Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

15 pages, 3592 KiB  
Article
Mechanistic Insights into Electronic Current Flow through Quinone Devices
by Lawrence Conrad, Isaac Alcón, Jean Christophe Tremblay and Beate Paulus
Nanomaterials 2023, 13(24), 3085; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13243085 - 05 Dec 2023
Viewed by 836
Abstract
Molecular switches based on functionalized graphene nanoribbons (GNRs) are of great interest in the development of nanoelectronics. In experiment, it was found that a significant difference in the conductance of an anthraquinone derivative can be achieved by altering the pH value of the [...] Read more.
Molecular switches based on functionalized graphene nanoribbons (GNRs) are of great interest in the development of nanoelectronics. In experiment, it was found that a significant difference in the conductance of an anthraquinone derivative can be achieved by altering the pH value of the environment. Building on this, in this work we investigate the underlying mechanism behind this effect and propose a general design principle for a pH based GNR-based switch. The electronic structure of the investigated systems is calculated using density functional theory and the transport properties at the quasi-stationary limit are described using nonequilibrium Green’s function and the Landauer formalism. This approach enables the examination of the local and the global transport through the system. The electrons are shown to flow along the edges of the GNRs. The central carbonyl groups allow for tunable transport through control of the oxidation state via the pH environment. Finally, we also test different types of GNRs (zigzag vs. armchair) to determine which platform provides the best transport switchability. Full article
Show Figures

Figure 1

13 pages, 3580 KiB  
Article
A New Promising Material for Biological Applications: Multilevel Physical Modification of AgNP-Decorated PEEK
by Jana Pryjmaková, Daniel Grossberger, Anna Kutová, Barbora Vokatá, Miroslav Šlouf, Petr Slepička and Jakub Siegel
Nanomaterials 2023, 13(24), 3079; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13243079 - 05 Dec 2023
Viewed by 883
Abstract
In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the [...] Read more.
In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the polymer surface. This study describes the changes in the surface morphology and behaviour in the biological environment of polyetheretherketone (PEEK) with immobilised AgNPs after different surface modifications. The initial composites were prepared by immobilising silver nanoparticles from a colloid solution in the upper surface layers of polyetheretherketone (PEEK). The prepared samples (Ag/PEEK) had a planar morphology and were further modified with a KrF laser, a GaN laser, and an Ar plasma. The samples were studied using the AFM method to visualise changes in surface morphology and obtain information on the height of the structures and other surface parameters. A comparative analysis of the nanoparticles and polymers was performed using FEG-SEM. The chemical composition of the surface of the samples and optical activity were studied using XPS and UV-Vis spectroscopy. Finally, drop plate antibacterial and cytotoxicity tests were performed to determine the role of Ag nanoparticles after modification and suitability of the surface, which are important for the use of the resulting composite in biomedical applications. Full article
(This article belongs to the Special Issue Nanomaterials for Bioapplications: Chemical Stability and Biosafety)
Show Figures

Figure 1

16 pages, 980 KiB  
Article
Edge Magnetism in MoS2 Nanoribbons: Insights from a Simple One-Dimensional Model
by Pauline Castenetto, Philippe Lambin and Péter Vancsó
Nanomaterials 2023, 13(24), 3086; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13243086 - 05 Dec 2023
Viewed by 748
Abstract
Edge magnetism in zigzag nanoribbons of monolayer MoS2 has been investigated with both density functional theory and a tight-binding plus Hubbard (TB+U) Hamiltonian. Both methods revealed that one band crossing the Fermi level is more strongly influenced by spin polarization [...] Read more.
Edge magnetism in zigzag nanoribbons of monolayer MoS2 has been investigated with both density functional theory and a tight-binding plus Hubbard (TB+U) Hamiltonian. Both methods revealed that one band crossing the Fermi level is more strongly influenced by spin polarization than any other bands. This band originates from states localized on the sulfur edge of the nanoribbon. Its dispersion closely resembles that of the energy branch obtained in a linear chain of atoms with first-neighbor interaction. By exploiting this resemblance, a toy model has been designed to study the energetics of different spin configurations of the nanoribbon edge. Full article
(This article belongs to the Special Issue Electronic and Magnetic Properties of Two-Dimensional Nanomaterials)
Show Figures

Figure 1

14 pages, 2318 KiB  
Article
Microparticles as BDMDAC (Quaternary Ammonium Compound) Carriers for Water Disinfection: A Layer-by-Layer Approach without Biocide Release
by Marta Redondo, Ana Pereira, Carlos M. Pereira and Luís F. Melo
Nanomaterials 2023, 13(23), 3067; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13233067 - 02 Dec 2023
Viewed by 759
Abstract
This work studies the antimicrobial activity of benzyldimethyldodecyl ammonium chloride (BDMDAC)-coated microparticles with distinct morphological structures. Functionalized microparticles were prepared by the layer-by-layer (LbL) self-assembly technique on hydroxyapatite (Hap), calcium carbonate (CaCO3) and glass beads (GB) cores. All particles were characterized, [...] Read more.
This work studies the antimicrobial activity of benzyldimethyldodecyl ammonium chloride (BDMDAC)-coated microparticles with distinct morphological structures. Functionalized microparticles were prepared by the layer-by-layer (LbL) self-assembly technique on hydroxyapatite (Hap), calcium carbonate (CaCO3) and glass beads (GB) cores. All particles were characterized, before and after functionalization, by Fourier-Transform Infrared Spectroscopy (FTIR), Brunner–Emmett–Teller (BET) and Scanning Electron Microscopy (SEM) analyses. Antimicrobial activity was tested against planktonic Pseudomonas fluorescens. Planktonic bacteria were exposed to 100 mg/L, 200 mg/L and 400 mg/L of BDMDAC-coated microparticles for 240 min. This strategy promoted a complete bacteria reduction at 200 mg/L for Hap microparticles after 240 min. No release of biocide was detected through HPLC analyses during 2 weeks, suggesting that bacteria inactivation may be attributed to a contact killing mechanism. Full article
Show Figures

Figure 1

19 pages, 15896 KiB  
Article
Fabrication of Silver Iodide (AgI) Patterns via Photolithography and Its Application to In-Situ Observation of Condensation Frosting
by Takao Okabe, Jinchen Tang, Katsuhiko Nishimura and Naoki Shikazono
Nanomaterials 2023, 13(23), 3035; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13233035 - 28 Nov 2023
Viewed by 971
Abstract
This study introduces an innovative photolithography-based method for patterning ionic and inorganic particle materials such as silver iodide (AgI). Conventional methods lack precision when patterning powdered materials, which limits their applicability. The proposed method stacks layers of a particle material (AgI) and negative-tone [...] Read more.
This study introduces an innovative photolithography-based method for patterning ionic and inorganic particle materials such as silver iodide (AgI). Conventional methods lack precision when patterning powdered materials, which limits their applicability. The proposed method stacks layers of a particle material (AgI) and negative-tone photoresist for simultaneous ultraviolet exposure and development, resulting in well-defined AgI patterns. The sintering process successfully removed binders from the material layer and photoresist, yielding standalone AgI patterns on the Si substrate with good adhesion. The pitch remained consistent with the design values of the photomask when the pattern size was changed. In-situ observation of condensation frosting on the patterns was conducted, which confirmed the practicality of the developed patterning process. This versatile method is applicable to large areas with a high throughput and presents new opportunities for modifying functional surfaces. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 5509 KiB  
Article
Design, Optimization, and Application of a 3D-Printed Polymer Sample Introduction System for the ICP-MS Analysis of Nanoparticles and Cells
by Gyula Kajner, Ádám Bélteki, Martin Cseh, Zsolt Geretovszky, Tibor Ajtai, Lilla Barna, Mária A. Deli, Bernadett Pap, Gergely Maróti and Gábor Galbács
Nanomaterials 2023, 13(23), 3018; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13233018 - 25 Nov 2023
Viewed by 1678
Abstract
Commonly used sample introduction systems for inductively coupled plasma mass spectrometry (ICP-MS) are generally not well-suited for single particle ICP-MS (spICP-MS) applications due to their high sample requirements and low efficiency. In this study, the first completely 3D-printed, polymer SIS was developed to [...] Read more.
Commonly used sample introduction systems for inductively coupled plasma mass spectrometry (ICP-MS) are generally not well-suited for single particle ICP-MS (spICP-MS) applications due to their high sample requirements and low efficiency. In this study, the first completely 3D-printed, polymer SIS was developed to facilitate spICP-MS analysis. The system is based on a microconcentric pneumatic nebulizer and a single-pass spray chamber with an additional sheath gas flow to further facilitate the transport of larger droplets or particles. The geometry of the system was optimized using numerical simulations. Its aerosol characteristics and operational conditions were studied via optical particle counting and a course of spICP-MS measurements, involving nanodispersions and cell suspensions. In a comparison of the performance of the new and the standard (quartz microconcentric nebulizer plus a double-pass spray chamber) systems, it was found that the new sample introduction system has four times higher particle detection efficiency, significantly better signal-to-noise ratio, provides ca. 20% lower size detection limit, and allows an extension of the upper limit of transportable particle diameters to about 25 µm. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

13 pages, 3392 KiB  
Article
The Electron–Phonon Interaction at Vicinal Metal Surfaces Measured with Helium Atom Scattering
by Giorgio Benedek, Salvador Miret-Artés, Joseph R. Manson and Jan Peter Toennies
Nanomaterials 2023, 13(23), 2997; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13232997 - 22 Nov 2023
Viewed by 690
Abstract
Recently, it was demonstrated that inelastic helium atom scattering from conducting surfaces provides a direct measurement of the surface electron–phonon coupling constant (mass enhancement factor λ) via the temperature or the incident wave vector dependence of the Debye–Waller exponent. Here, previous published [...] Read more.
Recently, it was demonstrated that inelastic helium atom scattering from conducting surfaces provides a direct measurement of the surface electron–phonon coupling constant (mass enhancement factor λ) via the temperature or the incident wave vector dependence of the Debye–Waller exponent. Here, previous published as well as unpublished helium atom scattering diffraction data from the vicinal surfaces of copper (Cu(11α), with α = 3, 5, 7) and aluminum (Al(221) and Al(332)) were analyzed to determine λ. The results suggested an enhancement with respect to the corresponding data for the low-index surfaces (111) and (001) above the roughening transition temperature. The specific role of steps compared to that of terraces is briefly discussed. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

34 pages, 7127 KiB  
Article
On the Measurements of the Surface-Enhanced Raman Scattering Spectrum: Effective Enhancement Factor, Optical Configuration, Spectral Distortion, and Baseline Variation
by Yiping Zhao
Nanomaterials 2023, 13(23), 2998; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13232998 - 22 Nov 2023
Cited by 1 | Viewed by 810
Abstract
In this paper, a comprehensive theoretical framework for understanding surface-enhanced Raman scattering (SERS) measurements in both solution and thin-film setups, focusing on electromagnetic enhancement principles, was presented. Two prevalent types of SERS substrates found in the literature were investigated: plasmonic colloidal particles, including [...] Read more.
In this paper, a comprehensive theoretical framework for understanding surface-enhanced Raman scattering (SERS) measurements in both solution and thin-film setups, focusing on electromagnetic enhancement principles, was presented. Two prevalent types of SERS substrates found in the literature were investigated: plasmonic colloidal particles, including spherical and spheroid nanoparticles, nanoparticle diameters, and thin-film-based SERS substrates, like ultra-thin substrates, bundled nanorods, plasmonic thin films, and porous thin films. The investigation explored the impact of analyte adsorption, orientation, and the polarization of the excitation laser on effective SERS enhancement factors. Notably, it considered the impact of analyte size on the SERS spectrum by examining scenarios where the analyte was significantly smaller or larger than the hot spot dimensions. The analysis also incorporated optical attenuations arising from the optical properties of the analyte and the SERS substrates. The findings provide possible explanations for many observations made in SERS measurements, such as variations in relative peak intensities during SERS assessments, reductions in SERS intensity at high analyte concentrations, and the occurrence of significant baseline fluctuations. This study offers valuable guidance for optimizing SERS substrate design, enhancing SERS measurements, and improving the quantification of SERS detection. Full article
Show Figures

Figure 1

14 pages, 5121 KiB  
Article
Porous-Wall Titania Nanotube Array Layers: Preparation and Photocatalytic Response
by Dumitru Luca, Marius Dobromir, George Stoian, Adrian Ciobanu and Mihaela Luca
Nanomaterials 2023, 13(23), 3000; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13233000 - 22 Nov 2023
Viewed by 799
Abstract
Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a [...] Read more.
Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a recent paper, we proposed the use of sawtooth-shaped voltage pulses for Ti anodization, which controls the pivoting point of the balance between the two processes that compete to create nanotubes during a self-organization process: oxide etching and oxidation. Under these conditions, pulsed anodization clearly reveals the history of nanotube growth as recorded in the nanotube morphology. We show that by selecting the suitable electrolyte and electrical discharge settings, a nanoporous structure may be generated as a repeating pattern along the nanotube wall axis. We report the findings in terms of nanotube morphology, crystallinity, surface chemistry, photocatalytic activity, and surface hydrophilicity as they relate to the electrical parameters of electrochemical anodization. Aside from their fundamental relevance, our findings could lead to the development of a novel form of TiO2 nanotube array layer. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes: Volume II)
Show Figures

Figure 1

25 pages, 19088 KiB  
Article
Intracellular Fate of Sub-Toxic Concentration of Functionalized Selenium Nanoparticles in Aggressive Prostate Cancer Cells
by Caroline Bissardon, Olivier Proux, Salvatore Andrea Gazze, Odile Filhol, Benoît Toubhans, Lucie Sauzéat, Sylvain Bouchet, Aled R. Lewis, Thierry Maffeis, Jean-Louis Hazemann, Sam Bayat, Peter Cloetens, R. Steven Conlan, Laurent Charlet and Sylvain Bohic
Nanomaterials 2023, 13(23), 2999; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13232999 - 22 Nov 2023
Viewed by 1046
Abstract
Selenium 0 (Se0) is a powerful anti-proliferative agent in cancer research. We investigated the impact of sub-toxic concentrations of Se0 functionalized nanoparticles (SeNPs) on prostate cancer PC-3 cells and determined their intracellular localization and fate. An in-depth characterization of functionalized [...] Read more.
Selenium 0 (Se0) is a powerful anti-proliferative agent in cancer research. We investigated the impact of sub-toxic concentrations of Se0 functionalized nanoparticles (SeNPs) on prostate cancer PC-3 cells and determined their intracellular localization and fate. An in-depth characterization of functionalized selenium nanoparticles composition is proposed to certify that no chemical bias relative to synthesis issues might have impacted the study. Selenium is an extremely diluted element in the biological environment and therefore requires high-performance techniques with a very low detection limit and high spatial resolution for intracellular imaging. This was explored with state-of-the-art techniques, but also with cryopreparation to preserve the chemical and structural integrity of the cells for spatially resolved and speciation techniques. Monodisperse solutions of SeNPs capped with bovine serum albumin (BSA) were shown to slow down the migration capacity of aggressive prostate cancer cells compared to polydisperse solutions of SeNPs capped with chitosan. BSA coating could prevent interactions between the reactive surface of the nanoparticles and the plasma membrane, mitigating the generation of reactive oxygen species. The intracellular localization showed interaction with mitochondria and also a localization in the lysosome-related organelle. The SeNPs-BSA localization in mitochondria constitute a possible explanation for our result showing a very significant dampening of the PC-3 cell proliferation capabilities. The purpose of the use of sublethal compound concentrations was to limit adverse effects resulting from high cell death to best evaluate some cellular changes and the fate of these SeNPs on PC-3. Our findings provide new insight to further study the various mechanisms of cytotoxicity of SeNPs. Full article
Show Figures

Figure 1

13 pages, 6143 KiB  
Article
The Influence of Carbon Nanotubes on the Physical and Chemical Properties of Nanocomposites Based on Unsaturated Polyester Resin
by Przemysław Pączkowski, Nadiia V. Sigareva, Borys M. Gorelov, Mariia I. Terets, Yurii I. Sementsov, Mykola T. Kartel and Barbara Gawdzik
Nanomaterials 2023, 13(23), 2981; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13232981 - 21 Nov 2023
Cited by 1 | Viewed by 970
Abstract
The new actual scientific direction is in the development of different nanocomposites and the study of their medical–biological, physicochemical, and physicomechanical properties. One way to expand the functionality of nanocomposites and nanomaterials is to introduce carbon nanostructures into the polymer matrix. This study [...] Read more.
The new actual scientific direction is in the development of different nanocomposites and the study of their medical–biological, physicochemical, and physicomechanical properties. One way to expand the functionality of nanocomposites and nanomaterials is to introduce carbon nanostructures into the polymer matrix. This study presents the properties of unsaturated polyester resins (Estromal, LERG S.A.) based on PET recyclate with multi-walled carbon nanotubes (MWCNTs): their mechanical and thermomechanical characteristics, resistance to ultraviolet radiation (UV-vis), and chemical resistance properties. The properties of the obtained materials were characterized using physical–chemical research methods. The changes in the properties of the composites for MWCNT content of 0.1, 0.3, and 0.5 wt % were determined. The results showed positive influences on the thermomechanical and mechanical properties of nanocomposites without significant deterioration of their gloss. Too much CNT added to the resin leads to heterogeneity of the composite structure. Full article
Show Figures

Figure 1

24 pages, 5890 KiB  
Article
Self-Healing Iron Oxide Polyelectrolyte Nanocomposites: Influence of Particle Agglomeration and Water on Mechanical Properties
by Bastian Oberhausen, Ajda Plohl, Bart-Jan Niebuur, Stefan Diebels, Anne Jung, Tobias Kraus and Guido Kickelbick
Nanomaterials 2023, 13(23), 2983; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13232983 - 21 Nov 2023
Viewed by 989
Abstract
Self-healing nanocomposites can be generated by organic functionalization of inorganic nanoparticles and complementary functionalization of the polymer matrix, allowing reversible interactions between the two components. Here, we report on self-healing nanocomposites based on ionic interactions between anionic copolymers consisting of di(ethylene glycol) methyl [...] Read more.
Self-healing nanocomposites can be generated by organic functionalization of inorganic nanoparticles and complementary functionalization of the polymer matrix, allowing reversible interactions between the two components. Here, we report on self-healing nanocomposites based on ionic interactions between anionic copolymers consisting of di(ethylene glycol) methyl ether methacrylate, sodium 4-(methacryloyloxy)butan-1-sulfonate, and cationically functionalized iron oxide nanoparticles. The materials exhibited hygroscopic behavior. At water contents < 6%, the shear modulus was reduced by up to 90%. The nanoparticle concentration was identified as a second factor strongly influencing the mechanical properties of the materials. Backscattered scanning electron microscopy and small-angle X-ray scattering measurements showed the formation of agglomerates in the size range of 100 nm to a few µm in diameter, independent of concentration, resulting in the disordering of the semi-crystalline ionic polymer blocks. These effects resulted in an increase in the shear modulus of the composite from 3.7 MPa to 5.6 MPa, 6.3 Mpa, and 7.5 MPa for 2, 10, and 20 wt% particles, respectively. Temperature-induced self-healing was possible for all composites investigated. However, only 36% of the maximum stress could be recovered in systems with a low nanoparticle content, whereas the original properties were largely restored (>85%) at higher particle contents. Full article
(This article belongs to the Special Issue Functional Nanocomposites: From Strategic Design to Applications)
Show Figures

Figure 1

10 pages, 2207 KiB  
Article
Nontraditional Movement Behavior of Skyrmion in a Circular-Ring Nanotrack
by Na Cai, Xin Zhang, Yong Hu and Yan Liu
Nanomaterials 2023, 13(22), 2977; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13222977 - 20 Nov 2023
Viewed by 825
Abstract
Magnetic skyrmions are considered promising candidates for use as information carriers in future spintronic devices. To achieve the development of skyrmion-based spintronic devices, a reasonable and feasible nanotrack is essential. In this paper, we conducted a study on the current-driven skyrmion movement in [...] Read more.
Magnetic skyrmions are considered promising candidates for use as information carriers in future spintronic devices. To achieve the development of skyrmion-based spintronic devices, a reasonable and feasible nanotrack is essential. In this paper, we conducted a study on the current-driven skyrmion movement in a circular-ring-shaped nanotrack. Our results suggest that the asymmetry of the inside and outside boundary of the circular ring changed the stable position of the skyrmion, causing it to move like the skyrmion Hall effect when driven by currents. Moreover, the asymmetric boundaries have advantages in enhancing or weakening the skyrmion Hall effect. Additionally, we also compared the skyrmion Hall effect from the asymmetric boundary of circular-ring nanotracks with that from the inhomogeneous Dzyaloshinskii–Moriya interaction. It was found that the skyrmion Hall effect in the circular ring is significantly greater than that caused by the inhomogeneous Dzyaloshinskii–Moriya interaction. These results contribute to our understanding of the skyrmion dynamics in confined geometries and offer an alternative method for controlling the skyrmion Hall effect of skyrmion-based devices. Full article
(This article belongs to the Special Issue Advances in Nanoscale Magnetism and Spintronics)
Show Figures

Figure 1

11 pages, 4209 KiB  
Article
Lasing Emission from Soft Photonic Crystals for Pressure and Position Sensing
by Tsan-Wen Lu, Zhen-Yu Wang, Kuang-Ming Lin and Po-Tsung Lee
Nanomaterials 2023, 13(22), 2956; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13222956 - 15 Nov 2023
Viewed by 775
Abstract
In this report, we introduce a 1D photonic crystal (PhC) nanocavity with waveguide-like strain amplifiers within a soft polydimethylsiloxane substrate, presenting it as a potential candidate for highly sensitive pressure and position optical sensors. Due to its substantial optical wavelength response to uniform [...] Read more.
In this report, we introduce a 1D photonic crystal (PhC) nanocavity with waveguide-like strain amplifiers within a soft polydimethylsiloxane substrate, presenting it as a potential candidate for highly sensitive pressure and position optical sensors. Due to its substantial optical wavelength response to uniform pressure, laser emission from this nanocavity enables the detection of a minimum applied uniform pressure of 1.6‰ in experiments. Based on this feature, we further studied and elucidated the distinct behaviors in wavelength shifts when applying localized pressure at various positions relative to the PhC nanocavity. In experiments, by mapping wavelength shifts of the PhC nanolaser under localized pressure applied using a micro-tip at different positions, we demonstrate the nanocavity’s capability to detect minute position differences, with position-dependent minimum resolutions ranging from tens to hundreds of micrometers. Furthermore, we also propose and validate the feasibility of employing the strain amplifier as an effective waveguide for extracting the sensing signal from the nanocavity. This approach achieves a 64% unidirectional coupling efficiency for leading out the sensing signal to a specific strain amplifier. We believe these findings pave the way for creating a highly sensitive position-sensing module that can accurately identify localized pressure in a planar space. Full article
Show Figures

Figure 1

24 pages, 18859 KiB  
Article
CNT-PUFs: Highly Robust and Heat-Tolerant Carbon-Nanotube-Based Physical Unclonable Functions
by Florian Frank, Simon Böttger, Nico Mexis, Nikolaos Athanasios Anagnostopoulos, Ali Mohamed, Martin Hartmann, Harald Kuhn, Christian Helke, Tolga Arul, Stefan Katzenbeisser and Sascha Hermann
Nanomaterials 2023, 13(22), 2930; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13222930 - 11 Nov 2023
Viewed by 794
Abstract
In this work, we explored a highly robust and unique Physical Unclonable Function (PUF) based on the stochastic assembly of single-walled Carbon NanoTubes (CNTs) integrated within a wafer-level technology. Our work demonstrated that the proposed CNT-based PUFs are exceptionally robust with an average [...] Read more.
In this work, we explored a highly robust and unique Physical Unclonable Function (PUF) based on the stochastic assembly of single-walled Carbon NanoTubes (CNTs) integrated within a wafer-level technology. Our work demonstrated that the proposed CNT-based PUFs are exceptionally robust with an average fractional intra-device Hamming distance well below 0.01 both at room temperature and under varying temperatures in the range from 23 C to 120 C. We attributed the excellent heat tolerance to comparatively low activation energies of less than 40 meV extracted from an Arrhenius plot. As the number of unstable bits in the examined implementation is extremely low, our devices allow for a lightweight and simple error correction, just by selecting stable cells, thereby diminishing the need for complex error correction. Through a significant number of tests, we demonstrated the capability of novel nanomaterial devices to serve as highly efficient hardware security primitives. Full article
Show Figures

Figure 1

15 pages, 3137 KiB  
Article
X-ray Investigation of CsPbI3:EuCl3 Infiltrated into Gig-Lox TiO2 Spongy Layers for Perovskite Solar Cells Applications
by Paola La Magna, Carlo Spampinato, Salvatore Valastro, Emanuele Smecca, Valentina Arena, Giovanni Mannino, Ioannis Deretzis, Giuseppe Fisicaro, Corrado Bongiorno and Alessandra Alberti
Nanomaterials 2023, 13(22), 2910; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13222910 - 07 Nov 2023
Viewed by 1143
Abstract
In this study, we explore the potential of a blended material comprising CsPbI3:EuCl3 perovskite and Gig-Lox TiO2, a unique transparent spongy material known for its multi-branched porous structure, for application in solar cells. The inclusion of [...] Read more.
In this study, we explore the potential of a blended material comprising CsPbI3:EuCl3 perovskite and Gig-Lox TiO2, a unique transparent spongy material known for its multi-branched porous structure, for application in solar cells. The inclusion of EuCl3 in CsPbI3 serves to stabilize the photoactive γ-phase with a bandgap of 1.75 eV, making it suitable for solar energy conversion in tandem solar cells. Our study applies X-ray-based techniques to investigate the structural properties and interfacial behavior within this blended material, in comparison with a reference perovskite layer deposited on glass. In addition, Spectroscopic ellipsometry is complemented with density functional theory calculations and photoluminescence measurements to elucidate the absorption and radiative emission properties of the blend. Notably, our findings reveal a significant quenching of photoluminescence within the blended material, underscoring the pivotal role of the distributed interfaces in facilitating efficient carrier injection from the CsPbI3:EuCl3 perovskite into the Gig-Lox TiO2 sponge. These findings pave the way for the application of the blend as an Electron Transport Layer (ETL) in semi-transparent perovskite solar cells for tandem and building integrated photovoltaics. Full article
Show Figures

Figure 1

13 pages, 4648 KiB  
Article
Monolithic Integration of Semi-Transparent and Flexible Integrated Image Sensor Array with a-IGZO Thin-Film Transistors (TFTs) and p-i-n Hydrogenated Amorphous Silicon Photodiodes
by Donghyeong Choi, Ji-Woo Seo, Jongwon Yoon, Seung Min Yu, Jung-Dae Kwon, Seoung-Ki Lee and Yonghun Kim
Nanomaterials 2023, 13(21), 2886; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13212886 - 31 Oct 2023
Viewed by 1427
Abstract
A novel approach to fabricating a transparent and flexible one-transistor–one-diode (1T-1D) image sensor array on a flexible colorless polyimide (CPI) film substrate is successfully demonstrated with laser lift-off (LLO) techniques. Leveraging transparent indium tin oxide (ITO) electrodes and amorphous indium gallium zinc oxide [...] Read more.
A novel approach to fabricating a transparent and flexible one-transistor–one-diode (1T-1D) image sensor array on a flexible colorless polyimide (CPI) film substrate is successfully demonstrated with laser lift-off (LLO) techniques. Leveraging transparent indium tin oxide (ITO) electrodes and amorphous indium gallium zinc oxide (a-IGZO) channel-based thin-film transistor (TFT) backplanes, vertically stacked p-i-n hydrogenated amorphous silicon (a-Si:H) photodiodes (PDs) utilizing a low-temperature (<90 °C) deposition process are integrated with a densely packed 14 × 14 pixel array. The low-temperature-processed a-Si:H photodiodes show reasonable performance with responsivity and detectivity for 31.43 mA/W and 3.0 × 1010 Jones (biased at −1 V) at a wavelength of 470 nm, respectively. The good mechanical durability and robustness of the flexible image sensor arrays enable them to be attached to a curved surface with bending radii of 20, 15, 10, and 5 mm and 1000 bending cycles, respectively. These studies show the significant promise of utilizing highly flexible and rollable active-matrix technology for the purpose of dynamically sensing optical signals in spatial applications. Full article
Show Figures

Graphical abstract

11 pages, 2757 KiB  
Article
Electrochemically Oxidized Carbon Nanotube Sheets for High-Performance and Flexible-Film Supercapacitors
by Jun Ho Noh, Jimin Choi, Hyunji Seo, Juwan Kim and Changsoon Choi
Nanomaterials 2023, 13(20), 2814; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13202814 - 23 Oct 2023
Cited by 1 | Viewed by 949
Abstract
The development of flexible, high-performance supercapacitors has been a focal point in energy storage research. While carbon nanotube (CNT) sheets offer promising mechanical and electrical properties, their low electrical double-layer capacitance significantly limits their practicability. Herein, we introduce a novel approach to address [...] Read more.
The development of flexible, high-performance supercapacitors has been a focal point in energy storage research. While carbon nanotube (CNT) sheets offer promising mechanical and electrical properties, their low electrical double-layer capacitance significantly limits their practicability. Herein, we introduce a novel approach to address this challenge via the electrochemical oxidation treatment of CNT sheets stacked on a polyethylene terephthalate substrate. This introduces oxygen-containing functional groups onto the CNT surface, thereby dramatically enhancing the pseudocapacitive effect and improving ion adsorption. Consequently, using the material in a two-electrode system increased the capacitance by 54 times compared to pristine CNT. The results of electrochemical performance characterization, including cyclic voltammograms, galvanostatic charge/discharge curves, and capacitance retention testing data, confirm the efficacy of the electrochemical oxidation approach. Furthermore, the mechanical flexibility of the electrochemically wetted CNT sheets was validated through resistance and discharge retention testing under repetitive bending (98% capacitance retention after 1000 bending cycles). The results demonstrate that electrochemically wetted CNT sheets retain their intrinsic mechanical and electrical properties while significantly enhancing the electrochemical performance (0.59 mF/cm2 or 97.8 F/g). This work represents a significant advancement in the development of flexible, high-performance supercapacitors with potential applicability to wearable electronics, flexible displays, and next-generation energy storage solutions. Full article
(This article belongs to the Special Issue Carbon Nanotubes and Nanosheets for Sustainable Solutions)
Show Figures

Figure 1

16 pages, 2617 KiB  
Article
Strong Coupling Dynamics of a Quantum Emitter near a Topological Insulator Nanoparticle
by Ioannis Thanopulos, Vassilios Yannopapas and Emmanuel Paspalakis
Nanomaterials 2023, 13(20), 2787; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13202787 - 18 Oct 2023
Viewed by 854
Abstract
We study the spontaneous emission dynamics of a quantum emitter near a topological insulator Bi2Se3 spherical nanoparticle. Using the electromagnetic Green’s tensor method, we find exceptional Purcell factors of the quantum emitter up to 1010 at distances between the [...] Read more.
We study the spontaneous emission dynamics of a quantum emitter near a topological insulator Bi2Se3 spherical nanoparticle. Using the electromagnetic Green’s tensor method, we find exceptional Purcell factors of the quantum emitter up to 1010 at distances between the emitter and the nanoparticle as large as half the nanoparticle’s radius in the terahertz regime. We study the spontaneous emission evolution of a quantum emitter for various transition frequencies in the terahertz and various vacuum decay rates. For short vacuum decay times, we observe non-Markovian spontaneous emission dynamics, which correspond perfectly to values of well-established measures of non-Markovianity and possibly indicate considerable dynamical quantum speedup. The dynamics turn progressively Markovian as the vacuum decay times increase, while in this regime, the non-Markovianity measures are nullified, and the quantum speedup vanishes. For the shortest vacuum decay times, we find that the population remains trapped in the emitter, which indicates that a hybrid bound state between the quantum emitter and the continuum of electromagnetic modes as affected by the nanoparticle has been formed. This work demonstrates that a Bi2Se3 spherical nanoparticle can be a nanoscale platform for strong light–matter coupling. Full article
Show Figures

Figure 1

22 pages, 21673 KiB  
Article
Degradable Plasma-Polymerized Poly(Ethylene Glycol)-Like Coating as a Matrix for Food-Packaging Applications
by Maryam Zabihzadeh Khajavi, Anton Nikiforov, Maryam Nilkar, Frank Devlieghere, Peter Ragaert and Nathalie De Geyter
Nanomaterials 2023, 13(20), 2774; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13202774 - 16 Oct 2023
Cited by 1 | Viewed by 1165
Abstract
Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of [...] Read more.
Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of polymer films. In this study, an atmospheric-pressure aerosol-assisted plasma deposition method was employed to develop a poly(ethylene glycol) (PEG)-like coating, which can act as a potential matrix for antimicrobial agents, by envisioning controlled-release food-packaging applications. Different plasma operating parameters, including the input power, monomer flow rate, and gap between the edge of the plasma head and substrate, were optimized to produce a PEG-like coating with a desirable water stability level and that can be biodegradable. The findings revealed that increased distance between the plasma head and substrate intensified gas-phase nucleation and diluted the active plasma species, which in turn led to the formation of a non-conformal rough coating. Conversely, at short plasma–substrate distances, smooth conformal coatings were obtained. Furthermore, at low input powers (<250 W), the chemical structure of the precursor was mostly preserved with a high retention of C-O functional groups due to limited monomer fragmentation. At the same time, these coatings exhibit low stability in water, which could be attributed to their low cross-linking degree. Increasing the power to 350 W resulted in the loss of the PEG-like chemical structure, which is due to the enhanced monomer fragmentation at high power. Nevertheless, owing to the enhanced cross-linking degree, these coatings were more stable in water. Finally, it could be concluded that a moderate input power (250–300 W) should be applied to obtain an acceptable tradeoff between the coating stability and PEG resemblance. Full article
(This article belongs to the Special Issue New Trends in Plasma Technology for Nanomaterials and Applications)
Show Figures

Graphical abstract

21 pages, 3496 KiB  
Article
Bio-Based Pyrrole Compounds Containing Sulfur Atoms as Coupling Agents of Carbon Black with Unsaturated Elastomers
by Gea Prioglio, Simone Naddeo, Ulrich Giese, Vincenzina Barbera and Maurizio Galimberti
Nanomaterials 2023, 13(20), 2761; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13202761 - 14 Oct 2023
Cited by 2 | Viewed by 1028
Abstract
In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1 [...] Read more.
In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1H-pyr-rol-1-yl)ethyl)disulfide (SSP), bearing an -SH and an -SS- functional group, respectively. SHP and SSP were synthesized via a one-pot two-step synthesis, with yields higher than 70%, starting from biosourced chemicals as follows: 2,5-hexanedione from 2,5-dimethylfuran, cysteine and cysteamine. The functionalization of CB was carried out by mixing the CB with PyC and heating, with quantitative yields ranging from 92 to 97%. Thus, the whole functionalization process was characterized by a high carbon efficiency. The formation of the covalent bond between SHP, SSP and CB, in line with the prior art of such a functionalization technology, was proven by means of extraction and TGA analyses. The reactivity of the sulfur-based functional groups with unsaturated polymer chains was demonstrated by using squalene as the model compound. Poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis were the elastomers employed for the preparation of the composites, which were crosslinked with a sulfur-based system. Pristine CB was partially replaced with CB/SHP (33%) and CB/SSP (33% and 66%). The PyC resulted in better curing efficiency, an increase in the dynamic rigidity of approximately 20% and a reduction in the hysteresis of approximately 10% at 70 °C, as well as similar/better ultimate tensile properties. The best results were achieved with a 66% replacement of CB with CB/SSP. This new family of reactive carbon blacks paves the way for a new generation of ‘green tires’, reinforced by a CB reactive with the polymer chains, which provides high mechanical properties and low rolling resistance. Such a reactive CB eliminates the use of silica, and thus the ethanol emission resulting from the condensation of silane is used as a coupling agent. In addition, CB-based tires are characterized by a higher mileage, at a moment in which the reduction in tire wear has become a primary concern. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

12 pages, 2641 KiB  
Article
Optical Properties in Mid-Infrared Range of Silicon Oxide Thin Films with Different Stoichiometries
by Natalia Herguedas and Enrique Carretero
Nanomaterials 2023, 13(20), 2749; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13202749 - 12 Oct 2023
Cited by 2 | Viewed by 1317
Abstract
SiOx thin films were prepared using magnetron sputtering with different O2 flow rates on a silicon substrate. The samples were characterized using Fourier transform infrared spectroscopy in transmission and reflection, covering a spectral range of 5 to 25 μm. By employing [...] Read more.
SiOx thin films were prepared using magnetron sputtering with different O2 flow rates on a silicon substrate. The samples were characterized using Fourier transform infrared spectroscopy in transmission and reflection, covering a spectral range of 5 to 25 μm. By employing a multilayer model, the values of the complex refractive index that best fit the experimental transmission and reflection results were optimized using the Brendel–Bormann oscillator model. The results demonstrate the significance of selecting an appropriate range of O2 flow rates to modify the SiOx stoichiometry, as well as how the refractive index values can be altered between those of Si and SiO2 in the mid-infrared range. Full article
(This article belongs to the Special Issue Preparation and Characterization of Coatings with Special Properties)
Show Figures

Figure 1

14 pages, 33974 KiB  
Article
Mitigating the Recrystallization of a Cold-Worked Cu-Al2O3 Nanocomposite via Enhanced Zener Drag by Nanocrstalline Cu-Oxide Particles
by Ramasis Goswami, Alex Moser and Chandra S. Pande
Nanomaterials 2023, 13(19), 2727; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192727 - 08 Oct 2023
Viewed by 831
Abstract
The strength of metals and alloys at elevated temperatures typically decreases due to the recovery, recrystallization, grain growth, and growth of second-phase particles. We report here a cold-worked Cu-Al2O3 composite did not recrystallize up to a temperature of 0.83Tm [...] Read more.
The strength of metals and alloys at elevated temperatures typically decreases due to the recovery, recrystallization, grain growth, and growth of second-phase particles. We report here a cold-worked Cu-Al2O3 composite did not recrystallize up to a temperature of 0.83Tm of Cu. The composite was manufactured through the internal oxidation process of dilute Cu-0.15 wt.% Al alloy and was characterized by transmission electron microscopy to study the nature of oxide precipitates. As a result of internal oxidation, a small volume fraction (1%) of Al2O3 particles forms. In addition, a high density of extremely fine (2–5 nm) Cu2O particles has been observed to form epitaxially within the elongated Cu grains. These finely dispersed second-phase Cu2O particles enhance the Zener drag significantly by three orders of magnitude as compared to Al2O3 particles and retain their original size and spacing at elevated temperatures. This limits the grain boundary migration and the nucleation of defect-free regions of different orientations and inhibits the recrystallization process at elevated temperatures. In addition, due to the limited grain boundary migration, a bundle of stacking faults appears instead of annealing twins. This investigation has led to a better understanding of how to prevent the recrystallization process of heavily deformed metallic material containing oxide particles. Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II)
Show Figures

Figure 1

16 pages, 3806 KiB  
Article
Shape-Driven Response of Gold Nanoparticles to X-rays
by Simona Tarantino, Caterina Capomolla, Alessandra Carlà, Livia Giotta, Mariafrancesca Cascione, Chiara Ingrosso, Edoardo Scarpa, Loris Rizzello, Anna Paola Caricato, Rosaria Rinaldi and Valeria De Matteis
Nanomaterials 2023, 13(19), 2719; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192719 - 07 Oct 2023
Viewed by 1033
Abstract
Radiotherapy (RT) involves delivering X-ray beams to the tumor site to trigger DNA damage. In this approach, it is fundamental to preserve healthy cells and to confine the X-ray beam only to the malignant cells. The integration of gold nanoparticles (AuNPs) in the [...] Read more.
Radiotherapy (RT) involves delivering X-ray beams to the tumor site to trigger DNA damage. In this approach, it is fundamental to preserve healthy cells and to confine the X-ray beam only to the malignant cells. The integration of gold nanoparticles (AuNPs) in the X-ray methodology could be considered a powerful tool to improve the efficacy of RT. Indeed, AuNPs have proven to be excellent allies in contrasting tumor pathology upon RT due to their high photoelectric absorption coefficient and unique physiochemical properties. However, an analysis of their physical and morphological reaction to X-ray exposure is necessary to fully understand the AuNPs’ behavior upon irradiation before treating the cells, since there are currently no studies on the evaluation of potential NP morphological changes upon specific irradiations. In this work, we synthesized two differently shaped AuNPs adopting two different techniques to achieve either spherical or star-shaped AuNPs. The spherical AuNPs were obtained with the Turkevich–Frens method, while the star-shaped AuNPs (AuNSs) involved a seed-mediated approach. We then characterized all AuNPs with Transmission Electron Microscopy (TEM), Uv-Vis spectroscopy, Dynamic Light Scattering (DLS), zeta potential and Fourier Transform Infrared (FTIR) spectroscopy. The next step involved the treatment of AuNPs with two different doses of X-radiation commonly used in RT, namely 1.8 Gy and 2 Gy, respectively. Following the X-rays’ exposure, the AuNPs were further characterized to investigate their possible physicochemical and morphological alterations induced with the X-rays. We found that AuNPs do not undergo any alteration, concluding that they can be safely used in RT treatments. Lastly, the actin rearrangements of THP-1 monocytes treated with AuNPs were also assessed in terms of coherency. This is a key proof to evaluate the possible activation of an immune response, which still represents a big limitation for the clinical translation of NPs. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

10 pages, 2086 KiB  
Article
Production of Metallic Alloy Nanowires and Particles Templated Using Tomato Mosaic Virus (ToMV)
by Sachin N. Shah, Jonathan G. Heddle, David J. Evans and George P. Lomonossoff
Nanomaterials 2023, 13(19), 2705; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192705 - 05 Oct 2023
Viewed by 819
Abstract
We demonstrate a simple, low-energy method whereby tomato mosaic virus (ToMV) particles can be used to template the production of nanowires and particles consisting of alloys of gold (Au), platinum (Pt) and palladium (Pd) in various combinations. Selective nanowire growth within the inner [...] Read more.
We demonstrate a simple, low-energy method whereby tomato mosaic virus (ToMV) particles can be used to template the production of nanowires and particles consisting of alloys of gold (Au), platinum (Pt) and palladium (Pd) in various combinations. Selective nanowire growth within the inner channel of the particles was achieved using the polymeric capping agent polyvinylpyrrolidone (PVPK30) and the reducing agent ascorbic acid. The reaction conditions also resulted in the deposition of alloy nanoparticles on the external surface of the rods in addition to the nanowire structures within the internal cavity. The resulting materials were characterized using a variety of electron microscopic and spectroscopic techniques, which revealed both the structural and chemical composition of the alloys within the nanomaterials. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

17 pages, 2246 KiB  
Article
Single-Particle ICP-MS/MS Application for Routine Screening of Nanoparticles Present in Powder-Based Facial Cosmetics
by Deja Hebert, Jenny Nelson, Brooke N. Diehl and Phoebe Zito
Nanomaterials 2023, 13(19), 2681; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192681 - 30 Sep 2023
Cited by 2 | Viewed by 1313
Abstract
The short- and long-term impacts of nanoparticles (NPs) in consumer products are not fully understood. Current European Union (EU) regulations enforce transparency on products containing NPs in cosmetic formulations; however, those set by the U.S. Food and Drug Administration are lacking. This study [...] Read more.
The short- and long-term impacts of nanoparticles (NPs) in consumer products are not fully understood. Current European Union (EU) regulations enforce transparency on products containing NPs in cosmetic formulations; however, those set by the U.S. Food and Drug Administration are lacking. This study demonstrates the potential of single-particle inductively coupled plasma tandem mass spectrometry (spICP-MS/MS) as a screening method for NPs present in powder-based facial cosmetics (herein referred to as FCs). A proposed spICP-MS/MS method is presented along with recommended criteria to confirm particle presence and particle detection thresholds in seven FCs. FC products of varying colors, market values, and applications were analyzed for the presence of Bi, Cr, Mg, Mn, Pb, Sn, Ag, Al, and Zn NPs based on their ingredient lists as well as those commonly used in cosmetic formulations. The presence of NPs smaller than 100 nm was observed in all FC samples, and no correlations with their presence and market value were observed. Here, we report qualitative and semi-quantitative results for seven FC samples ranging in color, brand, and shimmer. Full article
Show Figures

Graphical abstract

18 pages, 6752 KiB  
Article
Sintering, Mechanical and Optical Properties of TiB2 Composites with and without High-Energy Milling
by Simone Taraborelli, Simone Failla, Elisa Sani and Diletta Sciti
Nanomaterials 2023, 13(19), 2683; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192683 - 30 Sep 2023
Viewed by 782
Abstract
TiB2 is a promising material for several fields including impact-resistant armor, wear-resistant coatings, cutting tools and crucibles given its physical, mechanical and chemical properties, especially due to the combination of high hardness and exceptional wear resistance. It is however very difficult to [...] Read more.
TiB2 is a promising material for several fields including impact-resistant armor, wear-resistant coatings, cutting tools and crucibles given its physical, mechanical and chemical properties, especially due to the combination of high hardness and exceptional wear resistance. It is however very difficult to sinter below 2000 °C, even under mechanical pressure; moreover, the low fracture toughness limits the applicability of the ceramic material. By using sintering additives, it is possible to improve the sintering process and increase the mechanical properties since the additives react with oxidized layers and form secondary phases. In this study, different preparation methods and various combinations of additives (B4C, Si3N4 and MoSi2) via hot pressing sintering have been explored. Through the synergy between optimized process and tailored composition, an almost fully dense material was obtained at 1700 °C with hardness of 24.4 ± 0.2 GPa and fracture toughness of 5.4 ± 0.2 MPa m1/2. However, the highest hardness (24.5 ± 0.2 GPa) and density values were obtained for only the high-energy-milled sample with WC-Co media, featuring a core–shell grain structure. Finally, optical properties for selected samples were measured, identifying the high-energy-milled TiB2 as the sample with the highest spectral selectivity α/ε and solar absorptance. Full article
Show Figures

Figure 1

13 pages, 3189 KiB  
Article
Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays
by Sofia Rubtsov, Albina Musin, Viktor Danchuk, Mykola Shatalov, Neena Prasad, Michael Zinigrad and Lena Yadgarov
Nanomaterials 2023, 13(19), 2675; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192675 - 29 Sep 2023
Viewed by 1000
Abstract
The exceptional property of plasmonic materials to localize light into sub-wavelength regimes has significant importance in various applications, especially in photovoltaics. In this study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance of plasmonic gold nanoparticles (AuNPs) embedded into a [...] Read more.
The exceptional property of plasmonic materials to localize light into sub-wavelength regimes has significant importance in various applications, especially in photovoltaics. In this study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance of plasmonic gold nanoparticles (AuNPs) embedded into a titanium oxide (TiO2) microdot array (MDA), which was deposited using the inkjet printing technique. The X-ray (XRD) analysis of MAPI (methyl ammonium lead iodide) perovskite films deposited on glass substrates with and without MDA revealed no destructive effect of MDA on the perovskite structure. Moreover, a 12% increase in the crystallite size of perovskite with MDA was registered. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) techniques revealed the morphology of the TiO2_MDA and TiO2-AuNPs_MDA. The finite-difference time-domain (FDTD) simulation was employed to evaluate the absorption cross-sections and local field enhancement of AuNPs in the TiO2 and TiO2/MAPI surrounding media. Reflectance UV-Vis spectra of the samples comprising glass/TiO2 ETL/TiO2_MDA (ETL—an electron transport layer) with and without AuNPs in TiO2_MDA were studied, and the band gap (Eg) values of MAPI have been calculated using the Kubelka–Munk equation. The MDA introduction did not influence the band gap value, which remained at ~1.6 eV for all the samples. The photovoltaic performance of the fabricated PSC with and without MDA and the corresponding key parameters of the solar cells have also been studied and discussed in detail. The findings indicated a significant power conversion efficiency improvement of over 47% in the PSCs with the introduction of the TiO2-AuNPs_MDA on the ETL/MAPI interface compared to the reference device. Our study demonstrates the significant enhancement achieved in halide PSC by utilizing AuNPs within a TiO2_MDA. This approach holds great promise for advancing the efficiency and performance of photovoltaic devices. Full article
Show Figures

Figure 1

21 pages, 4789 KiB  
Article
Supported MOCVD TiO2 Thin Films Grown on Modified Stainless Steel Mesh for Sensing Applications
by Naida El Habra, Francesca Visentin, Francesca Russo, Alessandro Galenda, Alessia Famengo, Marzio Rancan, Maria Losurdo and Lidia Armelao
Nanomaterials 2023, 13(19), 2678; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192678 - 29 Sep 2023
Cited by 1 | Viewed by 885
Abstract
Among semiconductor metal oxides, that are an important class of sensing materials, titanium dioxide (TiO2) thin films are widely employed as sensors because of their high chemical and mechanical stability in harsh environments, non-toxicity, eco-compatibility, and photocatalytic properties. TiO2-based [...] Read more.
Among semiconductor metal oxides, that are an important class of sensing materials, titanium dioxide (TiO2) thin films are widely employed as sensors because of their high chemical and mechanical stability in harsh environments, non-toxicity, eco-compatibility, and photocatalytic properties. TiO2-based chemical oxygen demand (COD) sensors exploit the photocatalytic properties of TiO2 in inducing the oxidation of organic compounds to CO2. In this work, we discuss nanostructured TiO2 thin films grown via low-pressure metal organic chemical vapor deposition (MOCVD) on metallic AISI 316 mesh. To increase the surface sensing area, different inorganic acid-based chemical etching protocols have been developed, determining the optimal experimental conditions for adequate substrate roughness. Both chemically etched pristine meshes and the MOCVD-coated ones have been studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) microanalysis, and X-ray photoelectron spectroscopy (XPS). We demonstrate that etching by HCl/H2SO4 at 55 °C provides the most suitable surface morphology. To investigate the behavior of the developed high surface area TiO2 thin films as COD sensors, photocatalytic degradation of functional model pollutants based on ISO 10678:2010 has been tested, showing for the best performing acid-etched mesh coated with polycrystalline TiO2 an increase of 60% in activity, and degrading 66 µmol of MB per square meter per hour. Full article
Show Figures

Graphical abstract

16 pages, 30748 KiB  
Article
Magnetoelastic and Magnetoelectric Coupling in Two-Dimensional Nitride MXenes: A Density Functional Theory Study
by Sukhito Teh and Horng-Tay Jeng
Nanomaterials 2023, 13(19), 2644; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192644 - 26 Sep 2023
Viewed by 982
Abstract
Two-dimensional multiferroic (2D) materials have garnered significant attention due to their potential in high-density, low-power multistate storage and spintronics applications. MXenes, a class of 2D transition metal carbides and nitrides, were first discovered in 2011, and have become the focus of research in [...] Read more.
Two-dimensional multiferroic (2D) materials have garnered significant attention due to their potential in high-density, low-power multistate storage and spintronics applications. MXenes, a class of 2D transition metal carbides and nitrides, were first discovered in 2011, and have become the focus of research in various disciplines. Our study, utilizing first-principles calculations, examines the lattice structures, and electronic and magnetic properties of nitride MXenes with intrinsic band gaps, including V2NF2, V2NO2, Cr2NF2, Mo2NO2, Mo2NF2, and Mn2NO2. These nitride MXenes exhibit orbital ordering, and in some cases the orbital ordering induces magnetoelastic coupling or magnetoelectric coupling. Most notably, Cr2NF2 is a ferroelastic material with a spiral magnetic ordered phase, and the spiral magnetization propagation vector is coupled with the direction of ferroelastic strain. The ferroelectric phase can exist as an excited state in V2NO2, Cr2NF2, and Mo2NF2, with their magnetic order being coupled with polar displacements through orbital ordering. Our results also suggest that similar magnetoelectric coupling effects persist in the Janus MXenes V8N4O7F, Cr8N4F7O, and Mo8N4F7O. Remarkably, different phases of Mo8N4F7O, characterized by orbital ordering rearrangements, can be switched by applying external strain or an external electric field. Overall, our theoretical findings suggest that nitride MXenes hold promise as 2D multiferroic materials. Full article
Show Figures

Figure 1

13 pages, 5956 KiB  
Article
One-Pot Synthesis of Ultra-Small Pt Nanoparticles-Loaded Nitrogen-Doped Mesoporous Carbon Nanotube for Efficient Catalytic Reaction
by Qian Zhang, Minying Wu, Yuanyuan Fang, Chao Deng, Hsin-Hui Shen, Yi Tang and Yajun Wang
Nanomaterials 2023, 13(19), 2633; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192633 - 25 Sep 2023
Viewed by 1114
Abstract
In this study, Pt nanoparticles-loaded nitrogen-doped mesoporous carbon nanotube (Pt/NMCT) was successfully synthesized through a polydopamine-mediated “one-pot” co-deposition strategy. The Pt source was introduced during the co-deposition of polydopamine and silica on the surface of SiO2 nanowire (SiO2 NW), and Pt [...] Read more.
In this study, Pt nanoparticles-loaded nitrogen-doped mesoporous carbon nanotube (Pt/NMCT) was successfully synthesized through a polydopamine-mediated “one-pot” co-deposition strategy. The Pt source was introduced during the co-deposition of polydopamine and silica on the surface of SiO2 nanowire (SiO2 NW), and Pt atoms were fixed in the skeleton by the chelation of polydopamine. Thus, in the subsequent calcination process in nitrogen atmosphere, the growth and agglomeration of Pt nanoparticles were effectively restricted, achieving the in situ loading of uniformly dispersed, ultra-small (~2 nm) Pt nanoparticles. The method is mild, convenient, and does not require additional surfactants, reducing agents, or stabilizers. At the same time, the use of the dual silica templates (SiO2 NW and the co-deposited silica nanoclusters) brought about a hierarchical pore structure with a high specific surface area (620 m2 g−1) and a large pore volume (1.46 cm3 g−1). The loading process of Pt was studied by analyzing the electron microscope and X-ray photoelectron spectroscopy of the intermediate products. The catalytic performance of Pt/NMCT was investigated in the reduction of 4-nitrophenol. The Pt/NMCT with a hierarchical pore structure had an apparent reaction rate constant of 0.184 min−1, significantly higher than that of the sample, without the removal of the silica templates to generate the hierarchical porosity (0.017 min−1). This work provides an outstanding contribution to the design of supported noble metal catalysts and also highlights the importance of the hierarchical pore structure for catalytic activity. Full article
Show Figures

Graphical abstract

16 pages, 5329 KiB  
Article
Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water
by Qingdong He, Jie Qi, Xiangyu Liu, Huan Zhang, Yiwen Wang, Wenbo Wang and Fang Guo
Nanomaterials 2023, 13(19), 2627; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13192627 - 23 Sep 2023
Viewed by 900
Abstract
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay [...] Read more.
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through an associated calcination-hydrothermal activation process. It has been confirmed that most of the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further hydrothermal activation process may further improve the pore structure and increase surface active sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5% for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In addition, the composite adsorbent also shows high removal capacity for single-component and two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-derived composite adsorbent can be used as an inexpensive material for the decontamination of dyed wastewater. Full article
Show Figures

Figure 1

19 pages, 5029 KiB  
Article
Bromine Ion-Intercalated Layered Bi2WO6 as an Efficient Catalyst for Advanced Oxidation Processes in Tetracycline Pollutant Degradation Reaction
by Rama Krishna Chava and Misook Kang
Nanomaterials 2023, 13(18), 2614; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182614 - 21 Sep 2023
Viewed by 1062
Abstract
The visible-light-driven photocatalytic degradation of pharmaceutical pollutants in aquatic environments is a promising strategy for addressing water pollution problems. This work highlights the use of bromine-ion-doped layered Aurivillius oxide, Bi2WO6, to synergistically optimize the morphology and increase the formation [...] Read more.
The visible-light-driven photocatalytic degradation of pharmaceutical pollutants in aquatic environments is a promising strategy for addressing water pollution problems. This work highlights the use of bromine-ion-doped layered Aurivillius oxide, Bi2WO6, to synergistically optimize the morphology and increase the formation of active sites on the photocatalyst’s surface. The layered Bi2WO6 nanoplates were synthesized by a facile hydrothermal reaction in which bromine (Br) ions were introduced by adding cetyltrimethylammonium bromide (CTAB)/tetrabutylammonium bromide (TBAB)/potassium bromide (KBr). The as-synthesized Bi2WO6 nanoplates displayed higher photocatalytic tetracycline degradation activity (~83.5%) than the Bi2WO6 microspheres (~48.2%), which were obtained without the addition of Br precursors in the reaction medium. The presence of Br was verified experimentally, and the newly formed Bi2WO6 developed as nanoplates where the adsorbed Br ions restricted the multilayer stacking. Considering the significant morphology change, increased specific surface area, and enhanced photocatalytic performance, using a synthesis approach mediated by Br ions to design layered photocatalysts is expected to be a promising system for advancing water remediation. Full article
Show Figures

Graphical abstract

17 pages, 4162 KiB  
Article
Mechanical Exfoliation of Expanded Graphite to Graphene-Based Materials and Modification with Palladium Nanoparticles for Hydrogen Storage
by Darren Chow, Nicholas Burns, Emmanuel Boateng, Joshua van der Zalm, Stefan Kycia and Aicheng Chen
Nanomaterials 2023, 13(18), 2588; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182588 - 19 Sep 2023
Cited by 1 | Viewed by 1338
Abstract
Hydrogen is a promising green fuel carrier that can replace fossil fuels; however, its storage is still a challenge. Carbon-based materials with metal catalysts have recently been the focus of research for solid-state hydrogen storage due to their efficacy and low cost. Here, [...] Read more.
Hydrogen is a promising green fuel carrier that can replace fossil fuels; however, its storage is still a challenge. Carbon-based materials with metal catalysts have recently been the focus of research for solid-state hydrogen storage due to their efficacy and low cost. Here, we report on the exfoliation of expanded graphite (EG) through high shear mixing and probe tip sonication methods to form graphene-based nanomaterial ShEG and sEG, respectively. The exfoliation processes were optimized based on electrochemical capacitance measurements. The exfoliated EG was further functionalized with palladium nanoparticles (Pd-NP) for solid-state hydrogen storage. The prepared graphene-based nanomaterials (ShEG and sEG) and the nanocomposites (Pd-ShEG and Pd-sEG) were characterized with various traditional techniques (e.g., SEM, TEM, EDX, XPS, Raman, XRD) and the advanced high-resolution pair distribution function (HRPDF) analysis. Electrochemical hydrogen uptake and release (QH) were measured, showing that the sEG decorated with Pd-NP (Pd-sEG, 31.05 mC cm−2) and ShEG with Pd-NP (Pd-ShEG, 24.54 mC cm−2) had a notable improvement over Pd-NP (9.87 mC cm−2) and the composite of Pd-EG (14.7 mC cm−2). QH showed a strong linear relationship with an effective surface area to volume ratio, indicating nanoparticle size as a determining factor for hydrogen uptake and release. This work is a promising step toward the design of the high-performance solid-state hydrogen storage devices through mechanical exfoliation of the substrate EG to control nanoparticle size and dispersion. Full article
(This article belongs to the Special Issue Functional Graphene-Based Nanodevices)
Show Figures

Figure 1

13 pages, 4068 KiB  
Article
Healable Anti-Corrosive and Wear-Resistant Silicone-Oil-Impregnated Porous Oxide Layer of Aluminum Alloy by Plasma Electrolytic Oxidation
by Yeji Shin, Kichang Bae, Sumin Lee, Hweeyong Kim, Dongmin Shin, Donghyun Kim, Eunyoung Choi, Hyoung-Seok Moon and Junghoon Lee
Nanomaterials 2023, 13(18), 2582; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182582 - 18 Sep 2023
Viewed by 855
Abstract
Lubricant (or oil)-impregnated porous surface has been considered as a promising surface treatment to realize multifunctionality. In this study, silicone oil was impregnated into a hard porous oxide layer created by the plasma electrolytic oxidation (PEO) of aluminum (Al) alloys. The monolayer of [...] Read more.
Lubricant (or oil)-impregnated porous surface has been considered as a promising surface treatment to realize multifunctionality. In this study, silicone oil was impregnated into a hard porous oxide layer created by the plasma electrolytic oxidation (PEO) of aluminum (Al) alloys. The monolayer of polydimethylsiloxane (PDMS) from silicone oil is formed on a porous oxide layer; thus, a water-repellent slippery oil-impregnated surface is realized on Al alloy, showing a low contact angle hysteresis of less than 5°. This water repellency significantly enhanced the corrosion resistance by more than four orders of magnitude compared to that of the PEO-treated Al alloy without silicone oil impregnation. The silicone oil within the porous oxide layer also provides a lubricating effect to improve wear resistance by reducing friction coefficients from ~0.6 to ~0.1. In addition, because the PDMS monolayer can be restored by frictional heat, the water-repellent surface is tolerant to physical damage to the oxide surface. Hence, the results of this fundamental study provide a new approach for the post-treatment of PEO for Al alloys. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

13 pages, 2978 KiB  
Article
Scanning Photocurrent Microscopy in Single Crystal Multidimensional Hybrid Lead Bromide Perovskites
by Elena Segura-Sanchis, Rocío García-Aboal, Roberto Fenollosa, Fernando Ramiro-Manzano and Pedro Atienzar
Nanomaterials 2023, 13(18), 2570; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182570 - 16 Sep 2023
Cited by 1 | Viewed by 929
Abstract
We investigated solution-grown single crystals of multidimensional 2D–3D hybrid lead bromide perovskites using spatially resolved photocurrent and photoluminescence. Scanning photocurrent microscopy (SPCM) measurements where the electrodes consisted of a dip probe contact and a back contact. The crystals revealed significant differences between 3D [...] Read more.
We investigated solution-grown single crystals of multidimensional 2D–3D hybrid lead bromide perovskites using spatially resolved photocurrent and photoluminescence. Scanning photocurrent microscopy (SPCM) measurements where the electrodes consisted of a dip probe contact and a back contact. The crystals revealed significant differences between 3D and multidimensional 2D–3D perovskites under biased detection, not only in terms of photocarrier decay length values but also in the spatial dynamics across the crystal. In general, the photocurrent maps indicate that the closer the border proximity, the shorter the effective decay length, thus suggesting a determinant role of the border recombination centers in monocrystalline samples. In this case, multidimensional 2D–3D perovskites exhibited a simple fitting model consisting of a single exponential, while 3D perovskites demonstrated two distinct charge carrier migration dynamics within the crystal: fast and slow. Although the first one matches that of the 2D–3D perovskite, the long decay of the 3D sample exhibits a value two orders of magnitude larger. This difference could be attributed to the presence of interlayer screening and a larger exciton binding energy of the multidimensional 2D–3D perovskites with respect to their 3D counterparts. Full article
Show Figures

Graphical abstract

26 pages, 23610 KiB  
Article
Innovative Low-Cost Composite Nanoadsorbents Based on Eggshell Waste for Nickel Removal from Aqueous Media
by Adina-Elena Segneanu, Roxana Trusca, Claudiu Cepan, Maria Mihailescu, Cornelia Muntean, Dumitru Daniel Herea, Ioan Grozescu and Athanasios Salifoglou
Nanomaterials 2023, 13(18), 2572; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182572 - 16 Sep 2023
Cited by 1 | Viewed by 1074
Abstract
In a contemporary sustainable economy, innovation is a prerequisite to recycling waste into new efficient materials designed to minimize pollution and conserve non-renewable natural resources. Using an innovative approach to remediating metal-polluted water, in this study, eggshell waste was used to prepare two [...] Read more.
In a contemporary sustainable economy, innovation is a prerequisite to recycling waste into new efficient materials designed to minimize pollution and conserve non-renewable natural resources. Using an innovative approach to remediating metal-polluted water, in this study, eggshell waste was used to prepare two new low-cost nanoadsorbents for the retrieval of nickel from aqueous solutions. Scanning electron microscopy (SEM) results show that in the first eggshell–zeolite (EZ) adsorbent, the zeolite nanoparticles were loaded in the eggshell pores. The preparation for the second (iron(III) oxide-hydroxide)–eggshell–zeolite (FEZ) nanoadsorbent led to double functionalization of the eggshell base with the zeolite nanoparticles, upon simultaneous loading of the pores of the eggshell and zeolite surface with FeOOH particles. Structural modification of the eggshell led to a significant increase in the specific surface, as confirmed using BET analysis. These features enabled the composite EZ and FEZ to remove nickel from aqueous solutions with high performance and adsorption capacities of 321.1 mg/g and 287.9 mg/g, respectively. The results indicate that nickel adsorption on EZ and FEZ is a multimolecular layer, spontaneous, and endothermic process. Concomitantly, the desorption results reflect the high reusability of these two nanomaterials, collectively suggesting the use of waste in the design of new, low-cost, and highly efficient composite nanoadsorbents for environmental bioremediation. Full article
(This article belongs to the Special Issue Nanomaterials for Green and Sustainable World)
Show Figures

Graphical abstract

21 pages, 3667 KiB  
Article
The Apoptosis Inhibitor Protein Survivin Is a Critical Cytoprotective Resistor against Silica-Based Nanotoxicity
by Christina Breder-Bonk, Dominic Docter, Matthias Barz, Sebastian Strieth, Shirley K. Knauer, Désirée Gül and Roland H. Stauber
Nanomaterials 2023, 13(18), 2546; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182546 - 12 Sep 2023
Viewed by 1136
Abstract
Exposure to nanoparticles is inevitable as they become widely used in industry, cosmetics, and foods. However, knowledge of their (patho)physiological effects on biological entry routes of the human body and their underlying molecular mechanisms is still fragmented. Here, we examined the molecular effects [...] Read more.
Exposure to nanoparticles is inevitable as they become widely used in industry, cosmetics, and foods. However, knowledge of their (patho)physiological effects on biological entry routes of the human body and their underlying molecular mechanisms is still fragmented. Here, we examined the molecular effects of amorphous silica nanoparticles (aSiNPs) on cell lines mimicking the alveolar-capillary barrier of the lung. After state-of-the-art characterization of the used aSiNPs and the cell model, we performed cell viability-based assays and a protein analysis to determine the aSiNP-induced cell toxicity and underlying signaling mechanisms. We revealed that aSiNPs induce apoptosis in a dose-, time-, and size-dependent manner. aSiNP-induced toxicity involves the inhibition of pro-survival pathways, such as PI3K/AKT and ERK signaling, correlating with reduced expression of the anti-apoptotic protein Survivin on the protein and transcriptional levels. Furthermore, induced Survivin overexpression mediated resistance against aSiNP-toxicity. Thus, we present the first experimental evidence suggesting Survivin as a critical cytoprotective resistor against silica-based nanotoxicity, which may also play a role in responses to other NPs. Although Survivin’s relevance as a biomarker for nanotoxicity needs to be demonstrated in vivo, our data give general impetus to investigate the pharmacological modulation of Survivin`s functions to attenuate the harmful effects of acute or chronic inhalative NP exposure. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

15 pages, 6006 KiB  
Article
Encapsulation of Iron-Saturated Lactoferrin for Proteolysis Protection with Preserving Iron Coordination and Sustained Release
by Przemysław Gajda-Morszewski, Anna Poznańska, Cristina Yus, Manuel Arruebo and Małgorzata Brindell
Nanomaterials 2023, 13(18), 2524; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182524 - 08 Sep 2023
Viewed by 872
Abstract
Lactoferrin (Lf) is a globular glycoprotein found mainly in milk. It has a very high affinity for iron(III) ions, and its fully saturated form is called holoLf. The antimicrobial, antiviral, anticancer, and immunomodulatory properties of Lf have been studied extensively for the past [...] Read more.
Lactoferrin (Lf) is a globular glycoprotein found mainly in milk. It has a very high affinity for iron(III) ions, and its fully saturated form is called holoLf. The antimicrobial, antiviral, anticancer, and immunomodulatory properties of Lf have been studied extensively for the past two decades. However, to demonstrate therapeutic benefits, Lf has to be efficiently delivered to the intestinal tract in its structurally intact form. This work aimed to optimize the encapsulation of holoLf in a system based on the versatile Eudragit® RS polymer to protect Lf against the proteolytic environment of the stomach. Microparticles (MPs) with entrapped holoLf were obtained with satisfactory entrapment efficiency (90–95%), high loading capacity (9.7%), and suitable morphology (spherical without cracks or pores). Detailed studies of the Lf release from the MPs under conditions that included simulated gastric or intestinal fluids, prepared according to the 10th edition of the European Pharmacopeia, showed that MPs partially protected holoLf against enzymatic digestion and ionic iron release. The preincubation of MPs loaded with holoLf under conditions simulating the stomach environment resulted in the release of 40% of Lf from the MPs. The protein released was saturated with iron ions at 33%, was structurally intact, and its iron scavenging properties were preserved. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

18 pages, 5701 KiB  
Article
Selective Growth of MAPbBr3 Rounded Microcrystals on Micro-Patterned Single-Layer Graphene Oxide/Graphene Platforms with Enhanced Photo-Stability
by Javier Bartolomé, María Vila, Carlos Redondo-Obispo, Alicia de Andrés and Carmen Coya
Nanomaterials 2023, 13(18), 2513; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182513 - 08 Sep 2023
Viewed by 1115
Abstract
The synergistic combination of hybrid perovskites with graphene-related materials is leading to optoelectronic devices with enhanced performance and stability. Still, taking advantage of the solution processing of perovskite onto graphene is especially challenging. Here, MAPbBr3 perovskite is grown on single-layer graphene/graphene oxide [...] Read more.
The synergistic combination of hybrid perovskites with graphene-related materials is leading to optoelectronic devices with enhanced performance and stability. Still, taking advantage of the solution processing of perovskite onto graphene is especially challenging. Here, MAPbBr3 perovskite is grown on single-layer graphene/graphene oxide (Gr/GO) patterns with 120 µm periodicity using a solution-processed method. MAPbBr3 rounded crystals are formed with sizes ranging from nanometers to microns, either forming continuous films or dispersed particles. A detailed morphological and structural study reveals a fully oriented perovskite and very different growth habits on the Gr/GO micro-patterns, which we relate to the substrate characteristics and the nucleation rate. A simple method for controlling the nucleation rate is proposed based on the concentration of the precursor solution and the number of deposited perovskite layers. The photoluminescence is analyzed in terms of the crystal size, strain, and structural changes observed. Notably, the growth on top of Gr/GO leads to a huge photostability of the MAPbBr3 compared with that on glass. Especially outstanding is that of the microcrystals, which endure light densities as high as 130 kW/cm2. These results allow for anticipating the design of integrated nanostructures and nanoengineered devices by growing high-stability perovskite directly on Gr/GO substrates. Full article
Show Figures

Figure 1

12 pages, 4149 KiB  
Article
The Effect of Cellulose Nanofibres on Dewatering during Wet-Forming and the Mechanical Properties of Thermoformed Specimens Made of Thermomechanical and Kraft Pulps
by Eirik Ulsaker Jacobsen, Simen Prang Følkner, Jørgen Blindheim, Dag Molteberg, Martin Steinert and Gary Chinga-Carrasco
Nanomaterials 2023, 13(18), 2511; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182511 - 07 Sep 2023
Cited by 2 | Viewed by 1262
Abstract
Due to environmental concerns regarding single-use plastic materials, major efforts are being made to develop new material concepts based on biodegradable and renewable resources, e.g., wood pulp. In this study, we assessed two types of wood pulp fibres, i.e., thermomechanical pulp (TMP) and [...] Read more.
Due to environmental concerns regarding single-use plastic materials, major efforts are being made to develop new material concepts based on biodegradable and renewable resources, e.g., wood pulp. In this study, we assessed two types of wood pulp fibres, i.e., thermomechanical pulp (TMP) and Kraft pulp fibres, and tested the performance of the fibres in wet-moulding and thermopressing trials. Kraft pulp fibres appeared to retain more water than TMP, increasing the dewatering time during wet-moulding and apparently increasing the compression resistance of the pulp during thermoforming. Additionally, cellulose nanofibres (CNF) were added to the pulps, which improved the mechanical properties of the final thermopressed specimens. However, the addition of CNF to the pulps (from 2 to 6%) had a further decrease in the dewatering efficiency in the wet-moulding process, and this effect was more pronounced in the Kraft pulp specimens. The mechanical performance of the thermoformed specimens was in the same range as the plastic materials that are conventionally used in food packaging, i.e., modulus 0.6–1.2 GPa, strength 49 MPa and elongation 6–9%. Finally, this study demonstrates the potential of wood pulps to form three-dimensional thermoformed products. Full article
Show Figures

Graphical abstract

21 pages, 2583 KiB  
Article
The Potentiating Effect of Graphene Oxide on the Arylhydrocarbon Receptor (AhR)–Cytochrome P4501A (Cyp1A) System Activated by Benzo(k)fluoranthene (BkF) in Rainbow Trout Cell Line
by Ana Valdehita, María Luisa Fernández-Cruz and José M. Navas
Nanomaterials 2023, 13(18), 2501; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182501 - 05 Sep 2023
Cited by 2 | Viewed by 759
Abstract
The increasing use of graphene oxide (GO) will result in its release into the environment; therefore, it is essential to determine its final fate and possible metabolism by organisms. The objective of this study was to assess the possible role of the aryl [...] Read more.
The increasing use of graphene oxide (GO) will result in its release into the environment; therefore, it is essential to determine its final fate and possible metabolism by organisms. The objective of this study was to assess the possible role of the aryl hydrocarbon receptor (AhR)-dependent cytochrome P4501A (Cyp1A) detoxification activities on the catabolism of GO. Our hypothesis is that GO cannot initially interact with the AhR, but that after an initial degradation caused by other mechanisms, small fractions of GO could activate the AhR, inducing Cyp1A. The environmental pollutant benzo(k)fluoranthene (BkF) was used for the initial activation of the AhR in the rainbow trout (Oncorhynchus mykiss) cell line RTL-W1. Pre-, co-, and post-exposure experiments with GO were performed and Cyp1A induction was monitored. The strong stimulation of Cyp1A observed in cells after exposure to GO, when BkF levels were not detected in the system, suggests a direct action of GO. The role of the AhR was confirmed by a blockage of the observed effects in co-treatment experiments with αNF (an AhR antagonist). These results suggest a possible role for the AhR and Cyp1A system in the cellular metabolism of GO and that GO could modulate the toxicity of environmental pollutants. Full article
Show Figures

Graphical abstract

17 pages, 3529 KiB  
Article
Polyoxometalate-Modified Amphiphilic Polystyrene-block-poly(2-(dimethylamino)ethyl methacrylate) Membranes for Heterogeneous Glucose to Formic Acid Methyl Ester Oxidation
by Yurii Utievskyi, Christof Neumann, Julia Sindlinger, Konstantin Schutjajew, Martin Oschatz, Andrey Turchanin, Nico Ueberschaar and Felix H. Schacher
Nanomaterials 2023, 13(18), 2498; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13182498 - 05 Sep 2023
Viewed by 809
Abstract
Herein, we present a new heterogeneous catalyst active toward glucose to formic acid methyl ester oxidation. The catalyst was fabricated via electrostatic immobilization of the inorganic polyoxometalate HPA-5 catalyst H8[PMo7V5O40] onto the pore surface of [...] Read more.
Herein, we present a new heterogeneous catalyst active toward glucose to formic acid methyl ester oxidation. The catalyst was fabricated via electrostatic immobilization of the inorganic polyoxometalate HPA-5 catalyst H8[PMo7V5O40] onto the pore surface of amphiphilic block copolymer membranes prepared via non-solvent-induced phase separation (NIPS). The catalyst immobilization was achieved via wet impregnation due to strong coulombic interactions between protonated tertiary amino groups of the polar poly(2-(dimethylamino)ethyl methacrylate) block and the anionic catalyst. Overall, three sets of five consecutive catalytic cycles were performed in an autoclave under 90 °С and 11.5 bar air pressure in methanol, and the corresponding yields of formic acid methyl ester were quantified via head-space gas chromatography. The obtained results demonstrate that the membrane maintains its catalytic activity over multiple cycles, resulting in high to moderate yields in comparison to a homogeneous catalytic system. Nevertheless, presumably due to leaching, the catalytic activity declines over five catalytic cycles. The morphological and chemical changes of the membrane during the prolonged catalysis under harsh conditions were examined in detail using different analytic tools, and it seems that the underlying block copolymer is not affected by the catalytic process. Full article
Show Figures

Graphical abstract

17 pages, 5321 KiB  
Article
Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis
by Rosa Carotenuto, Margherita Tussellino, Sabato Fusco, Giovanna Benvenuto, Fabio Formiggini, Bice Avallone, Chiara Maria Motta, Chiara Fogliano and Paolo Antonio Netti
Nanomaterials 2023, 13(17), 2488; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13172488 - 04 Sep 2023
Viewed by 1011
Abstract
Exposure to metal nanoparticles is potentially harmful, particularly when occurring during embryogenesis. In this study, we tested the effects of commercial AuNPs and AgNPs, widely used in many fields for their features, on the early development of Xenopus laevis, an anuran amphibian [...] Read more.
Exposure to metal nanoparticles is potentially harmful, particularly when occurring during embryogenesis. In this study, we tested the effects of commercial AuNPs and AgNPs, widely used in many fields for their features, on the early development of Xenopus laevis, an anuran amphibian key model species in toxicity testing. Through the Frog Embryo Teratogenesis Assay—Xenopus test (FETAX), we ascertained that both nanoparticles did not influence the survival rate but induced morphological anomalies like modifications of head and branchial arch cartilages, depigmentation of the dorsal area, damage to the intestinal brush border, and heart rate alteration. The expression of genes involved in the early pathways of embryo development was also modified. This study suggests that both types of nanoparticles are toxic though nonlethal, thus indicating that their use requires attention and further study to better clarify their activity in animals and, more importantly, in humans. Full article
(This article belongs to the Special Issue Recent Advances in Metal Nanoparticles and Nanotoxicity)
Show Figures

Figure 1

14 pages, 2297 KiB  
Article
Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
by G. Ribeiro, G. Ferreira, U. D. Menda, M. Alexandre, M. J. Brites, M. A. Barreiros, S. Jana, H. Águas, R. Martins, P. A. Fernandes, P. Salomé and M. J. Mendes
Nanomaterials 2023, 13(17), 2447; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13172447 - 29 Aug 2023
Viewed by 1138
Abstract
By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical [...] Read more.
By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI3 (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI3 matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap. Full article
(This article belongs to the Special Issue Study on Quantum Dot and Quantum Dot-Based Device)
Show Figures

Graphical abstract

11 pages, 2930 KiB  
Article
Thermally Stable Ceramic-Salt Electrolytes for Li Metal Batteries Produced from Cold Sintering Using DMF/Water Mixture Solvents
by Sunwoo Kim, Yejin Gim and Wonho Lee
Nanomaterials 2023, 13(17), 2436; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13172436 - 28 Aug 2023
Viewed by 1177
Abstract
The cold sintering process (CSP) for synthesizing oxide-based electrolytes, which uses water transient solvents and uniaxial pressure, is a promising alternative to the conventional high temperature sintering process due to its low temperature (<200 °C) and short processing time (<2 h). However, the [...] Read more.
The cold sintering process (CSP) for synthesizing oxide-based electrolytes, which uses water transient solvents and uniaxial pressure, is a promising alternative to the conventional high temperature sintering process due to its low temperature (<200 °C) and short processing time (<2 h). However, the formation of amorphous secondary phases in the intergranular regions, which results in poor ionic conductivity (σ), remains a challenge. In this study, we introduced high-boiling solvents of dimethylformamide (DMF, b.p.: 153 °C) and dimethyl sulfoxide (DMSO, b.p.: 189 °C) as transient solvents to develop composite electrolytes of Li1.5Al0.5Ge1.5(PO4)3 (LAGP) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Our results show that composite electrolytes processed with the DMF/water mixture (CSP LAGP-LiTFSI DMF/H2O) yield a high σ of 10−4 S cm−1 at room temperature and high relative densities of >87%. Furthermore, the composite electrolytes exhibit good thermal stability; the σ maintains its initial value after heat treatment. In contrast, the composite electrolytes processed with the DMSO/water mixture and water alone show thermal degradation. The CSP LAGP-LiTFSI DMF/H2O composite electrolytes exhibit long-term stability, showing no signs of short circuiting after 350 h at 0.1 mAh cm−2 in Li symmetric cells. Our work highlights the importance of selecting appropriate transient solvents for producing efficient and stable composite electrolytes using CSP. Full article
(This article belongs to the Special Issue Nanocomposites for Energy Harvesting)
Show Figures

Figure 1

10 pages, 2807 KiB  
Article
Sol–Gel-Processed Y2O3 Multilevel Resistive Random-Access Memory Cells for Neural Networks
by Taehun Lee, Hae-In Kim, Yoonjin Cho, Sangwoo Lee, Won-Yong Lee, Jin-Hyuk Bae, In-Man Kang, Kwangeun Kim, Sin-Hyung Lee and Jaewon Jang
Nanomaterials 2023, 13(17), 2432; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13172432 - 27 Aug 2023
Cited by 1 | Viewed by 1021
Abstract
Yttrium oxide (Y2O3) resistive random-access memory (RRAM) devices were fabricated using the sol–gel process on indium tin oxide/glass substrates. These devices exhibited conventional bipolar RRAM characteristics without requiring a high-voltage forming process. The effect of current compliance on the [...] Read more.
Yttrium oxide (Y2O3) resistive random-access memory (RRAM) devices were fabricated using the sol–gel process on indium tin oxide/glass substrates. These devices exhibited conventional bipolar RRAM characteristics without requiring a high-voltage forming process. The effect of current compliance on the Y2O3 RRAM devices was investigated, and the results revealed that the resistance values gradually decreased with increasing set current compliance values. By regulating these values, the formation of pure Ag conductive filament could be restricted. The dominant oxygen ion diffusion and migration within Y2O3 leads to the formation of oxygen vacancies and Ag metal-mixed conductive filaments between the two electrodes. The filament composition changes from pure Ag metal to Ag metal mixed with oxygen vacancies, which is crucial for realizing multilevel cell (MLC) switching. Consequently, intermediate resistance values were obtained, which were suitable for MLC switching. The fabricated Y2O3 RRAM devices could function as a MLC with a capacity of two bits in one cell, utilizing three low-resistance states and one common high-resistance state. The potential of the Y2O3 RRAM devices for neural networks was further explored through numerical simulations. Hardware neural networks based on the Y2O3 RRAM devices demonstrated effective digit image classification with a high accuracy rate of approximately 88%, comparable to the ideal software-based classification (~92%). This indicates that the proposed RRAM can be utilized as a memory component in practical neuromorphic systems. Full article
(This article belongs to the Special Issue Nanostructures for Integrated Devices)
Show Figures

Figure 1

23 pages, 5403 KiB  
Article
Novel Microemulsions with Essential Oils for Environmentally Friendly Cleaning of Copper Cultural Heritage Artifacts
by Mihaela Ioan, Dan Florin Anghel, Ioana Catalina Gifu, Elvira Alexandrescu, Cristian Petcu, Lia Mara Diţu, Georgiana Alexandra Sanda, Daniela Bala and Ludmila Otilia Cinteza
Nanomaterials 2023, 13(17), 2430; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13172430 - 26 Aug 2023
Cited by 1 | Viewed by 2041
Abstract
Cleaning represents an important and challenging operation in the conservation of cultural heritage, and at present, a key issue consists in the development of more sustainable, “green” materials and methods to perform it. In the present work, a novel xylene-in-water microemulsion based on [...] Read more.
Cleaning represents an important and challenging operation in the conservation of cultural heritage, and at present, a key issue consists in the development of more sustainable, “green” materials and methods to perform it. In the present work, a novel xylene-in-water microemulsion based on nonionic surfactants with low toxicity was obtained, designed as low-impact cleaning agent for metallic historic objects. Phase diagram of the mixtures containing polyoxyethylene-polyoxypropilene triblock copolymer Pluronic P84 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) as surfactants, water, ethanol and xylene was studied, and a microemulsion with low surfactant content was selected as suitable cleaning nanosystem. Essential oils (EOs) from thyme and cinnamon leaf were added to the selected microemulsion in order to include other beneficial properties such as anticorrosive and antifungal protection. The microemulsions with or without EOs were characterized by size, size distribution and zeta potential. The cleaning efficacy of the tested microemulsions was assessed based on their ability to remove two types of artificial dirt by using X-ray energy dispersion spectrometry (EDX), scanning electron microscopy (SEM), contact angle measurements and color analysis. Microemulsions exhibit high capacity to remove artificial dirt from model copper coupons in spite of very low content of the organic solvent. Both thyme and cinnamon oil loading microemulsions prove to significantly reduce the corrosion rate of treated metallic plates compared to those of bare copper. The antifungal activity of the novel type of microemulsion was evaluated against Aspergillus niger, reported as main treat in biocorrosion of historic copper artifacts. Application of microemulsion with small amounts of EOs on Cu plates inhibits the growth of fungi, providing a good fungicidal effect. Full article
(This article belongs to the Special Issue Micro/Nano Emulsions: Fabrication and Applications)
Show Figures

Figure 1

22 pages, 6250 KiB  
Article
Mesoporous Dual-Semiconductor ZnS/CdS Nanocomposites as Efficient Visible Light Photocatalysts for Hydrogen Generation
by Ioannis Vamvasakis, Evangelos K. Andreou and Gerasimos S. Armatas
Nanomaterials 2023, 13(17), 2426; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13172426 - 26 Aug 2023
Cited by 1 | Viewed by 1289
Abstract
The development of functional catalysts for the photogeneration of hydrogen (H2) via water-splitting is crucial in the pursuit of sustainable energy solutions. To that end, metal-sulfide semiconductors, such as CdS and ZnS, can play a significant role in the process due [...] Read more.
The development of functional catalysts for the photogeneration of hydrogen (H2) via water-splitting is crucial in the pursuit of sustainable energy solutions. To that end, metal-sulfide semiconductors, such as CdS and ZnS, can play a significant role in the process due to their interesting optoelectronic and catalytic properties. However, inefficient charge-carrier dissociation and poor photochemical stability remain significant limitations to photocatalytic efficiency. Herein, dual-semiconductor nanocomposites of ZnS/CdS nanocrystal assemblies (NCAs) are developed as efficient visible light photocatalysts for H2 generation. The resultant materials, synthesized via a polymer-templated self-polymerization method, comprise a unique combination of ~5–7 nm-sized metal-sulfide nanoparticles that are interlinked to form a 3D open-pore structure with large internal surface area (up to 285 m2 g−1) and uniform pores (circa 6–7 nm). By adjusting the ratio of constituent nanoparticles, the optimized ZnS/CdS catalyst with 50 wt.% ZnS content demonstrates a remarkable stability and visible light H2-evolution activity (~29 mmol g−1 h−1 mass activity) with an apparent quantum yield (AQY) of 60% at 420 nm. Photocatalytic evaluation experiments combined with electrochemical and spectroscopic studies suggest that the superior photocatalytic performance of these materials stems from the accessible 3D open-pore structure and the efficient defect-mediated charge transfer mechanism at the ZnS/CdS nanointerfaces. Overall, this work provides a new perspective for designing functional and stable photocatalytic materials for sustainable H2 production. Full article
Show Figures

Graphical abstract

14 pages, 4968 KiB  
Article
Nanostructured Carbon-Doped BN for CO2 Capture Applications
by Rimeh Mighri, Kevin Turani-I-Belloto, Umit B. Demirci and Johan G. Alauzun
Nanomaterials 2023, 13(17), 2389; https://0-doi-org.brum.beds.ac.uk/10.3390/nano13172389 - 22 Aug 2023
Viewed by 876
Abstract
Carbon-doped boron nitride (denoted by BN/C) was prepared through the pyrolysis at 1100 °C of a nanostructured mixture of an alkyl amine borane adduct and ammonia borane. The alkyl amine borane adduct acts as a soft template to obtain nanospheres. This bottom-up approach [...] Read more.
Carbon-doped boron nitride (denoted by BN/C) was prepared through the pyrolysis at 1100 °C of a nanostructured mixture of an alkyl amine borane adduct and ammonia borane. The alkyl amine borane adduct acts as a soft template to obtain nanospheres. This bottom-up approach for the synthesis of nanostructured BN/C is relatively simple and compelling. It allows the structure obtained during the emulsion process to be kept. The final BN/C materials are microporous, with interconnected pores in the nanometer range (0.8 nm), a large specific surface area of up to 767 m2·g−1 and a pore volume of 0.32 cm3·g−1. The gas sorption studied with CO2 demonstrated an appealing uptake of 3.43 mmol·g−1 at 0 °C, a high CO2/N2 selectivity (21) and 99% recyclability after up to five adsorption–desorption cycles. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Gas Capture, Separation and Storage)
Show Figures

Figure 1

Back to TopTop