Special Issue "Fat Diets and Metabolic Diseases"

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Nutrition and Metabolism".

Deadline for manuscript submissions: 11 March 2022.

Special Issue Editor

Dr. Beatriz Merino
E-Mail Website
Guest Editor
Instituto de Biología y Genética Molecular, University of Valladolid, Spain
Interests: diabetes; endocrine pancreas; insulin resistance; high fat diet; obesity; pancreatic beta-cells; pancreatic alpha-cells; metabolic adaptations

Special Issue Information

Dear Colleagues,

The consumption of high-fat diets and the resulting obesity is one of the great health problems of this century. The chronic consumption of fats in the diet leads to an increase in obesity in the population, which is a main risk factor for the development of metabolic diseases such as Type 2 diabetes.

The goal of this Special Issue, “Fat Diets and Metabolic Diseases”, is to focus on the importance of the impact of fat diets and diet supplementation in the development of metabolic adaptations and diseases specially in diabetes, insulin resistance and liver disorders. 

Fat Diets and Metabolic Diseases Special Issue welcomes the submission of manuscripts either describing original research or reviewing the scientific literature, including systematic reviews and meta-analyses. The manuscripts should focus on the study of the metabolic adaptations derived from the consumption of high-fat diets or dietary supplements and that lead to the development of metabolic disorders such as insulin resistance, fatty liver, other liver diseases and/or diabetes.

Dr. Beatriz Merino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Fat diet
  • Obesity
  • Diabetes
  • Insulin resistance
  • Endocrine pancreas
  • Metabolic adaptations
  • Diet supplementation
  • Fatty liver
  • Liver diseases

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
FXR, a Key Regulator of Lipid Metabolism, Is Inhibited by ER Stress-Mediated Activation of JNK and p38 MAPK in Large Yellow Croakers (Larimichthys crocea) Fed High Fat Diets
by , , , , , , and
Nutrients 2021, 13(12), 4343; https://0-doi-org.brum.beds.ac.uk/10.3390/nu13124343 - 01 Dec 2021
Viewed by 206
Abstract
High-fat diets induced abnormal lipid accumulation in the liver of cultured fish that caused body damage and diseases. The purpose of this research was to investigate the role and mechanism of farnesoid X receptor (FXR) in regulating lipid metabolism and to determine how [...] Read more.
High-fat diets induced abnormal lipid accumulation in the liver of cultured fish that caused body damage and diseases. The purpose of this research was to investigate the role and mechanism of farnesoid X receptor (FXR) in regulating lipid metabolism and to determine how high-fat diets affect FXR expression in large yellow croakers. The results showed that ligand-meditated FXR-activation could prevent abnormal lipid accumulation in the liver and hepatocytes of large yellow croakers. FXR activation increased the expression of lipid catabolism-related genes while decreasing the expression of lipogenesis-related genes. Further investigation found that the promoter activity of proliferator-activated receptor α (PPARα) could be increased by croaker FXR. Through the influence of SHP on LXR, FXR indirectly decreased the promoter activity of sterol regulatory element binding protein 1 (SREBP1) in large yellow croakers. Furthermore, the findings revealed that endoplasmic reticulum (ER)-stress-induced-activation of JNK and P38 MAPK participated in the reduction of FXR induced by high-fat diets. Then, hepatocyte nuclear factor 1α (HNF1α) was confirmed to be an FXR regulator in large yellow croaker, and it was reduced by high-fat diets and ER stress. In addition, co-expression of c-Jun with HNF1α inhibited the effect of HNF1α on FXR promoter, and suppression of P38 MAPK could relieve the HNF1α expression reduction caused by ER stress activation. In summary, the present study showed that FXR mediated lipid metabolism can prevent abnormal lipid accumulation through regulating PPARα and SREBP1 in large yellow croakers, while high-fat diets can suppress FXR expression by ER stress mediated-activation of JNK and P38 MAPK pathways. This research could benefit the study of FXR functions in vertebrate evolution and the development of therapy or preventative methods for nutrition-related disorders. Full article
(This article belongs to the Special Issue Fat Diets and Metabolic Diseases)
Show Figures

Figure 1

Article
Implications of SCFAs on the Parameters of the Lipid and Hepatic Profile in Pregnant Women
Nutrients 2021, 13(6), 1749; https://0-doi-org.brum.beds.ac.uk/10.3390/nu13061749 - 21 May 2021
Viewed by 892
Abstract
Short-chain fatty acids (SCFAs) are the product of the anaerobic intestinal bacterial fermentation of dietary fiber and resistant starch. An abnormal intestinal microbiota may cause a reduction in the production of SCFAs, which stimulate the development of intestinal epithelial cells, nourish enterocytes, influence [...] Read more.
Short-chain fatty acids (SCFAs) are the product of the anaerobic intestinal bacterial fermentation of dietary fiber and resistant starch. An abnormal intestinal microbiota may cause a reduction in the production of SCFAs, which stimulate the development of intestinal epithelial cells, nourish enterocytes, influence their maturation and proper differentiation, reduce the pH, and are an additional source of energy for the host. There have been reports of the special role of SCFAs in the regulation of glucose and lipid metabolism during pregnancy. Aim: The aim of the study was to analyze the correlation of SCFAs with lipid and hepatic metabolism during pregnancy in relation to the body weight of pregnant women. Material and methods: This study was conducted in pregnant women divided into two groups: Obese (OW—overweight and obese women; n = 48) and lean (CG—control group; n = 48) individuals. The biochemical plasma parameters of lipid metabolism (TG, CH, LDL, HDL), inflammation (CRP), and liver function (ALT, AST, GGT) were determined in all of the subjects. SCFA analysis was performed in the stool samples to measure acetic acid (C 2:0), propionic acid (C 3:0), isobutyric acid (C 4:0 i), butyric acid (C 4:0 n), isovaleric acid (C 5:0 i) valeric acid (C 5:0 n), isocaproic acid (C 6:0 i), caproic acid (C 6:0 n), and heptanoic acid (C 7:0). Results: Statistically significant differences in the concentrations of C 3:0 and C 6:0 n were found between women in the OW group compared to the CG group. The other SCFAs tested did not differ significantly depending on BMI. The C 2:0, C 3:0, and C 4:0 n ratios showed differences in both OW and CG groups. In the OW group, no relationship was observed between the concentrations of the SCFAs tested and CRP, ALT, AST. A surprising positive relationship between C 5:0 n and all fractions of the tested lipids and branched C 5:0 with CHL, HDL, and LDL was demonstrated. In the OW group, HDL showed a positive correlation with C 3:0. However, lower GGT concentrations were accompanied by higher C 4:0 and C 5:0 values, and this tendency was statistically significant. Conclusions: The results of our research show that some SCFAs are associated with hepatic lipid metabolism and CRP concentrations, which may vary with gestational weight. Obesity in pregnancy reduces the amount of SCFAs in the stool, and a decrease in the level of butyrate reduces liver function. Full article
(This article belongs to the Special Issue Fat Diets and Metabolic Diseases)
Show Figures

Figure 1

Review

Jump to: Research

Review
Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases
Nutrients 2021, 13(8), 2830; https://0-doi-org.brum.beds.ac.uk/10.3390/nu13082830 - 18 Aug 2021
Cited by 2 | Viewed by 991
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading [...] Read more.
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19. Full article
(This article belongs to the Special Issue Fat Diets and Metabolic Diseases)
Show Figures

Graphical abstract

Review
Effect of Dietary Fatty Acids on MicroRNA Expression Related to Metabolic Disorders and Inflammation in Human and Animal Trials
Nutrients 2021, 13(6), 1830; https://0-doi-org.brum.beds.ac.uk/10.3390/nu13061830 - 27 May 2021
Viewed by 1135
Abstract
Dietary fatty acids (DFAs) play key roles in different metabolic processes in humans and other mammals. DFAs have been considered beneficial for health, particularly polyunsaturated (PUFAs) and monounsaturated fatty acids (MUFAs). Additionally, microRNAs (miRNAs) exert their function on DFA metabolism by modulating gene [...] Read more.
Dietary fatty acids (DFAs) play key roles in different metabolic processes in humans and other mammals. DFAs have been considered beneficial for health, particularly polyunsaturated (PUFAs) and monounsaturated fatty acids (MUFAs). Additionally, microRNAs (miRNAs) exert their function on DFA metabolism by modulating gene expression, and have drawn great attention for their potential as biomarkers and therapeutic targets. This review explicitly examined the effects of DFAs on miRNA expression associated with metabolic diseases, such as obesity, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD), as well as inflammation, published in the last ten years. DFAs have been shown to induce and repress miRNA expression associated with metabolic disease and inflammation in different cell types and organisms, both in vivo and in vitro, depending on varying combinations of DFAs, doses, and the duration of treatment. However, studies are limited and heterogeneous in methodology. Additionally, recent studies demonstrated that high fat ketogenic diets, many enriched with saturated fats, do not increase serum saturated fat content in humans, and are not associated with increased inflammation. Thus, these findings shed light on the complexity of novel treatment and DFA interventions for metabolic disease and to maintain health. Further studies are needed to advance molecular therapeutic approaches, including miRNA-based strategies in human health and disease. Full article
(This article belongs to the Special Issue Fat Diets and Metabolic Diseases)
Show Figures

Graphical abstract

Review
Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy
Nutrients 2021, 13(4), 1244; https://0-doi-org.brum.beds.ac.uk/10.3390/nu13041244 - 09 Apr 2021
Cited by 3 | Viewed by 1625
Abstract
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, [...] Read more.
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, coexisting disease and other factors. During pregnancy, metabolic changes related to the protection of energy homeostasis are of fundamental importance for the developing fetus, its future metabolic fate and the mother’s health. SCFAs act as signaling molecules that regulate the body’s energy balance through G-protein receptors. GPR41 receptors affect metabolism through the microflora, while GPR43 receptors are recognized as a molecular link between diet, microflora, gastrointestinal tract, immunity and the inflammatory response. The possible mechanism by which the gut microflora may contribute to fat storage, as well as the occurrence of gestational insulin resistance, is blocking the expression of the fasting-induced adipose factor. SCFAs, in particular propionic acid via GPR, determine the development and metabolic programming of the fetus in pregnant women. The mechanisms regulating lipid metabolism during pregnancy are similar to those found in obese people and those with impaired microbiome and its metabolites. The implications of SCFAs and metabolic disorders during pregnancy are therefore critical to maternal health and neonatal development. In this review paper, we summarize the current knowledge about SCFAs, their potential impact and possible mechanisms of action in relation to maternal metabolism during pregnancy. Therefore, they constitute a contemporary challenge to practical nutritional therapy. Material and methods: The PubMed database were searched for “pregnancy”, “lipids”, “SCFA” in conjunction with “diabetes”, “hypertension”, and “microbiota”, and searches were limited to work published for a period not exceeding 20 years in the past. Out of 2927 publication items, 2778 papers were excluded from the analysis, due to being unrelated to the main topic, conference summaries and/or articles written in a language other than English, while the remaining 126 publications were included in the analysis. Full article
(This article belongs to the Special Issue Fat Diets and Metabolic Diseases)
Show Figures

Figure 1

Back to TopTop