molecules-logo

Journal Browser

Journal Browser

Inorganic Materials Chemistry

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Inorganic Chemistry".

Deadline for manuscript submissions: closed (30 September 2021) | Viewed by 7238

Special Issue Editor

Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Interests: electrical; thermal and magnetic properties of new materials; magnetic systems with unusual ground stats properties; low-dimensional and frustrated quantum antiferromagnets; multiferroics; new superconductors

Special Issue Information

Dear Colleagues,

The inorganic chemistry of materials includes those parts of inorganic chemistry or the chemistry of elements that can be used to make products. It is not one single subject but consists of several widely different disciplines, such as structural chemistry, coordination chemistry, and solid-state chemistry. These subjects have much chemistry in common and show their function for materials technology.

This aim of this Special Issue is to collect recent advances in the research of inorganic materials chemistry and to show achievements and challenges in the synthesis and functionalities of inorganic materials.

I invite you to submit your research on all related topics for this Special Issue in the form of review and original research papers.

Dr. Reinhard Karl Kremer
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inorganic materials
  • inorganic chemistry
  • inorganic molecules
  • coordination chemistry
  • crystal chemistry
  • chemistry of inorganic surfaces
  • chemical bond
  • synthesis
  • afflication

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3546 KiB  
Article
Molecular and Supramolecular Structures of Triiodides and Polyiodobismuthates of Phenylenediammonium and Its N,N-dimethyl Derivative
by Tatiana A. Shestimerova, Nikita A. Golubev, Mikhail A. Bykov, Andrei V. Mironov, Sergey A. Fateev, Alexey B. Tarasov, Ivan Turkevych, Zheng Wei, Evgeny V. Dikarev and Andrei V. Shevelkov
Molecules 2021, 26(18), 5712; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26185712 - 21 Sep 2021
Cited by 7 | Viewed by 1876
Abstract
Despite remarkable progress in photoconversion efficiency, the toxicity of lead-based hybrid perovskites remains an important issue hindering their applications in consumer optoelectronic devices, such as solar cells, LED displays, and photodetectors. For that reason, lead-free metal halide complexes have attracted great attention as [...] Read more.
Despite remarkable progress in photoconversion efficiency, the toxicity of lead-based hybrid perovskites remains an important issue hindering their applications in consumer optoelectronic devices, such as solar cells, LED displays, and photodetectors. For that reason, lead-free metal halide complexes have attracted great attention as alternative optoelectronic materials. In this work, we demonstrate that reactions of two aromatic diamines with iodine in hydroiodic acid produced phenylenediammonium (PDA) and N,N-dimethyl-phenylenediammonium (DMPDA) triiodides, PDA(I3)2⋅2H2O and DMPDA(I3)I, respectively. If the source of bismuth was added, they were converted into previously reported PDA(BiI4)2⋅I2 and new (DMPDA)2(BiI6)(I3)⋅2H2O, having band gaps of 1.45 and 1.7 eV, respectively, which are in the optimal range for efficient solar light absorbers. All four compounds presented organic–inorganic hybrids, whose supramolecular structures were based on a variety of intermolecular forces, including (N)H⋅⋅⋅I and (N)H⋅⋅⋅O hydrogen bonds as well as I⋅⋅⋅I secondary and weak interactions. Details of their molecular and supramolecular structures are discussed based on single-crystal X-ray diffraction data, thermal analysis, and Raman and optical spectroscopy. Full article
(This article belongs to the Special Issue Inorganic Materials Chemistry)
Show Figures

Figure 1

13 pages, 3218 KiB  
Article
Solution/Ammonolysis Syntheses of Unsupported and Silica-Supported Copper(I) Nitride Nanostructures from Oxidic Precursors
by Robert Szczęsny, Tuan K. A. Hoang, Liliana Dobrzańska and Duncan H. Gregory
Molecules 2021, 26(16), 4926; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules26164926 - 14 Aug 2021
Cited by 3 | Viewed by 2271
Abstract
Herein we describe an alternative strategy to achieve the preparation of nanoscale Cu3N. Copper(II) oxide/hydroxide nanopowder precursors were successfully fabricated by solution methods. Ammonolysis of the oxidic precursors can be achieved essentially pseudomorphically to produce either unsupported or supported nanoparticles of [...] Read more.
Herein we describe an alternative strategy to achieve the preparation of nanoscale Cu3N. Copper(II) oxide/hydroxide nanopowder precursors were successfully fabricated by solution methods. Ammonolysis of the oxidic precursors can be achieved essentially pseudomorphically to produce either unsupported or supported nanoparticles of the nitride. Hence, Cu3N particles with diverse morphologies were synthesized from oxygen-containing precursors in two-step processes combining solvothermal and solid−gas ammonolysis stages. The single-phase hydroxochloride precursor, Cu2(OH)3Cl was prepared by solution-state synthesis from CuCl2·2H2O and urea, crystallising with the atacamite structure. Alternative precursors, CuO and Cu(OH)2, were obtained after subsequent treatment of Cu2(OH)3Cl with NaOH solution. Cu3N, in the form of micro- and nanorods, was the sole product formed from ammonolysis using either CuO or Cu(OH)2. Conversely, the ammonolysis of dicopper trihydroxide chloride resulted in two-phase mixtures of Cu3N and the monoamine, Cu(NH3)Cl under similar experimental conditions. Importantly, this pathway is applicable to afford composite materials by incorporating substrates or matrices that are resistant to ammoniation at relatively low temperatures (ca. 300 °C). We present preliminary evidence that Cu3N/SiO2 nanocomposites (up to ca. 5 wt.% Cu3N supported on SiO2) could be prepared from CuCl2·2H2O and urea starting materials following similar reaction steps. Evidence suggests that in this case Cu3N nanoparticles are confined within the porous SiO2 matrix. Full article
(This article belongs to the Special Issue Inorganic Materials Chemistry)
Show Figures

Graphical abstract

16 pages, 6084 KiB  
Article
ExoEndo Isomerism, MEP/DFT, XRD/HSA-Interactions of 2,5-Dimethoxybenzaldehyde: Thermal, 1BNA-Docking, Optical, and TD-DFT Studies
by Nabil Al-Zaqri, Mohammed Suleiman, Anas Al-Ali, Khaled Alkanad, Karthik Kumara, Neartur K. Lokanath, Abdelkader Zarrouk, Ali Alsalme, Fahad A. Alharthi, Afnan Al-Taleb, Amjad Alsyahi and Ismail Warad
Molecules 2020, 25(24), 5970; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules25245970 - 16 Dec 2020
Cited by 5 | Viewed by 2301
Abstract
The exoendo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural [...] Read more.
The exoendo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C. Full article
(This article belongs to the Special Issue Inorganic Materials Chemistry)
Show Figures

Graphical abstract

Back to TopTop