nutrients-logo

Journal Browser

Journal Browser

Antioxidant Nutrients and Bioactive Compounds in the Prevention of Chronic Diseases

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Phytochemicals and Human Health".

Deadline for manuscript submissions: closed (31 May 2023) | Viewed by 25353

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
Interests: colon cancer; inflammatory bowel disease; diet; microbiota
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Consumption of diets containing low levels of nutrients and bioactive compounds characterized as antioxidants is associated with multiple chronic diseases, including but not limited to cardiovascular disease, diabetes, obesity, inflammatory bowel disease, and cancer.  Several nutrients and bioactive compounds present in our foods and drinks not only have antioxidant activity but also protect against chronic diseases through a myriad of other mechanisms. These effects occur in response to the parent compound, or to a metabolite produced from mammalian or microbial metabolism. Because some of these compounds reach the colon intact, they also impact the microbiome, and through modifications to the populations present there and their metabolism, they have further effects on chronic disease prevention.

The goal of papers published in this Special Issue is to share cutting-edge research defining the impact of antioxidant nutrients and bioactive compounds on chronic disease prevention. Original research (cell based, preclinical, and clinical) and critical reviews addressing the impacts of antioxidant nutrients and bioactive compounds on systemic physiology, metabolic pathways, signaling pathways, as well as the transcriptome, metabolome, microbiome, and epigenome are welcomed.

Dr. Nancy D. Turner
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antioxidants
  • bioactive compounds
  • chronic diseases
  • microbiome
  • metabolome
  • transcriptome
  • epigenome
  • signaling pathways
  • metabolic pathways

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 4962 KiB  
Article
Cocoa Polyphenol Extract Inhibits Cellular Senescence via Modulation of SIRT1 and SIRT3 in Auditory Cells
by Luz del Mar Rivas-Chacón, Joaquín Yanes-Díaz, Beatriz de Lucas, Juan Ignacio Riestra-Ayora, Raquel Madrid-García, Ricardo Sanz-Fernández and Carolina Sánchez-Rodríguez
Nutrients 2023, 15(3), 544; https://0-doi-org.brum.beds.ac.uk/10.3390/nu15030544 - 20 Jan 2023
Cited by 5 | Viewed by 2769
Abstract
Cocoa, rich in polyphenols, has been reported to provide many health benefits due to its antioxidant properties. In this study, we investigated the effect of Cocoa polyphenols extract (CPE) against oxidative stress-induced cellular senescence using a hydrogen peroxide (H2O2)-induced [...] Read more.
Cocoa, rich in polyphenols, has been reported to provide many health benefits due to its antioxidant properties. In this study, we investigated the effect of Cocoa polyphenols extract (CPE) against oxidative stress-induced cellular senescence using a hydrogen peroxide (H2O2)-induced cellular senescence model in three auditory cells lines derived from the auditory organ of a transgenic mouse: House Ear Institute-Organ of Corti 1 (HEI-OC1), Organ of Corti-3 (OC-k3), and Stria Vascularis (SV-k1) cells. Our results showed that CPE attenuated senescent phenotypes, including senescence-associated β-galactosidase expression, cell proliferation, alterations of morphology, oxidative DNA damage, mitochondrial dysfunction by inhibiting mitochondrial reactive oxygen species (mtROS) generation, and related molecules expressions such as forkhead box O3 (FOXO3) and p53. In addition, we determined that CPE induces expression of sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), and it has a protective role against cellular senescence by upregulation of SIRT1 and SIRT3. These data indicate that CPE protects against senescence through SIRT1, SIRT3, FOXO3, and p53 in auditory cells. In conclusion, these results suggest that Cocoa has therapeutic potential against age-related hearing loss (ARHL). Full article
Show Figures

Graphical abstract

25 pages, 6414 KiB  
Article
Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells
by Getinet M. Adinew, Samia S. Messeha, Equar Taka, Ramesh B. Badisa and Karam F. A. Soliman
Nutrients 2022, 14(22), 4787; https://0-doi-org.brum.beds.ac.uk/10.3390/nu14224787 - 13 Nov 2022
Cited by 7 | Viewed by 2056
Abstract
The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a [...] Read more.
The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a downstream signaling target, have a strong correlation to oxidative stress and inflammation, major factors in the development and progression of TNBC. In this study, the genetically distinct MDA-MB-231 and MDA-MB-468 TNBC cells were treated with the natural component thymoquinone (TQ). The results show that TQ exhibits considerable antioxidant activity and decreases the generation of H2O2, at the same time increasing catalase (CAT) activity, superoxide dismutase (SOD) enzyme, and glutathione (GSH). Additionally, the results show that TQ treatment increased the levels of the different genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM in both cell lines with significant large-fold change in MDA-MB-468 cells (+157.65 vs. +1.7, +48.87 vs. +2.63 and +4.78 vs. +2.17), respectively. Nrf2 mRNA and protein expression were also significantly increased in TQ-treated TNBC cells despite being higher in MDA-MB-468 cells (6.67 vs. 4.06). Meanwhile, TQ administration increased mRNA levels while decreasing PD-L1 protein expression in both cell lines. In conclusion, TQ modifies the expression of multiple oxidative-stress-antioxidant system genes, ROS, antioxidant enzymes, Nrf2, and PD-L1 protein, pointing to the therapeutic potential and chemopreventive utilization of TQ in TNBC. Full article
Show Figures

Figure 1

14 pages, 2767 KiB  
Article
Chiliadenus iphionoides Reduces Body Weight and Improves Parameters Related to Hepatic Lipid and Glucose Metabolism in a High-Fat-Diet-Induced Mice Model of NAFLD
by Gil Zandani, Sarit Anavi-Cohen, Tamar Yudelevich, Abraham Nyska, Nativ Dudai, Zecharia Madar and Jonathan Gorelick
Nutrients 2022, 14(21), 4552; https://0-doi-org.brum.beds.ac.uk/10.3390/nu14214552 - 28 Oct 2022
Cited by 4 | Viewed by 1933
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an epidemic with increasing prevalence. Limited treatment options and poor adherence emphasize the urgent need for novel therapies for the treatment and/or prevention of NAFLD. Bioactive natural compounds found in medicinal plants are promising as novel [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) has become an epidemic with increasing prevalence. Limited treatment options and poor adherence emphasize the urgent need for novel therapies for the treatment and/or prevention of NAFLD. Bioactive natural compounds found in medicinal plants are promising as novel therapeutic agents for NAFLD. Chiliadenus iphionoides, a medicinal plant with several health-promoting properties, is an encouraging candidate. The current study aimed to elucidate the metabolic effects of C. iphionoides consumption in a high-fat-diet (HFD)-induced model of NAFLD. Male C57BL/6J mice (n = 40, 7–8-week-old) were fed a HFD (60% fat) with/without 0.5 or 2.5 gr C. iphionoides for fifteen weeks. Diet supplementation with C. iphionoides significantly ameliorated HFD-induced weight gain. Likewise, liver and adipose tissue weights were profoundly lower in the C. iphionoides-fed groups. Reduced liver steatosis in those groups was corroborated by histology, plasma liver enzyme levels, and lipid profile, indicating improved liver function and lipid metabolism in addition to enhanced insulin sensitivity. The addition of C. iphionoides to an obesogeneic diet can beneficially alleviate metabolic alterations and may be a practicable strategy for the management of NAFLD. Full article
Show Figures

Figure 1

32 pages, 3719 KiB  
Article
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans
by Shimaa M. A. Sayed, Saleh Alseekh, Karsten Siems, Alisdair R. Fernie, Walter Luyten, Christian Schmitz-Linneweber and Nadine Saul
Nutrients 2022, 14(19), 4199; https://0-doi-org.brum.beds.ac.uk/10.3390/nu14194199 - 09 Oct 2022
Cited by 5 | Viewed by 2252
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, [...] Read more.
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects. Full article
Show Figures

Figure 1

17 pages, 2749 KiB  
Article
Chlorogenic Acid and Quercetin in a Diet with Fermentable Fiber Influence Multiple Processes Involved in DSS-Induced Ulcerative Colitis but Do Not Reduce Injury
by Leigh Ann Maslin, Bradley R. Weeks, Raymond J. Carroll, David H. Byrne and Nancy D. Turner
Nutrients 2022, 14(18), 3706; https://0-doi-org.brum.beds.ac.uk/10.3390/nu14183706 - 08 Sep 2022
Cited by 8 | Viewed by 2053
Abstract
Ulcerative colitis (UC) patients often avoid foods containing fermentable fibers as some can promote symptoms during active disease. Pectin has been identified as a more protective fermentable fiber, but little has been done to determine the interaction between pectin and bioactive compounds present [...] Read more.
Ulcerative colitis (UC) patients often avoid foods containing fermentable fibers as some can promote symptoms during active disease. Pectin has been identified as a more protective fermentable fiber, but little has been done to determine the interaction between pectin and bioactive compounds present in foods containing that fiber type. Quercetin and chlorogenic acid, two bioactives in stone fruits, may have anti-cancer, anti-oxidant, and anti-inflammatory properties. We hypothesized that quercetin and chlorogenic acid, in the presence of the fermentable fiber pectin, may suppress the expression of pro-inflammatory molecules, alter the luminal environment, and alter colonocyte proliferation, thereby protecting against recurring bouts of UC. Rats (n = 63) received one of three purified diets (control, 0.45% quercetin, 0.05% chlorogenic acid) containing 6% pectin for 3 weeks before exposure to dextran sodium sulfate (DSS, 3% for 48 h, 3x, 2 wk separation, n = 11/diet) in drinking water to initiate UC, or control (no DSS, n = 10/diet) treatments prior to termination at 9 weeks. DSS increased the fecal moisture content (p < 0.05) and SCFA concentrations (acetate, p < 0.05; butyrate, p < 0.05). Quercetin and chlorogenic acid diets maintained SLC5A8 (SCFA transporter) mRNA levels in DSS-treated rats at levels similar to those not exposed to DSS. DSS increased injury (p < 0.0001) and inflammation (p < 0.01) scores, with no differences noted due to diet. Compared to the control diet, chlorogenic acid decreased NF-κB activity in DSS-treated rats (p < 0.05). Quercetin and chlorogenic acid may contribute to the healthy regulation of NF-κB activation (via mRNA expression of IκΒα, Tollip, and IL-1). Quercetin enhanced injury-repair molecule FGF-2 expression (p < 0.01), but neither diet nor DSS treatment altered proliferation. Although quercetin and chlorogenic acid did not protect against overt indicators of injury and inflammation, or fecal SCFA concentrations, compared to the control diet, their influence on the expression of injury repair molecules, pro-inflammatory cytokines, SCFA transport proteins, and NF-κB inhibitory molecules suggests beneficial influences on major pathways involved in DSS-induced UC. Therefore, in healthy individuals or during periods of remission, quercetin and chlorogenic acid may promote a healthier colon, and may suppress some of the signaling involved in inflammation promotion during active disease. Full article
Show Figures

Figure 1

17 pages, 1227 KiB  
Article
Eggs Improve Plasma Biomarkers in Patients with Metabolic Syndrome Following a Plant-Based Diet—A Randomized Crossover Study
by Minu S. Thomas, Michael Puglisi, Olga Malysheva, Marie A. Caudill, Maria Sholola, Jessica L. Cooperstone and Maria Luz Fernandez
Nutrients 2022, 14(10), 2138; https://0-doi-org.brum.beds.ac.uk/10.3390/nu14102138 - 20 May 2022
Cited by 8 | Viewed by 3349
Abstract
Plant-based (PB) diets are considered a healthy dietary pattern; however, eggs are not always included in this dietary regime. We hypothesized that the addition of two eggs per day would increase HDL cholesterol as well as plasma lutein, zeaxanthin and choline in individuals [...] Read more.
Plant-based (PB) diets are considered a healthy dietary pattern; however, eggs are not always included in this dietary regime. We hypothesized that the addition of two eggs per day would increase HDL cholesterol as well as plasma lutein, zeaxanthin and choline in individuals with metabolic syndrome (MetS). In this randomized controlled crossover intervention, we recruited 30 participants (49.3 ± 8 y) with MetS who followed a PB diet for 13 weeks. A registered dietitian advised all subjects on food selection and followed them through the intervention to ensure compliance. Participants underwent a 2-week washout with no eggs or spinach (a source of dietary lutein and zeaxanthin) and were randomly allocated to consume spinach (70 g) with either two eggs (EGG) or the equivalent amount of egg substitute (SUB) for breakfast for 4 weeks. After a 3-week washout, they were allocated the alternate breakfast. A total of 24 participants (13 women/11 men) finished the intervention. Plasma lipids, glucose, insulin, anthropometrics, plasma lutein, zeaxanthin, choline and trimethylamine oxide (TMAO) were assessed at baseline and the end of each intervention. When we compared individuals consuming the EGG versus the SUB breakfast, we observed a lower body weight (p < 0.02) and a higher HDL cholesterol (p < 0.025) after the EGG diet. There were no differences in plasma LDL cholesterol, triglycerides, glucose, insulin, or blood pressure. The number of large HDL particles measured by NMR was higher after EGG (p < 0.01) as compared to SUB. Plasma choline was higher in both treatments (p < 0.01) compared to baseline (8.3 ± 2.1 μmol/L). However, plasma choline values were higher in EGG (10.54 ± 2.8 μmol/L) compared to SUB (9.47 ± 2.7 μmol/L) p < 0.025. Both breakfasts increased plasma lutein compared to baseline (p < 0.01), while plasma zeaxanthin was only increased in the egg intervention (p < 0.01). These results indicate that consuming a plant-based diet in combination with whole eggs increases plasma HDL cholesterol, choline and zeaxanthin, important biomarkers in subjects with MetS. Full article
Show Figures

Figure 1

15 pages, 16052 KiB  
Article
The Nutraceutical Antihypertensive Action of C-Phycocyanin in Chronic Kidney Disease Is Related to the Prevention of Endothelial Dysfunction
by Placido Rojas-Franco, Erick Garcia-Pliego, Alma Gricelda Vite-Aquino, Margarita Franco-Colin, Jose Ivan Serrano-Contreras, Norma Paniagua-Castro, Carlos Angel Gallardo-Casas, Vanessa Blas-Valdivia and Edgar Cano-Europa
Nutrients 2022, 14(7), 1464; https://0-doi-org.brum.beds.ac.uk/10.3390/nu14071464 - 31 Mar 2022
Cited by 3 | Viewed by 2456
Abstract
C-phycocyanin (CPC) is an antihypertensive that is not still wholly pharmacologically described. The aim of this study was to evaluate whether CPC counteracts endothelial dysfunction as an antihypertensive mechanism in rats with 5/6 nephrectomy (NFx) as a chronic kidney disease (CKD) model. Twenty-four [...] Read more.
C-phycocyanin (CPC) is an antihypertensive that is not still wholly pharmacologically described. The aim of this study was to evaluate whether CPC counteracts endothelial dysfunction as an antihypertensive mechanism in rats with 5/6 nephrectomy (NFx) as a chronic kidney disease (CKD) model. Twenty-four male Wistar rats were divided into four groups: sham control, sham-treated with CPC (100 mg/Kg/d), NFx, and NFx treated with CPC. Blood pressure was measured each week, and renal function evaluated at the end of the treatment. Afterward, animals were euthanized, and their thoracic aortas were analyzed for endothelium functional test, oxidative stress, and NO production. 5/6 Nephrectomy caused hypertension increasing lipid peroxidation and ROS production, overexpression of inducible nitric oxide synthase (iNOS), reduction in the first-line antioxidant enzymes activities, and reduced-glutathione (GSH) with a down-expression of eNOS. The vasomotor response reduced endothelium-dependent vasodilation in aorta segments exposed to acetylcholine and sodium nitroprusside. However, the treatment with CPC prevented hypertension by reducing oxidative stress, NO system disturbance, and endothelial dysfunction. The CPC treatment did not prevent CKD-caused disturbance in the antioxidant enzymes activities. Therefore, CPC exhibited an antihypertensive activity while avoiding endothelial dysfunction. Full article
Show Figures

Figure 1

15 pages, 2421 KiB  
Article
Protective Effects of Sesamol against Liver Oxidative Stress and Inflammation in High-Fat Diet-Induced Hepatic Steatosis
by Wenya Zheng, Ziyu Song, Sha Li, Minmin Hu, Horia Shaukat and Hong Qin
Nutrients 2021, 13(12), 4484; https://0-doi-org.brum.beds.ac.uk/10.3390/nu13124484 - 15 Dec 2021
Cited by 20 | Viewed by 3698
Abstract
Chronic high-fat diet (HFD) is associated with the onset and progression of hepatic steatosis, and oxidative stress is highly involved in this process. The potential role of sesamol (SEM) against oxidative stress and inflammation at the transcriptional level in a mice model of [...] Read more.
Chronic high-fat diet (HFD) is associated with the onset and progression of hepatic steatosis, and oxidative stress is highly involved in this process. The potential role of sesamol (SEM) against oxidative stress and inflammation at the transcriptional level in a mice model of hepatic steatosis is not known. In this study, we aimed to investigate the scavenging effects of SEM towards reactive oxygen generated by lipid accumulation in the liver of obese mice and to explore the mechanisms of protection. Markers of oxidative stress, vital enzymes involved in stimulating oxidative stress or inflammation, and nuclear transcription of Nrf2 were examined. Our results showed that SEM significantly inhibited the activity of the HFD-induced hepatic enzymes CYP2E1 and NOX2, associated with oxidative stress generation. Additionally, SEM reversed HFD-induced activation of NF-κB, a redox-sensitive transcription factor, and attenuated the expression of hepatic TNF-α, a proinflammatory molecule. Moreover, SEM enhanced HFD-induced hepatic Nrf2 nuclear transcription and increased the levels of its downstream target genes Ho1 and Nqo1, which indicated antiinflammation and antioxidant properties. Our study suggests that chronic HFD led to hepatic steatosis, while SEM exhibited protective effects on the liver by counteracting the oxidative stress and inflammation induced by HFD. The underlying mechanism might involve multiple pathways at the transcriptional level; the antioxidant defense mechanism was in partly mediated by the upregulation of Nrf2. Full article
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 1169 KiB  
Review
Pharmacological and Molecular Insight on the Cardioprotective Role of Apigenin
by Shilu Deepa Thomas, Niraj Kumar Jha, Saurabh Kumar Jha, Bassem Sadek and Shreesh Ojha
Nutrients 2023, 15(2), 385; https://0-doi-org.brum.beds.ac.uk/10.3390/nu15020385 - 12 Jan 2023
Cited by 20 | Viewed by 3355
Abstract
Apigenin is a naturally occurring dietary flavonoid found abundantly in fruits and vegetables. It possesses a wide range of biological properties that exert antioxidant, anti-inflammatory, anticancer, and antibacterial effects. These effects have been reported to be beneficial in the treatment of atherosclerosis, stroke, [...] Read more.
Apigenin is a naturally occurring dietary flavonoid found abundantly in fruits and vegetables. It possesses a wide range of biological properties that exert antioxidant, anti-inflammatory, anticancer, and antibacterial effects. These effects have been reported to be beneficial in the treatment of atherosclerosis, stroke, hypertension, ischemia/reperfusion-induced myocardial injury, and diabetic cardiomyopathy, and provide protection against drug-induced cardiotoxicity. These potential therapeutic effects advocate the exploration of the cardioprotective actions of apigenin. This review focuses on apigenin, and the possible pharmacological mechanisms involved in the protection against cardiovascular diseases. We further discuss its therapeutic uses and highlight its potential applications in the treatment of various cardiovascular disorders. Apigenin displays encouraging results, which may have implications in the development of novel strategies for the treatment of cardiovascular diseases. With the commercial availability of apigenin as a dietary supplement, the outcomes of preclinical studies may provide the investigational basis for future translational strategies evaluating the potential of apigenin in the treatment of cardiovascular disorders. Further preclinical and clinical investigations are required to characterize the safety and efficacy of apigenin and establish it as a nutraceutical as well as a therapeutic agent to be used alone or as an adjuvant with current drugs. Full article
Show Figures

Figure 1

Back to TopTop