems is not straightforward. In this study, a simple approach for preselecting possible candidates from [...] Read more.
Eutectic systems offer a wide range of new (green) designer solvents for diverse applications. However, due to the large pool of possible compounds, selecting compounds that form eutectic systems is not straightforward. In this study, a simple approach for preselecting possible candidates from a pool of substances sharing the same chemical functionality was presented. First, the melting entropy of single compounds was correlated with their molecular structure to calculate their melting enthalpy. Subsequently, the eutectic temperature of the screened binary systems was qualitatively predicted, and the systems were ordered according to the depth of the eutectic temperature. The approach was demonstrated for six hydrophobic eutectic systems composed of L-menthol and monocarboxylic acids with linear and cyclic structures. It was found that the melting entropy of compounds sharing the same functionality could be well correlated with their molecular structures. As a result, when the two acids had a similar melting temperature, the melting enthalpy of a rigid acid was found to be lower than that of a flexible acid. It was demonstrated that compounds with more rigid molecular structures could form deeper eutectics. The proposed approach could decrease the experimental efforts required to design deep eutectic solvents, particularly when the melting enthalpy of pure components is not available. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Graphical abstract

11 pages, 934 KiB  
Article
Iron-Catalysed C(sp2)-H Borylation Enabled by Carboxylate Activation
by Luke Britton, Jamie H. Docherty, Andrew P. Dominey and Stephen P. Thomas
Molecules 2020, 25(4), 905; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25040905 - 18 Feb 2020
Cited by 26 | Viewed by 5880
Abstract
Arene C(sp2)-H bond borylation reactions provide rapid and efficient routes to synthetically versatile boronic esters. While iridium catalysts are well established for this reaction, the discovery and development of methods using Earth-abundant alternatives is limited to just a few examples. [...] Read more.
Arene C(sp2)-H bond borylation reactions provide rapid and efficient routes to synthetically versatile boronic esters. While iridium catalysts are well established for this reaction, the discovery and development of methods using Earth-abundant alternatives is limited to just a few examples. Applying an in situ catalyst activation method using air-stable and easily handed reagents, the iron-catalysed C(sp2)-H borylation reactions of furans and thiophenes under blue light irradiation have been developed. Key reaction intermediates have been prepared and characterised, and suggest two mechanistic pathways are in action involving both C-H metallation and the formation of an iron boryl species. Full article
(This article belongs to the Special Issue Recent Advances in Iron Catalysis)
Show Figures

Scheme 1

20 pages, 1636 KiB  
Article
Analysis of Phospholipids, Lysophospholipids, and Their Linked Fatty Acyl Chains in Yellow Lupin Seeds (Lupinus luteus L.) by Liquid Chromatography and Tandem Mass Spectrometry
by Cosima Damiana Calvano, Mariachiara Bianco, Giovanni Ventura, Ilario Losito, Francesco Palmisano and Tommaso R.I. Cataldi
Molecules 2020, 25(4), 805; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25040805 - 13 Feb 2020
Cited by 23 | Viewed by 3865
Abstract
Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled to either Fourier-transform (FT) orbital-trap or linear ion-trap tandem mass spectrometry (LIT-MS/MS) was used to characterize the phospholipidome of yellow lupin (Lupinus luteus) seeds. Phosphatidylcholines (PC) were the most abundant species [...] Read more.
Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled to either Fourier-transform (FT) orbital-trap or linear ion-trap tandem mass spectrometry (LIT-MS/MS) was used to characterize the phospholipidome of yellow lupin (Lupinus luteus) seeds. Phosphatidylcholines (PC) were the most abundant species (41 ± 6%), which were followed by lyso-forms LPC (30 ± 11%), phosphatidylethanolamines (PE, 13 ± 4%), phosphatidylglycerols (PG, 5.1 ± 1.7%), phosphatidic acids (PA, 4.9 ± 1.8%), phosphatidylinositols (PI, 4.7 ± 1.1%), and LPE (1.2 ± 0.5%). The occurrence of both isomeric forms of several LPC and LPE was inferred by a well-defined fragmentation pattern observed in negative ion mode. An unprecedented characterization of more than 200 polar lipids including 52 PC, 42 PE, 42 PA, 35 PG, 16 LPC, 13 LPE, and 10 PI, is reported. The most abundant fatty acids (FA) as esterified acyl chains in PL were 18:1 (oleic), 18:2 (linoleic), 16:0 (palmitic), and 18:3 (linolenic) with relatively high contents of long fatty acyl chains such as 22:0 (behenic), 24:0 (lignoceric), 20:1 (gondoic), and 22:1 (erucic). Their occurrence was confirmed by reversed-phase (RP) LC-ESI-FTMS analysis of a chemically hydrolyzed sample extract in acid conditions at 100 °C for 45 min. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Graphical abstract

13 pages, 2854 KiB  
Article
Development of RNA/DNA Hydrogel Targeting Toll-Like Receptor 7/8 for Sustained RNA Release and Potent Immune Activation
by Fusae Komura, Kana Okuzumi, Yuki Takahashi, Yoshinobu Takakura and Makiya Nishikawa
Molecules 2020, 25(3), 728; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25030728 - 07 Feb 2020
Cited by 22 | Viewed by 3630
Abstract
Guanosine- and uridine-rich single-stranded RNA (GU-rich RNA) is an agonist of Toll-like receptor (TLR) 7 and TLR8 and induces strong immune responses. A nanostructured GU-rich RNA/DNA assembly prepared using DNA nanotechnology can be used as an adjuvant capable of improving the biological stability [...] Read more.
Guanosine- and uridine-rich single-stranded RNA (GU-rich RNA) is an agonist of Toll-like receptor (TLR) 7 and TLR8 and induces strong immune responses. A nanostructured GU-rich RNA/DNA assembly prepared using DNA nanotechnology can be used as an adjuvant capable of improving the biological stability of RNA and promoting efficient RNA delivery to target immune cells. To achieve a sustained supply of GU-rich RNA to immune cells, we developed a GU-rich RNA/DNA hydrogel (RDgel) using nanostructured GU-rich RNA/DNA assembly, from which GU-rich RNA can be released in a sustained manner. A hexapod-like GU-rich RNA/DNA nanostructure, or hexapodRD6, was designed using a 20-mer phosphorothioate-stabilized GU-rich RNA and six phosphodiester DNAs. Two sets of hexapodRD6 were mixed to obtain RDgel. Under serum-containing conditions, GU-rich RNA was gradually released from the RDgel. Fluorescently labeled GU-rich RNA was efficiently taken up by DC2.4 murine dendritic cells and induced a high level of tumor necrosis factor-α release from these cells when it was incorporated into RDgel. These results indicate that the RDgel constructed using DNA nanotechnology can be a useful adjuvant in cancer therapy with sustained RNA release and high immunostimulatory activity. Full article
(This article belongs to the Special Issue Biomedical Hydrogels: Synthesis and Applications)
Show Figures

Figure 1

22 pages, 1456 KiB  
Article
Oxidative Dearomative Cross-Dehydrogenative Coupling of Indoles with Diverse C-H Nucleophiles: Efficient Approach to 2,2-Disubstituted Indolin-3-ones
by Xue Yan, Ying-De Tang, Cheng-Shi Jiang, Xigong Liu and Hua Zhang
Molecules 2020, 25(2), 419; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25020419 - 20 Jan 2020
Cited by 13 | Viewed by 4004
Abstract
The oxidative, dearomative cross-dehydrogenative coupling of indoles with various C-H nucleophiles is developed. This process features a broad substrate scope with respect to both indoles and nucleophiles, affording structurally diverse 2,2-disubstituted indolin-3-ones in high yields (up to 99%). The oxidative dimerization and trimerization [...] Read more.
The oxidative, dearomative cross-dehydrogenative coupling of indoles with various C-H nucleophiles is developed. This process features a broad substrate scope with respect to both indoles and nucleophiles, affording structurally diverse 2,2-disubstituted indolin-3-ones in high yields (up to 99%). The oxidative dimerization and trimerization of indoles has also been demonstrated under the same conditions. Full article
(This article belongs to the Special Issue Advances in Cross-Coupling Reactions)
Show Figures

Graphical abstract

14 pages, 1084 KiB  
Article
Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD
by Lorenzo Cecchi, Francesca Ieri, Pamela Vignolini, Nadia Mulinacci and Annalisa Romani
Molecules 2020, 25(2), 408; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25020408 - 18 Jan 2020
Cited by 39 | Viewed by 6121
Abstract
Onion is widely used worldwide in various forms for both food and medicinal applications, thanks to its high content of phytonutrients, such as flavonoids and volatile sulfur compounds. Fresh onion is very perishable and drying is widely applied for extending shelf-life, thus obtaining [...] Read more.
Onion is widely used worldwide in various forms for both food and medicinal applications, thanks to its high content of phytonutrients, such as flavonoids and volatile sulfur compounds. Fresh onion is very perishable and drying is widely applied for extending shelf-life, thus obtaining a very easy-to-use functional food ingredient. The flavonoid and volatile fractions of different onion cuts (flakes, rings) prepared through different drying cycles in a static oven, were characterized by high-performance liquid chromatography with a diode-array detector HPLC-DAD, Head Space-Solid Phase Micro Extraction followed by Gas Chromatography coupled with Mass Spectrometry (HS-SPME-GC-MS) and Head-Space Solid Phase Micro Extraction followed by comprehensive two-dimensional Gas-Chromatography (HS-SPME-GC×GC-TOF). Onion flakes showed a significantly higher flavonoid content (3.56 mg g−1) than onion rings (2.04 mg g−1). Onion flakes showed greater amount of volatile organic compounds (VOCs) (127.26 mg g−1) than onion rings (42.79 mg g−1), with different relative amounts of di- and trisulfides—disulfides largely predominate the volatile fraction (amounts over 60% on the total volatile content), followed by trisulfides and dipropyl disulfide and dipropyl trisulfide were the most abundant VOCs. HS-SPME-GC×GC-TOF allowed for the detection of the presence of allylthiol, diethanol sulfide, 4,6-diethyl1,2,3,5-tetrathiolane, not detected by HS-SPME-GC-MS, and provided a fast and direct visualization and comparison of different samples. These results highlight different nutraceutical properties of dried onion samples processed otherwise, only differing in shape and size, thus pointing out potentially different uses as functional ingredients. Full article
(This article belongs to the Special Issue Analysis of Volatile and Odor Compounds in Food)
Show Figures

Graphical abstract

10 pages, 1529 KiB  
Communication
Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores
by Timur I. Madzhidov, Assima Rakhimbekova, Alina Kutlushuna and Pavel Polishchuk
Molecules 2020, 25(2), 385; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25020385 - 17 Jan 2020
Cited by 6 | Viewed by 2508
Abstract
Pharmacophore modeling is usually considered as a special type of virtual screening without probabilistic nature. Correspondence of at least one conformation of a molecule to pharmacophore is considered as evidence of its bioactivity. We show that pharmacophores can be treated as one-class machine [...] Read more.
Pharmacophore modeling is usually considered as a special type of virtual screening without probabilistic nature. Correspondence of at least one conformation of a molecule to pharmacophore is considered as evidence of its bioactivity. We show that pharmacophores can be treated as one-class machine learning models, and the probability the reflecting model’s confidence can be assigned to a pharmacophore on the basis of their precision of active compounds identification on a calibration set. Two schemes (Max and Mean) of probability calculation for consensus prediction based on individual pharmacophore models were proposed. Both approaches to some extent correspond to commonly used consensus approaches like the common hit approach or the one based on a logical OR operation uniting hit lists of individual models. Unlike some known approaches, the proposed ones can rank compounds retrieved by multiple models. These approaches were benchmarked on multiple ChEMBL datasets used for ligand-based pharmacophore modeling and externally validated on corresponding DUD-E datasets. The influence of complexity of pharmacophores and their performance on a calibration set on results of virtual screening was analyzed. It was shown that Max and Mean approaches have superior early enrichment to the commonly used approaches. Thus, a well-performing, easy-to-implement, and probabilistic alternative to existing approaches for pharmacophore-based virtual screening was proposed. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

13 pages, 3680 KiB  
Article
Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Aryl Chlorobenzoates with Alkyl Grignard Reagents
by Elwira Bisz and Michal Szostak
Molecules 2020, 25(1), 230; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25010230 - 06 Jan 2020
Cited by 14 | Viewed by 5578
Abstract
Aryl benzoates are compounds of high importance in organic synthesis. Herein, we report the iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of aryl chlorobenzoates with alkyl Grignard reagents. The method is characterized by the use of environmentally benign and sustainable iron salts [...] Read more.
Aryl benzoates are compounds of high importance in organic synthesis. Herein, we report the iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of aryl chlorobenzoates with alkyl Grignard reagents. The method is characterized by the use of environmentally benign and sustainable iron salts for cross-coupling in the catalytic system, employing benign urea ligands in the place of reprotoxic NMP (NMP = N-methyl-2-pyrrolidone). It is notable that high selectivity for the cross-coupling is achieved in the presence of hydrolytically-labile and prone to nucleophilic addition phenolic ester C(acyl)–O bonds. The reaction provides access to alkyl-functionalized aryl benzoates. The examination of various O-coordinating ligands demonstrates the high activity of urea ligands in promoting the cross-coupling versus nucleophilic addition to the ester C(acyl)–O bond. The method showcases the functional group tolerance of iron-catalyzed Kumada cross-couplings. Full article
(This article belongs to the Special Issue Recent Advances in Iron Catalysis)
Show Figures

Graphical abstract

15 pages, 750 KiB  
Article
Rutin, γ-Aminobutyric Acid, Gallic Acid, and Caffeine Negatively Affect the Sweet-Mellow Taste of Congou Black Tea Infusions
by Jia Li, Yuefeng Yao, Jiaqin Wang, Jinjie Hua, Jinjin Wang, Yanqin Yang, Chunwang Dong, Qinghua Zhou, Yongwen Jiang, Yuliang Deng and Haibo Yuan
Molecules 2019, 24(23), 4221; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24234221 - 20 Nov 2019
Cited by 23 | Viewed by 3636
Abstract
The sweet-mellow taste sensation is a unique and typical feature of premium congou black tea infusions. To explore the key taste-active compounds that influence the sweet-mellow taste, a sensory and molecular characterization was performed on thirty-three congou black tea infusions presenting different taste [...] Read more.
The sweet-mellow taste sensation is a unique and typical feature of premium congou black tea infusions. To explore the key taste-active compounds that influence the sweet-mellow taste, a sensory and molecular characterization was performed on thirty-three congou black tea infusions presenting different taste qualities, including the sweet-mellow, mellow-pure, or less-mellow taste. An integrated application of quantitative analysis of 48 taste-active compounds, taste contribution analysis, and further validation by taste supplementation experiments, combined with human sensory evaluation revealed that caffeine, γ-aminobutyric acid, rutin, succinic acid, citric acid, and gallic acid negatively affect the sweet-mellow taste, whereas glucose, sucrose, and ornithine positively contribute to the sweet-mellow taste of congou black tea infusions. Particularly, rutin, γ-aminobutyric acid, gallic acid, and caffeine, which impart the major inhibitory effect to the manifestation of the sweet-mellow taste, were identified as the key influencing components through stepwise screening and validation experiments. A modest level of these compounds was found to be favorable for the development and manifestation of the sweet-mellow taste. These compounds might potentially serve as the regulatory targets for oriented-manufacturing of high-quality sweet-mellow congou black tea. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Graphical abstract

10 pages, 2374 KiB  
Article
Enhanced Reactant Distribution in Redox Flow Cells
by Nicholas Gurieff, Declan Finn Keogh, Victoria Timchenko and Chris Menictas
Molecules 2019, 24(21), 3877; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24213877 - 28 Oct 2019
Cited by 8 | Viewed by 3661
Abstract
Redox flow batteries (RFBs), provide a safe and cost-effective means of storing energy at grid-scale, and will play an important role in the decarbonization of global electricity networks. Several approaches have been explored to improve their efficiency and power density, and recently, cell [...] Read more.
Redox flow batteries (RFBs), provide a safe and cost-effective means of storing energy at grid-scale, and will play an important role in the decarbonization of global electricity networks. Several approaches have been explored to improve their efficiency and power density, and recently, cell geometry modification has shown promise in efforts to address mass transport limitations which affect electrochemical and overall system performance. Flow-by electrode configurations have demonstrated significant power density improvements in laboratory testing, however, flow-through designs with conductive felt remain the standard at commercial scale. Concentration gradients exist within these cells, limiting their performance. A new concept of redistributing reactants within the flow frame is introduced in this paper. This research shows a 60% improvement in minimum V3+ concentration within simulated vanadium redox flow battery (VRB/VRFB) cells through the application of static mixers. The enhanced reactant distribution showed a cell voltage improvement by reducing concentration overpotential, suggesting a pathway forward to increase limiting current density and cycle efficiencies in RFBs. Full article
(This article belongs to the Special Issue Advances in Electrochemical Energy Storage Devices)
Show Figures

Figure 1

24 pages, 8347 KiB  
Article
A Promising Polymer Blend Electrolytes Based on Chitosan: Methyl Cellulose for EDLC Application with High Specific Capacitance and Energy Density
by Shujahadeen B. Aziz, M. H. Hamsan, Ranjdar M. Abdullah and M. F. Z. Kadir
Molecules 2019, 24(13), 2503; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24132503 - 09 Jul 2019
Cited by 103 | Viewed by 4974
Abstract
In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature [...] Read more.
In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature of the XRD pattern of doped samples compared to pure CS:MC system evidencedthe amorphous character of the electrolyte samples. The morphology of the samples in FESEM images supported the amorphous behavior of the solid electrolyte films. The results of impedance and Bode plotindicate that the bulk resistance decreasedwith increasing salt concentration. The highest DC conductivity was found to be 2.81 × 10−3 S/cm. The electrical equivalent circuit (EEC) model was conducted for selected samples to explain the complete picture of the electrical properties.The performance of EDLC cells was examined at room temperature by electrochemical techniques, such as impedance spectroscopy, cyclic voltammetry (CV) and constant current charge–discharge techniques. It was found that the studied samples exhibit a very good performance as electrolyte for EDLC applications. Ions were found to be the dominant charge carriers in the polymer electrolyte. The ion transference number (tion) was found to be 0.84 while 0.16 for electron transference number (tel). Through investigation of linear sweep voltammetry (LSV), the CS:MC:NH4SCN system was found to be electrochemically stable up to 1.8 V. The CV plot revealed no redox peak, indicating the occurrence of charge double-layer at the surface of activated carbon electrodes. Specific capacitance (Cspe) for the fabricated EDLC was calculated using CV plot and charge–discharge analyses. It was found to be 66.3 F g−1 and 69.9 F g−1 (at thefirst cycle), respectively. Equivalent series resistance (Resr) of the EDLC was also identified, ranging from 50.0 to 150.0 Ω. Finally, energy density (Ed) was stabilized to anaverage of 8.63 Wh kg−1 from the 10th cycle to the 100th cycle. The first cycle obtained power density (Pd) of 1666.6 W kg−1 and then itdropped to 747.0 W kg−1 at the 50th cycle and continued to drop to 555.5 W kg−1 as the EDLC completed 100 cycles. Full article
(This article belongs to the Special Issue Advances in Electrochemical Energy Storage Devices)
Show Figures

Graphical abstract

12 pages, 845 KiB  
Article
Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis sativa L.
by Mara Mandrioli, Matilde Tura, Stefano Scotti and Tullia Gallina Toschi
Molecules 2019, 24(11), 2113; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24112113 - 04 Jun 2019
Cited by 60 | Viewed by 11639
Abstract
Cannabis has regained much attention as a result of updated legislation authorizing many different uses and can be classified on the basis of the content of tetrahydrocannabinol (THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, [...] Read more.
Cannabis has regained much attention as a result of updated legislation authorizing many different uses and can be classified on the basis of the content of tetrahydrocannabinol (THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and cannabidiol (CBD) is also significant as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of cannabinoids. The procedure described herein allows rapid determination of 10 cannabinoids from the inflorescences of Cannabis sativa L. by extraction with organic solvents. Separation and subsequent detection are by RP-HPLC-UV. Quantification is performed by an external standard method through the construction of calibration curves using pure standard chromatographic reference compounds. The main cannabinoids dosed (g/100 g) in actual samples were cannabidiolic acid (CBDA), CBD, and Δ9-THC (Sample L11 CBDA 0.88 ± 0.04, CBD 0.48 ± 0.02, Δ9-THC 0.06 ± 0.00; Sample L5 CBDA 0.93 ± 0.06, CBD 0.45 ± 0.03, Δ9-THC 0.06 ± 0.00). The present validated RP-HPLC-UV method allows determination of the main cannabinoids in Cannabis sativa L. inflorescences and appropriate legal classification as hemp or drug-type. Full article
Show Figures

Graphical abstract

10 pages, 2076 KiB  
Article
Temperature-Dependent Evolution of Raman Spectra of Methylammonium Lead Halide Perovskites, CH3NH3PbX3 (X = I, Br)
by Kousuke Nakada, Yuki Matsumoto, Yukihiro Shimoi, Koji Yamada and Yukio Furukawa
Molecules 2019, 24(3), 626; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24030626 - 11 Feb 2019
Cited by 75 | Viewed by 8527
Abstract
We present a Raman study on the phase transitions of organic/inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I, Br), which are used as solar cells with high power conversion efficiency. The temperature dependence of the Raman bands of [...] Read more.
We present a Raman study on the phase transitions of organic/inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I, Br), which are used as solar cells with high power conversion efficiency. The temperature dependence of the Raman bands of CH3NH3PbX3 (X = I, Br) was measured in the temperature ranges of 290 to 100 K for CH3NH3PbBr3 and 340 to 110 K for CH3NH3PbI3. Broad ν1 bands at ~326 cm−1 for MAPbBr3 and at ~240 cm−1 for MAPbI3 were assigned to the MA–PbX3 cage vibrations. These bands exhibited anomalous temperature dependence, which was attributable to motional narrowing originating from fast changes between the orientational states of CH3NH3+ in the cage. Phase transitions were characterized by changes in the bandwidths and peak positions of the MA–cage vibration and some bands associated with the NH3+ group. Full article
(This article belongs to the Special Issue Raman Spectroscopy: A Spectroscopic 'Swiss-Army Knife')
Show Figures

Graphical abstract

29 pages, 2553 KiB  
Article
Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions?
by Arpita Varadwaj, Helder M. Marques and Pradeep R. Varadwaj
Molecules 2019, 24(3), 379; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24030379 - 22 Jan 2019
Cited by 69 | Viewed by 10947
Abstract
Can two sites of positive electrostatic potential localized on the outer surfaces of two halogen atoms (and especially fluorine) in different molecular domains attract each other to form a non-covalent engagement? The answer, perhaps counterintuitive, is yes as shown here using the electronic [...] Read more.
Can two sites of positive electrostatic potential localized on the outer surfaces of two halogen atoms (and especially fluorine) in different molecular domains attract each other to form a non-covalent engagement? The answer, perhaps counterintuitive, is yes as shown here using the electronic structures and binding energies of the interactions for a series of 22 binary complexes formed between identical or different atomic domains in similar or related halogen-substituted molecules containing fluorine. These were obtained using various computational approaches, including density functional and ab initio first-principles theories with M06-2X, RHF, MP2 and CCSD(T). The physical chemistry of non-covalent bonding interactions in these complexes was explored using both Quantum Theory of Atoms in Molecules and Symmetry Adapted Perturbation Theories. The surface reactivity of the 17 monomers was examined using the Molecular Electrostatic Surface Potential approach. We have demonstrated inter alia that the dispersion term, the significance of which is not always appreciated, which emerges either from an energy decomposition analysis, or from a correlated calculation, plays a structure-determining role, although other contributions arising from electrostatic, exchange-repulsion and polarization effects are also important. The 0.0010 a.u. isodensity envelope, often used for mapping the electrostatic potential is found to provide incorrect information about the complete nature of the surface reactive sites on some of the isolated monomers, and can lead to a misinterpretation of the results obtained. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

20 pages, 5192 KiB  
Article
Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes
by Robert Löwe, Thomas Hanemann and Andreas Hofmann
Molecules 2019, 24(2), 324; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24020324 - 17 Jan 2019
Cited by 8 | Viewed by 4959
Abstract
Eight new polymerizable ammonium-TFSI ionic liquids were synthesized and characterized with respect to an application in energy storage devices. The ionic liquids feature methacrylate or acrylate termination as polymerizable groups. The preparation was optimized to obtain the precursors and ionic liquids in high [...] Read more.
Eight new polymerizable ammonium-TFSI ionic liquids were synthesized and characterized with respect to an application in energy storage devices. The ionic liquids feature methacrylate or acrylate termination as polymerizable groups. The preparation was optimized to obtain the precursors and ionic liquids in high yield. All products were characterized by NMR and IR spectroscopy. Phase transition temperatures were obtained by DSC analysis. Density, viscosity and ionic conductivity of the ionic liquids were compared and discussed. The results reveal that the length of attached alkyl groups as well as the methyl group at the polymerizable function have significant influences on the ionic liquids physicochemical properties. Ionic conductivity values vary between 0.264 mS cm−1 for [C2NA,22]TFSI and 0.080 mS cm−1 for [C8NMA,22]TFSI at 25 °C. Viscosity values are within a range of 0.762 Pa s for [C2NA,22]TFSI and 1.522 Pa s for [C6NMA,22]TFSI at 25 °C. Full article
(This article belongs to the Special Issue Ionic Liquids for Electrochemistry)
Show Figures

Figure 1

17 pages, 3526 KiB  
Article
Differential Binding of Tetrel-Bonding Bipodal Receptors to Monatomic and Polyatomic Anions
by Steve Scheiner
Molecules 2019, 24(2), 227; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24020227 - 09 Jan 2019
Cited by 20 | Viewed by 3363
Abstract
Previous work has demonstrated that a bidentate receptor containing a pair of Sn atoms can engage in very strong interactions with halide ions via tetrel bonds. The question that is addressed here concerns the possibility that a receptor of this type might be [...] Read more.
Previous work has demonstrated that a bidentate receptor containing a pair of Sn atoms can engage in very strong interactions with halide ions via tetrel bonds. The question that is addressed here concerns the possibility that a receptor of this type might be designed that would preferentially bind a polyatomic over a monatomic anion since the former might better span the distance between the two Sn atoms. The binding of Cl was thus compared to that of HCOO, HSO4, and H2PO4 with a wide variety of bidentate receptors. A pair of SnFH2 groups, as strong tetrel-binding agents, were first added to a phenyl ring in ortho, meta, and para arrangements. These same groups were also added in 1,3 and 1,4 positions of an aliphatic cyclohexyl ring. The tetrel-bonding groups were placed at the termini of (-C≡C-)n (n = 1,2) extending arms so as to further separate the two Sn atoms. Finally, the Sn atoms were incorporated directly into an eight-membered ring, rather than as appendages. The ordering of the binding energetics follows the HCO2 > Cl > H2PO4 > HSO4 general pattern, with some variations in selected systems. The tetrel bonding is strong enough that in most cases, it engenders internal deformations within the receptors that allow them to engage in bidentate bonding, even for the monatomic chloride, which mutes any effects of a long Sn···Sn distance within the receptor. Full article
(This article belongs to the Special Issue σ and π Holes: A New Class of Non-Covalent Interactions)
Show Figures

Graphical abstract

Review

18 pages, 5435 KiB  
Review
Recent Progresses in Solution-Processed Tandem Organic and Quantum Dots Light-Emitting Diodes
by Shu-Guang Meng, Xiao-Zhao Zhu, Dong-Ying Zhou and Liang-Sheng Liao
Molecules 2023, 28(1), 134; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules28010134 - 23 Dec 2022
Cited by 2 | Viewed by 3407
Abstract
Solution processes have promising advantages of low manufacturing cost and large-scale production, potentially applied for the fabrication of organic and quantum dot light-emitting diodes (OLEDs and QLEDs). To meet the expected lifespan of OLEDs/QLEDs in practical display and lighting applications, tandem architecture by [...] Read more.
Solution processes have promising advantages of low manufacturing cost and large-scale production, potentially applied for the fabrication of organic and quantum dot light-emitting diodes (OLEDs and QLEDs). To meet the expected lifespan of OLEDs/QLEDs in practical display and lighting applications, tandem architecture by connecting multiple light-emitting units (LEUs) through a feasible intermediate connection layer (ICL) is preferred. However, the combination of tandem architecture with solution processes is still limited by the choices of obtainable ICLs due to the unsettled challenges, such as orthogonal solubility, surface wettability, interfacial corrosion, and charge injection. This review focuses on the recent progresses of solution-processed tandem OLEDs and tandem QLEDs, covers the design and fabrication of various ICLs by solution process, and provides suggestions on the future challenges of corresponding materials and devices, which are anticipated to stimulate the exploitation of the emerging light technologies. Full article
(This article belongs to the Special Issue Organic Light-Emitting Diodes 3.0)
Show Figures

Figure 1

16 pages, 8684 KiB  
Review
Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment
by Gregor Primc, Rok Zaplotnik, Alenka Vesel and Miran Mozetič
Molecules 2022, 27(24), 9064; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27249064 - 19 Dec 2022
Cited by 2 | Viewed by 1242
Abstract
Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma–textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead [...] Read more.
Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma–textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead to the appropriate surface finish of fibers inside the textile. The crucial relations are provided, and the different concepts of low-pressure and atmospheric-pressure discharges useful for the modification of textile’s properties are explained. The atmospheric-pressure plasma sustained in the form of numerous stochastical streamers will penetrate textiles of reasonable porosity, so the reactive species useful for the functionalization of fibers deep inside the textile will be created inside the textile. Low-pressure plasmas sustained at reasonable discharge power will not penetrate into the textile, so the depth of the modified textile is limited by the diffusion of reactive species. Since the charged particles neutralize on the textile surface, the neutral species will functionalize the fibers deep inside the textile when low-pressure plasma is chosen for the treatment of textiles. Full article
(This article belongs to the Special Issue Advances in Textile Materials Chemistry)
Show Figures

Figure 1

24 pages, 2746 KiB  
Review
Iridium and Ruthenium Complexes Bearing Perylene Ligands
by Luca Mauri, Alessia Colombo, Claudia Dragonetti, Francesco Fagnani and Dominique Roberto
Molecules 2022, 27(22), 7928; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27227928 - 16 Nov 2022
Cited by 1 | Viewed by 1738
Abstract
The present review summarizes the work carried out mostly in the last decade on iridium and ruthenium complexes bearing various perylene ligands, of particular interest for bioimaging, photodynamic therapy, and solar energy conversion. In these complexes, the absorption spectra and the electrochemical properties [...] Read more.
The present review summarizes the work carried out mostly in the last decade on iridium and ruthenium complexes bearing various perylene ligands, of particular interest for bioimaging, photodynamic therapy, and solar energy conversion. In these complexes, the absorption spectra and the electrochemical properties are those of the perylene subunit plus those of the metal moiety. In contrast, the emissions are completely changed with respect to perylenes considered alone. Thus, fully organic perylenes are characterized by a strong fluorescence in the visible region, lifetimes of a few nanoseconds, and luminescence quantum yields approaching 100%, whereas perylene Ir and Ru complexes usually do not emit; however, in few cases, weak phosphorescent emissions, with lifetimes in the range of microseconds and relatively low quantum yields, are reported. This is due to a strong interaction between the perylene core and the heavy metal center, taking place after the excitation. Nevertheless, an important advantage deriving from the presence of the heavy metal center is represented by the ability to generate large amounts of singlet oxygen, which plays a key role in photodynamic therapy. Full article
(This article belongs to the Special Issue Featured Reviews in Organometallic Chemistry)
Show Figures

Figure 1

31 pages, 8073 KiB  
Review
Guanidinates as Alternative Ligands for Organometallic Complexes
by Fernando Carrillo-Hermosilla, Rafael Fernández-Galán, Alberto Ramos and David Elorriaga
Molecules 2022, 27(18), 5962; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27185962 - 13 Sep 2022
Cited by 7 | Viewed by 2460
Abstract
For decades, ligands such as phosphanes or cyclopentadienyl ring derivatives have dominated Coordination and Organometallic Chemistry. At the same time, alternative compounds have emerged that could compete either for a more practical and accessible synthesis or for greater control of steric and electronic [...] Read more.
For decades, ligands such as phosphanes or cyclopentadienyl ring derivatives have dominated Coordination and Organometallic Chemistry. At the same time, alternative compounds have emerged that could compete either for a more practical and accessible synthesis or for greater control of steric and electronic properties. Guanidines, nitrogen-rich compounds, appear as one such potential alternatives as ligands or proligands. In addition to occurring in a plethora of natural compounds, and thus in compounds of pharmacological use, guanidines allow a wide variety of coordination modes to different metal centers along the periodic table, with their monoanionic chelate derivatives being the most common. In this review, we focused on the organometallic chemistry of guanidinato compounds, discussing selected examples of coordination modes, reactivity and uses in catalysis or materials science. We believe that these amazing ligands offer a new promise in Organometallic Chemistry. Full article
(This article belongs to the Special Issue Organometallic Complexes: Fundamentals and Applications)
Show Figures

Figure 1

30 pages, 11934 KiB  
Review
Azobenzene as Antimicrobial Molecules
by Miriam Di Martino, Lucia Sessa, Martina Di Matteo, Barbara Panunzi, Stefano Piotto and Simona Concilio
Molecules 2022, 27(17), 5643; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27175643 - 01 Sep 2022
Cited by 17 | Viewed by 3752
Abstract
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more [...] Read more.
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more efficient than those currently in use. Many authors have attempted to exploit the antimicrobial activity of azobenzene and to utilize their photoisomerization for selective control of the bioactivities of antimicrobial molecules, which is necessary for antibacterial therapy. This review will provide a systematic and consequential approach to coupling azobenzene moiety with active antimicrobial molecules and drugs, including small and large organic molecules, such as peptides. A selection of significant cutting-edge articles collected in recent years has been discussed, based on the structural pattern and antimicrobial performance, focusing especially on the photoactivity of azobenzene and the design of smart materials as the most targeted and desirable application. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Materials)
Show Figures

Figure 1

19 pages, 2083 KiB  
Review
Rhenium Radioisotopes for Medicine, a Focus on Production and Applications
by Licia Uccelli, Petra Martini, Luca Urso, Teresa Ghirardi, Lorenza Marvelli, Corrado Cittanti, Aldo Carnevale, Melchiore Giganti, Mirco Bartolomei and Alessandra Boschi
Molecules 2022, 27(16), 5283; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27165283 - 18 Aug 2022
Cited by 8 | Viewed by 2759
Abstract
In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes [...] Read more.
In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes are of particular relevance: rhenium-186 and rhenium-188. The first is routinely produced in nuclear reactors by direct neutron activation of rhenium-186 via 185Re(n,γ)186Re nuclear reaction. Rhenium-188 is produced by the decay of the parent tungsten-188. Separation of rhenium-188 is mainly performed using a chromatographic 188W/188Re generator in which tungsten-188 is adsorbed on the alumina column, similar to the 99Mo/99mTc generator system, and the radionuclide eluted in saline solution. The application of rhenium-186 and rhenium-188 depends on their specific activity. Rhenium-186 is produced in low specific activity and is mainly used for labeling particles or diphosphonates for bone pain palliation. Whereas, rhenium-188 of high specific activity can be used for labeling peptides or bioactive molecules. One of the advantages of rhenium is its chemical similarity with technetium. So, diagnostic technetium analogs labeled with radiorhenium can be developed for therapeutic applications. Clinical trials promoting the use of 186/188Re-radiopharmaceuticals is, in particular, are discussed. Full article
Show Figures

Figure 1

31 pages, 9627 KiB  
Review
Bidentate Donor-Functionalized N-Heterocyclic Carbenes: Valuable Ligands for Ruthenium-Catalyzed Transfer Hydrogenation
by Vincent Ritleng and Christophe Michon
Molecules 2022, 27(15), 4703; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27154703 - 23 Jul 2022
Cited by 7 | Viewed by 1735
Abstract
Ruthenium complexes are by far the most studied compounds that catalyze hydrogen transfer reactions. In this review, we describe the use in this field of ruthenium complexes bearing bidentate donor-functionalized N-heterocyclic carbene ligands. The review specifically covers the application in transfer hydrogenations [...] Read more.
Ruthenium complexes are by far the most studied compounds that catalyze hydrogen transfer reactions. In this review, we describe the use in this field of ruthenium complexes bearing bidentate donor-functionalized N-heterocyclic carbene ligands. The review specifically covers the application in transfer hydrogenations of (κ2-CNHC,Y)-ruthenacyclic compounds where the Y donor atom is a N, P, O, or S atom, and where the N-heterocyclic carbene ligand is a classical imidazol-2-ylidene, a benzimidazol-2-ylidene, a mesoionic 1,2,3-triazolylidene, or an imidazol-4-ylidene ligand. Tridentate donor-functionalized N-heterocyclic carbene complexes thus fall outside the scope of the review. Applications in (asymmetric) transfer hydrogenation of ketones, aldehydes, imines, alkenes, and nitrobenzene are discussed. Full article
(This article belongs to the Special Issue Featured Reviews in Organometallic Chemistry)
Show Figures

Graphical abstract

17 pages, 14047 KiB  
Review
Recent Advances in Self-Assembly and Application of Para-Aramids
by Chunjie Xie, Shixuan Yang, Ran He, Jianning Liu, Yuexi Chen, Yongyi Guo, Zhaoxia Guo, Teng Qiu and Xinlin Tuo
Molecules 2022, 27(14), 4413; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27144413 - 09 Jul 2022
Cited by 9 | Viewed by 2600
Abstract
Poly(p-phenylene terephthalamide) (PPTA) is one kind of lyotropic liquid crystal polymer. Kevlar fibers performed from PPTA are widely used in many fields due to their superior mechanical properties resulting from their highly oriented macromolecular structure. However, the “infusible and insoluble” characteristic [...] Read more.
Poly(p-phenylene terephthalamide) (PPTA) is one kind of lyotropic liquid crystal polymer. Kevlar fibers performed from PPTA are widely used in many fields due to their superior mechanical properties resulting from their highly oriented macromolecular structure. However, the “infusible and insoluble” characteristic of PPTA gives rise to its poor processability, which limits its scope of application. The strong interactions and orientation characteristic of aromatic amide segments make PPTA attractive in the field of self-assembly. Chemical derivation has proved an effective way to modify the molecular structure of PPTA to improve its solubility and amphiphilicity, which resulted in different liquid crystal behaviors or supramolecular aggregates, but the modification of PPTA is usually complex and difficult. Alternatively, higher-order all-PPTA structures have also been realized through the controllable hierarchical self-assembly of PPTA from the polymerization process to the formation of macroscopic products. This review briefly summarizes the self-assembly methods of PPTA-based materials in recent years, and focuses on the polymerization-induced PPTA nanofibers which can be further fabricated into different macroscopic architectures when other self-assembly methods are combined. This monomer-started hierarchical self-assembly strategy evokes the feasible processing of PPTA, and enriches the diversity of product, which is expected to be expanded to other liquid crystal polymers. Full article
Show Figures

Figure 1

38 pages, 4530 KiB  
Review
Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method?
by Elisabetta Gabano and Mauro Ravera
Molecules 2022, 27(13), 4249; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27134249 - 30 Jun 2022
Cited by 12 | Viewed by 5780
Abstract
Microwave-assisted synthesis is considered environmental-friendly and, therefore, in agreement with the principles of green chemistry. This form of energy has been employed extensively and successfully in organic synthesis also in the case of metal-catalyzed synthetic procedures. However, it has been less widely exploited [...] Read more.
Microwave-assisted synthesis is considered environmental-friendly and, therefore, in agreement with the principles of green chemistry. This form of energy has been employed extensively and successfully in organic synthesis also in the case of metal-catalyzed synthetic procedures. However, it has been less widely exploited in the synthesis of metal complexes. As microwave irradiation has been proving its utility as both a time-saving procedure and an alternative way to carry on tricky transformations, its use can help inorganic chemists, too. This review focuses on the use of microwave irradiation in the preparation of transition metal complexes and organometallic compounds and also includes new, unpublished results. The syntheses of the compounds are described following the group of the periodic table to which the contained metal belongs. A general overview of the results from over 150 papers points out that microwaves can be a useful synthetic tool for inorganic chemists, reducing dramatically the reaction times with respect to traditional heating. This is often accompanied by a more limited risk of decomposition of reagents or products by an increase in yield, purity, and (sometimes) selectivity. In any case, thermal control is operative, whereas nonthermal or specific microwave effects seem to be absent. Full article
Show Figures

Figure 1

Back to TopTop