molecules-logo

Journal Browser

Journal Browser

Bio-Functional Natural Products in Edible Resources for Human Health and Beauty

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 January 2022) | Viewed by 38957

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor
Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
Interests: isolation and structure determination of bioactive natural products; synthetic studies on bioactive natural products; structure-activity relationship studies on bioactive natural products; studies of bioactive natural products on the application to pharmaceuticals, nutraceuticals, dietary supplements, cosmetics, and food additives; mechanisms of action of bioactive natural products
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural products remain important repositories of promising therapeutic candidates due to their rich chemical and biological diversity. The Special Issue on "Biofunctional Natural Products in Edible Resources for Human Health and Beauty" is intended to offer biological active natural products from edible resources as candidates and/or leads for pharmaceuticals, dietary supplements, functional foods, cosmetics, food additives, etc. The research fields of this Special Issue include natural products chemistry, phytochemistry, pharmacognosy, food chemistry, bioorganic chemistry, chemical biology, molecular biology, molecular pharmacology, and other related research fields of bioactive natural products obtained from the edible resources. Here, we encourage investigators to consider submitting reviews, regular research papers, and short communications focusing on the different aspects. I look forward to receiving many submissions from outstanding experts in these research fields.

Prof. Dr. Toshio Morikawa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Natural product chemistry
  • Phytochemistry
  • Pharmacognosy
  • Food chemistry
  • Bioorganic chemistry
  • Chemical biology
  • Molecular biology
  • Molecular pharmacology
  • Isolation and structure determination
  • Total synthesis
  • Structure–activity relationship
  • Mechanism of action

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

2 pages, 181 KiB  
Editorial
Bio-Functional Natural Products in Edible Resources for Human Health and Beauty
by Toshio Morikawa
Molecules 2022, 27(16), 5060; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27165060 - 10 Aug 2022
Cited by 1 | Viewed by 1162
Abstract
Natural products remain important repositories of promising therapeutic candidates due to their rich chemical and biological diversity [...] Full article

Research

Jump to: Editorial, Review

10 pages, 821 KiB  
Article
Stress-Relieving Effects of Sesame Oil Aroma and Identification of the Active Components
by Hiroaki Takemoto, Yuki Saito, Kei Misumi, Masaki Nagasaki and Yoshinori Masuo
Molecules 2022, 27(9), 2661; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27092661 - 20 Apr 2022
Cited by 5 | Viewed by 2092
Abstract
(1) Sesame oil aroma has stress-relieving properties, but there is little information on its effective use and active ingredients. (2) Methods: ICR male mice were housed under water-immersion stress for 24 h. Then, the scent of sesame oil or a typical ingredient was [...] Read more.
(1) Sesame oil aroma has stress-relieving properties, but there is little information on its effective use and active ingredients. (2) Methods: ICR male mice were housed under water-immersion stress for 24 h. Then, the scent of sesame oil or a typical ingredient was inhaled to the stress groups for 30, 60, or 90 min. We investigated the effects of sesame oil aroma on mice behavior and the expression of the dual specificity phosphatase 1 (DUSP1) gene, a candidate stress marker gene in the brain. (3) Results: In an elevated plus-maze test, the rate of entering into the open arm of a maze and the staying time were increased to a maximum after 60 min of inhalation, but these effects decreased 90 min after inhalation. As for the single component, anxiolytic effects were observed in the 2,5-dimethylpyrazine and 2-methoxy phenol group, but the effect was weakened in the furfuryl mercaptan group. The expression levels of DUSP1 in the hippocampus and striatum were significantly decreased in 2,5-dimethylpyrazine and 2-methoxy phenol groups. (4) Conclusions: We clarified the active ingredients and optimal concentrations of sesame oil for its sedative effect. In particular, 2,5-dimethylpyrazine and 2-methoxy phenol significantly suppressed the stress-induced changes in the expression of DUSP1, which are strong anti-stress agents. Our results suggest that these molecules may be powerful anti-stress agents. Full article
Show Figures

Figure 1

21 pages, 2011 KiB  
Article
Consumption of Sinlek Rice Drink Improved Red Cell Indices in Anemic Elderly Subjects
by Peerasak Lerttrakarnnon, Winthana Kusirisin, Pimpisid Koonyosying, Ben Flemming, Niramon Utama-ang, Suthat Fucharoen and Somdet Srichairatanakool
Molecules 2021, 26(20), 6285; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26206285 - 17 Oct 2021
Cited by 3 | Viewed by 1866
Abstract
Iron fortifications are used for the treatment of iron-deficiency anemia; however, iron dosing may cause oxidative damage to the gut lumen. Thai Sinlek rice is abundant in iron and contains phytochemicals. We aimed at evaluating the effect of an iron-rice (IR) hydrolysate drink [...] Read more.
Iron fortifications are used for the treatment of iron-deficiency anemia; however, iron dosing may cause oxidative damage to the gut lumen. Thai Sinlek rice is abundant in iron and contains phytochemicals. We aimed at evaluating the effect of an iron-rice (IR) hydrolysate drink (100 mL/serving) on neurological function, red cell indices and iron status in elders. Healthy elderly subjects were divided into three non-anemic groups and one anemic group. The non-anemic groups consumed one WR (2 mg iron/serving) and two IR drinks (15 and 27 mg iron/serving) (groups A, B and D, respectively), while the anemic group consumed one IR drink (15 mg iron serving) (group C) every day for 30 days. There were no significant differences in the MMSE Thai 2002 and PHQ9 test scores for members of all groups, while the nutrition scores and body weight values of group D subjects were significantly increased. Hemoglobin (Hb) and mean corpuscular hemoglobin concentrations increased significantly only in group C. Serum iron and transferrin saturation levels tended to increase in group A, while these levels were decreased in members of group C. Serum antioxidant activity levels were increased in all groups, and were highest in group C. Thus, consumption of an IR drink for 15 days functioned to increase Hb and antioxidant capacity levels in anemic elders. Full article
Show Figures

Figure 1

18 pages, 2388 KiB  
Article
Lycoperoside H, a Tomato Seed Saponin, Improves Epidermal Dehydration by Increasing Ceramide in the Stratum Corneum and Steroidal Anti-Inflammatory Effect
by Shogo Takeda, Kenchi Miyasaka, Sarita Shrestha, Yoshiaki Manse, Toshio Morikawa and Hiroshi Shimoda
Molecules 2021, 26(19), 5860; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26195860 - 27 Sep 2021
Cited by 7 | Viewed by 2769
Abstract
Tomatoes are widely consumed, however, studies on tomato seeds are limited. In this study, we isolated 11 compounds including saponins and flavonol glycosides from tomato seeds and evaluated their effects on epidermal hydration. Among the isolated compounds, tomato seed saponins (10 µM) significantly [...] Read more.
Tomatoes are widely consumed, however, studies on tomato seeds are limited. In this study, we isolated 11 compounds including saponins and flavonol glycosides from tomato seeds and evaluated their effects on epidermal hydration. Among the isolated compounds, tomato seed saponins (10 µM) significantly increased the mRNA expression of proteins related to epidermal hydration, including filaggrin, involucrin, and enzymes for ceramide synthesis, by 1.32- to 1.91-fold compared with the control in HaCaT cells. Tomato seed saponins (10 µM) also decreased transepidermal water loss by 7 to 13 g/m2·h in the reconstructed human epidermal keratinization (RHEK) models. Quantitative analysis of the ceramide content in the stratum corneum (SC) revealed that lycoperoside H (1–10 µM) is a promising candidate to stimulate ceramide synthesis via the upregulation of ceramide synthase-3, glucosylceramide synthase, and β-glucocerebrosidase, which led to an increase in the total SC ceramides (approximately 1.5-fold) in concert with ceramide (NP) (approximately 2-fold) in the RHEK models. Evaluation of the anti-inflammatory and anti-allergic effects of lycoperoside H demonstrated that lycoperoside H is suggested to act as a partial agonist of the glucocorticoid receptor and exhibits anti-inflammatory effects (10 mg/kg in animal test). These findings indicate that lycoperoside H can improve epidermal dehydration and suppress inflammation by increasing SC ceramide and steroidal anti-inflammatory activity. Full article
Show Figures

Figure 1

16 pages, 1405 KiB  
Article
Co-Treatments of Edible Curcumin from Turmeric Rhizomes and Chemotherapeutic Drugs on Cytotoxicity and FLT3 Protein Expression in Leukemic Stem Cells
by Fah Chueahongthong, Singkome Tima, Sawitree Chiampanichayakul, Cory Berkland and Songyot Anuchapreeda
Molecules 2021, 26(19), 5785; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26195785 - 24 Sep 2021
Cited by 6 | Viewed by 1776
Abstract
This study aims to enhance efficacy and reduce toxicity of the combination treatment of a drug and curcumin (Cur) on leukemic stem cell and leukemic cell lines, including KG-1a and KG-1 (FLT3+ LSCs), EoL-1 (FLT3+ LCs), and U937 (FLT3 LCs). [...] Read more.
This study aims to enhance efficacy and reduce toxicity of the combination treatment of a drug and curcumin (Cur) on leukemic stem cell and leukemic cell lines, including KG-1a and KG-1 (FLT3+ LSCs), EoL-1 (FLT3+ LCs), and U937 (FLT3 LCs). The cytotoxicity of co-treatments of doxorubicin (Dox) or idarubicin (Ida) at concentrations of the IC10–IC80 values and each concentration of Cur at the IC20, IC30, IC40, and IC50 values (conditions 1, 2, 3, and 4) was determined by MTT assays. Dox–Cur increased cytotoxicity in leukemic cells. Dox–Cur co-treatment showed additive and synergistic effects in several conditions. The effect of this co-treatment on FLT3 expression in KG-1a, KG-1, and EoL-1 cells was examined by Western blotting. Dox–Cur decreased FLT3 protein levels and total cell numbers in all the cell lines in a dose-dependent manner. In summary, this study exhibits a novel report of Dox–Cur co-treatment in both enhancing cytotoxicity of Dox and inhibiting cell proliferation via FLT3 protein expression in leukemia stem cells and leukemic cells. This is the option of leukemia treatment with reducing side effects of chemotherapeutic drugs to leukemia patients. Full article
Show Figures

Figure 1

17 pages, 2177 KiB  
Article
Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource
by Lina Raudone, Viktorija Puzerytė, Gabriele Vilkickyte, Aurelija Niekyte, Juozas Lanauskas, Jonas Viskelis and Pranas Viskelis
Molecules 2021, 26(16), 4765; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26164765 - 06 Aug 2021
Cited by 17 | Viewed by 2427
Abstract
Sea buckthorn (Hippophae rhamnoides L. (HR)) leaf powders are the underutilized, promising resource of valuable compounds. Genotype and processing methods are key factors in the preparation of homogenous, stable, and quantified ingredients. The aim of this study was to evaluate the phenolic, [...] Read more.
Sea buckthorn (Hippophae rhamnoides L. (HR)) leaf powders are the underutilized, promising resource of valuable compounds. Genotype and processing methods are key factors in the preparation of homogenous, stable, and quantified ingredients. The aim of this study was to evaluate the phenolic, triterpenic, antioxidant profiles, carotenoid and chlorophyll content, and chromatic characteristics of convection-dried and freeze-dried HR leaf powders obtained from ten different female cultivars, namely ‘Avgustinka’, ‘Botaniceskaja Liubitelskaja’, ‘Botaniceskaja’, ‘Hibrid Percika’, ‘Julia’, ‘Nivelena’, ‘Otradnaja’, ‘Podarok Sadu’, ‘Trofimovskaja’, and ‘Vorobjovskaja’. The chromatic characteristics were determined using the CIELAB scale. The phytochemical profiles were determined using HPLC-PDA (high performance liquid chromatography with photodiode array detector) analysis; spectrophotometric assays and antioxidant activities were investigated using ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (ferric ion reducing antioxidant power) assays. The sea buckthorn leaf powders had a yellowish-green appearance. The drying mode had a significant impact on the total antioxidant activity, chlorophyll content, and chromatic characteristics of the samples; the freeze-dried samples were superior in antioxidant activity, chlorophyll, carotenoid content, and chromatic profile, compared to convection-dried leaf powder samples. The determined triterpenic and phenolic profiles strongly depend on the cultivar, and the drying technique had no impact on qualitative and quantitative composition. Catechin, epigallocatechin, procyanidin B3, ursolic acid, α-amyrin, and β-sitosterol could be used as quantitative markers in the phenolic and triterpenic profiles. The cultivars ‘Avgustinka’, ‘Nivelena’, and ‘Botaniceskaja’ were superior to other tested cultivars, with the phytochemical composition and antioxidant activity. Full article
Show Figures

Figure 1

10 pages, 6734 KiB  
Article
Natural Herbal Estrogen-Mimetics (Phytoestrogens) Promote the Differentiation of Fallopian Tube Epithelium into Multi-Ciliated Cells via Estrogen Receptor Beta
by Maobi Zhu, Sen Takeda and Tomohiko Iwano
Molecules 2021, 26(3), 722; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26030722 - 30 Jan 2021
Cited by 2 | Viewed by 1923
Abstract
Phytoestrogens are herbal polyphenolic compounds that exert various estrogen-like effects in animals and can be taken in easily from a foodstuff in daily life. The fallopian tube lumen, where transportation of the oocyte occurs, is lined with secretory cells and multi-ciliated epithelial cells. [...] Read more.
Phytoestrogens are herbal polyphenolic compounds that exert various estrogen-like effects in animals and can be taken in easily from a foodstuff in daily life. The fallopian tube lumen, where transportation of the oocyte occurs, is lined with secretory cells and multi-ciliated epithelial cells. Recently, we showed that estrogen induces multi-ciliogenesis in the porcine fallopian tube epithelial cells (FTECs) through the activation of the estrogen receptor beta (ERβ) pathway and simultaneous inhibition of the Notch pathway. Thus, ingested phytoestrogens may induce FTEC ciliogenesis and thereby affect the fecundity. To address this issue, we added isoflavones (genistein, daidzein, or glycitin) and coumestan (coumestrol) to primary culture FTECs under air–liquid interface conditions and assessed the effects of each compound. All phytoestrogens except glycitin induced multi-ciliated cell differentiation, which followed Notch signal downregulation. On the contrary, the differentiation of secretory cells decreased slightly. Furthermore, genistein and daidzein had a slight effect on the proportion of proliferating cells exhibited by Ki67 expression. Ciliated-cell differentiation is inhibited by the ERβ antagonist, PHTPP. Thus, this study suggests that phytoestrogens can improve the fallopian tube epithelial sheet homeostasis by facilitating the genesis of multi-ciliated cells and this effect depends on the ERβ-mediated pathway. Full article
Show Figures

Figure 1

17 pages, 1525 KiB  
Article
A New Eucalyptol-Rich Lavender (Lavandula stoechas L.) Essential Oil: Emerging Potential for Therapy against Inflammation and Cancer
by Mohamed Nadjib Boukhatem, Thangirala Sudha, Noureldien H.E. Darwish, Henni Chader, Asma Belkadi, Mehdi Rajabi, Aicha Houche, Fatma Benkebailli, Faiza Oudjida and Shaker A. Mousa
Molecules 2020, 25(16), 3671; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25163671 - 12 Aug 2020
Cited by 32 | Viewed by 5391
Abstract
Background/Aim: natural products are a potential source for drug discovery and development of cancer chemoprevention. Considering that drugs currently available for the treatment of inflammatory and cancer conditions show undesirable side effects, this research was designed to evaluate, for the first time, the [...] Read more.
Background/Aim: natural products are a potential source for drug discovery and development of cancer chemoprevention. Considering that drugs currently available for the treatment of inflammatory and cancer conditions show undesirable side effects, this research was designed to evaluate, for the first time, the in vitro anticancer activity of Algerian Lavandula stoechas essential oil (LSEO) against different cancer cell lines, as well as its in vitro and in vivo topical and acute anti-inflammatory properties. Materials and Methods: the LSEO was extracted by steam distillation, and chemical composition analysis was performed using gas chromatography. The main compounds identified in LSEO were oxygenated monoterpenes, such as 1,8-Cineole (61.36%). LSEO exhibited a potent anti-inflammatory activity using the xylene-induced mouse ear edema model. Results: LSEO (200 and 20 mg/kg) was able to significantly reduce (p < 0.05) the carrageenan-induced paw edema with a similar effect to that observed for the positive control. Topical application of LSEO at doses of 82 and 410 mg/kg significantly reduced acute ear edema in 51.4% and 80.1% of the mice, respectively. Histological analysis confirmed that LSEO inhibited the skin inflammatory response. Moreover, LSEO was tested for its antitumor activity against different cancer cell lines. LSEO was found to be significantly active against human gastric adenocarcinoma (AGS), Melanoma MV3, and breast carcinoma MDA-MB-231 cells, with median inhibitory concentration (IC50) values of 0.035 ± 0.018, 0.06 ± 0.022 and 0.259 ± 0.089 µL/mL, respectively. Altogether, these results open a new field of investigation into the characterization of the molecules involved in anti-proliferative processes. Conclusion: We suggest that LSEO, with 1,8-Cineole as the major active component, is a promising candidate for use in skin care products with anti-inflammatory and anticancer properties. The results of this study may provide an experimental basis for further systematic research, rational development, and clinical utilization of lavender resources. Full article
Show Figures

Figure 1

19 pages, 2365 KiB  
Article
NOx-, IL-1β-, TNF-α-, and IL-6-Inhibiting Effects and Trypanocidal Activity of Banana (Musa acuminata) Bracts and Flowers: UPLC-HRESI-MS Detection of Phenylpropanoid Sucrose Esters
by Louis P. Sandjo, Marcus V. P. dos Santos Nascimento, Milene de H. Moraes, Luiza Manaut Rodrigues, Eduardo M. Dalmarco, Maique W. Biavatti and Mario Steindel
Molecules 2019, 24(24), 4564; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24244564 - 13 Dec 2019
Cited by 11 | Viewed by 3764
Abstract
Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia [...] Read more.
Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1β, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1β, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases. Full article
Show Figures

Graphical abstract

15 pages, 2396 KiB  
Article
Composition of Sugars in Wild and Cultivated Lingonberries (Vaccinium vitis-idaea L.)
by Gabriele Vilkickyte, Raimondas Raudonis, Vida Motiekaityte, Rimanta Vainoriene, Deividas Burdulis, Jonas Viskelis and Lina Raudone
Molecules 2019, 24(23), 4225; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24234225 - 20 Nov 2019
Cited by 13 | Viewed by 3478
Abstract
Products of lingonberries are widely used in the human diet; they are also promising beauty and health therapeutic candidates in the cosmetic and pharmaceutical industries. It is important to examine the sugar profile of these berries, due to potential deleterious health effects resulting [...] Read more.
Products of lingonberries are widely used in the human diet; they are also promising beauty and health therapeutic candidates in the cosmetic and pharmaceutical industries. It is important to examine the sugar profile of these berries, due to potential deleterious health effects resulting from high sugar consumption. The aim of this study was to determine the composition of sugars in wild clones and cultivars or lower taxa of lingonberries by HPLC–ELSD method of analysis. Acceptable system suitability, linearity, limits of detection and quantification, precision, and accuracy of this analytical method were achieved. The same sugars with moderate amounts of fructose, glucose, and low amounts of sucrose were found in wild and cultivated lingonberries. Cultivar ‘Erntekrone’ and wild lingonberries collected from full sun, dry pine tree forests with lower altitude and latitude of the location, distinguished themselves with exclusive high contents of sugars. The changes in the sugar levels during the growing season were apparent in lingonberries and the highest amounts accumulated at the end of the vegetation. According to our findings, lingonberries seem to be an appropriate source of dietary sugars. Full article
Show Figures

Figure 1

13 pages, 1113 KiB  
Article
Anthocyanin Accumulation in the Leaves of the Purple Sweet Potato (Ipomoea batatas L.) Cultivars
by GuoLiang Li, Zhaomiao Lin, Hong Zhang, Zhonghua Liu, Yongqing Xu, Guochun Xu, Huawei Li, Rongchang Ji, Wenbin Luo, Yongxiang Qiu, Sixin Qiu and Hao Tang
Molecules 2019, 24(20), 3743; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules24203743 - 17 Oct 2019
Cited by 32 | Viewed by 5139
Abstract
Sweet potato anthocyanins are water-soluble pigments with many physiological functions. Previous research on anthocyanin accumulation in sweet potato has focused on the roots, but the accumulation progress in the leaves is still unclear. Two purple sweet potato cultivars (Fushu No. 23 and Fushu [...] Read more.
Sweet potato anthocyanins are water-soluble pigments with many physiological functions. Previous research on anthocyanin accumulation in sweet potato has focused on the roots, but the accumulation progress in the leaves is still unclear. Two purple sweet potato cultivars (Fushu No. 23 and Fushu No. 317) with large quantities of anthocyanin in the leaves were investigated. Anthocyanin composition and content were assessed with ultra-performance liquid chromatography diode-array detection (UPLC-DAD) and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and the expressions of genes were detected by qRT-PCR. The two cultivars contained nine cyanidin anthocyanins and nine peonidin anthocyanins with an acylation modification. The acylation modification of anthocyanins in sweet potato leaves primarily included caffeoyl, p-coumaryl, feruloyl, and p-hydroxy benzoyl. We identified three anthocyanin compounds in sweet potato leaves for the first time: cyanidin 3-p-coumarylsophoroside-5-glucoside, peonidin 3-p-coumarylsophoroside-5-glucoside, and cyanidin 3-caffeoyl-p-coumarylsophoroside-5-glucoside. The anthocyanidin biosynthesis downstream structural genes DFR4, F3H1, anthocyanin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT3), as well as the transcription factor MYB1, were found to be vital regulatory genes during the accumulation of anthocyanins in sweet potato leaves. The composition of anthocyanins (nine cyanidin-based anthocyanins and nine peonidin-based anthocyanins) in all sweet potato leaves were the same, but the quantity of anthocyanins in leaves of sweet potato varied by cultivar and differed from anthocyanin levels in the roots of sweet potatoes. The anthocyanidin biosynthesis structural genes and transcription factor together regulated and controlled the anthocyandin biosynthesis in sweet potato leaves. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

31 pages, 768 KiB  
Review
Phytotherapeutic Approaches to the Prevention of Age-Related Changes and the Extension of Active Longevity
by Olga Babich, Viktoria Larina, Svetlana Ivanova, Andrei Tarasov, Maria Povydysh, Anastasiya Orlova, Jovana Strugar and Stanislav Sukhikh
Molecules 2022, 27(7), 2276; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27072276 - 31 Mar 2022
Cited by 5 | Viewed by 2967
Abstract
Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of [...] Read more.
Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of age-related changes. Age-related changes such as a decrease in mental abilities, the development of inflammatory processes, and increased risk of developing type 2 diabetes have a significant impact on maintaining quality of life. Herbal preparations can play an essential role in preventing and treating neurodegenerative diseases that accompany age-related changes, including Alzheimer’s and Parkinson’s diseases. Medicinal plants have known sedative, muscle relaxant, neuroprotective, nootropic, and antiparkinsonian properties. The secondary metabolites, mainly polyphenolic compounds, are valuable substances for the development of new anti-inflammatory and hypoglycemic agents. Understanding how mixtures of plants and their biologically active substances work together to achieve a specific biological effect can help develop targeted drugs to prevent diseases associated with aging and age-related changes. Understanding the mechanisms of the biological activity of plant complexes and mixtures determines the prospects for using metabolomic and biochemical methods to prolong active longevity. Full article
Show Figures

Figure 1

20 pages, 689 KiB  
Review
Natural Ingredients from Medicine Food Homology as Chemopreventive Reagents against Type 2 Diabetes Mellitus by Modulating Gut Microbiota Homoeostasis
by Xiaoyan Xia and Jiao Xiao
Molecules 2021, 26(22), 6934; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26226934 - 17 Nov 2021
Cited by 10 | Viewed by 2914
Abstract
Type 2 diabetes mellitus (T2DM) is a noteworthy worldwide public health problem. It represents a complex metabolic disorder, mainly characterized as hyperglycemia and lipid dysfunction. The gut microbiota dysbiosis has been proposed to play a role in the development of diabetes. Recently, there [...] Read more.
Type 2 diabetes mellitus (T2DM) is a noteworthy worldwide public health problem. It represents a complex metabolic disorder, mainly characterized as hyperglycemia and lipid dysfunction. The gut microbiota dysbiosis has been proposed to play a role in the development of diabetes. Recently, there has been considerable interest in the use of medicine food homology (MFH) and functional food herbs (FF) to ameliorate diabetes and lead to a natural and healthy life. Hence, this review compiles some reports and findings to demonstrate that the practical use of the MFH/FF can modulate the homoeostasis of gut microbiota, thereby ameliorating the development of T2DM. The results provided useful data to support further investigation of the functional basis and application of MFH/FF to treat T2DM through maintaining intestinal homeostasis. Full article
Show Figures

Graphical abstract

Back to TopTop