Selected Papers from the 5th International Electronic Conference on Medicinal Chemistry

A special issue of Pharmaceuticals (ISSN 1424-8247).

Deadline for manuscript submissions: closed (31 May 2020) | Viewed by 27317

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Formerly Head, Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
Interests: heterocycles; medicinal chemistry; green chemistry; microwave-induced synthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue features selected papers from the 5th International Electronic Conference on Medicinal Chemistry (ECMC-5), held 1–30 November 2019. The conference was hosted on sciforum.net, an online platform for scholarly e-conferences and discussion groups. For more information on ECMC-5, please go to https://sciforum.net/conference/ECMC2019

Related Special Issues

Dr. Jean Jacques Vanden Eynde
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issues

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

21 pages, 2205 KiB  
Article
Lipoxygenase Inhibition Activity of Coumarin Derivatives—QSAR and Molecular Docking Study
by Melita Lončarić, Ivica Strelec, Valentina Pavić, Domagoj Šubarić, Vesna Rastija and Maja Molnar
Pharmaceuticals 2020, 13(7), 154; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13070154 - 17 Jul 2020
Cited by 23 | Viewed by 3401
Abstract
Lipoxygenases (LOXs) are a family of enzymes found in plants, mammals, and microorganisms. In animals and plants, the enzyme has the capability for the peroxidation of unsaturated fatty acids. Although LOXs participate in the plant defense system, the enzyme’s metabolites can have numerous [...] Read more.
Lipoxygenases (LOXs) are a family of enzymes found in plants, mammals, and microorganisms. In animals and plants, the enzyme has the capability for the peroxidation of unsaturated fatty acids. Although LOXs participate in the plant defense system, the enzyme’s metabolites can have numerous negative effects on human health. Therefore, many types of research are searching for compounds that can inhibit LOXs. The best quantitative structure–activity relationship (QSAR) model was obtained using a Genetic Algorithm (GA). Molecular docking was performed with iGEMDOCK. The inhibition of lipoxygenase was in the range of 7.1 to 96.6%, and the inhibition of lipid peroxidation was 7.0–91.0%. Among the synthesized compounds, the strongest inhibitor of soybean LOX-3 (96.6%) was found to be 3-benzoyl-7-(benzyloxy)-2H-chromen-2-one. A lipid peroxidation inhibition of 91.0% was achieved with ethyl 7-methoxy-2-oxo-2H-chromene-3-carboxylate. The docking scores for the soybean LOX-3 and human 5-LOX also indicated that this compound has the best affinity for these LOX enzymes. The best multiple linear QSAR model contains the atom-centered fragment descriptors C-06, RDF035p, and HATS8p. QSAR and molecular docking studies elucidated the structural features important for the enhanced inhibitory activity of the most active compounds, such as the presence of the benzoyl ring at the 3-position of coumarin’s core. Compounds with benzoyl substituents are promising candidates as potent lipoxygenase inhibitors. Full article
Show Figures

Figure 1

12 pages, 467 KiB  
Article
Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity
by Artur Adamczak, Marcin Ożarowski and Tomasz M. Karpiński
Pharmaceuticals 2020, 13(7), 153; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13070153 - 16 Jul 2020
Cited by 151 | Viewed by 8697
Abstract
Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin’s [...] Read more.
Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin’s efficacy against over 100 strains of pathogens belonging to 19 species. This activity was determined by the broth microdilution method and by calculating the minimum inhibitory concentration (MIC). Our findings confirmed a much greater sensitivity of Gram-positive than Gram-negative bacteria. This study exhibited a significantly larger variation in the curcumin activity than previous works and suggested that numerous clinical strains of widespread pathogens have a poor sensitivity to curcumin. Similarly, the MICs of the MDR types of Staphylococcus aureus, S. haemolyticus, Escherichia coli, and Proteus mirabilis were high (≥2000 µg/mL). However, curcumin was effective against some species and strains: Streptococcus pyogenes (median MIC = 31.25 µg/mL), methicillin-sensitive S. aureus (250 µg/mL), Acinetobacter lwoffii (250 µg/mL), and individual strains of Enterococcus faecalis and Pseudomonas aeruginosa (62.5 µg/mL). The sensitivity of species was not associated with its affiliation to the genus, and it could differ a lot (e.g., S. pyogenes, S. agalactiae and A. lwoffii, A. baumannii). Hence, curcumin can be considered as a promising antibacterial agent, but with a very selective activity. Full article
Show Figures

Graphical abstract

23 pages, 3658 KiB  
Article
Computer-Aided Design, Synthesis, and Antiviral Evaluation of Novel Acrylamides as Potential Inhibitors of E3-E2-E1 Glycoproteins Complex from Chikungunya Virus
by Gabriel Felipe Silva Passos, Matheus Gabriel Moura Gomes, Thiago Mendonça de Aquino, João Xavier de Araújo-Júnior, Stephannie Janaina Maia de Souza, João Pedro Monteiro Cavalcante, Elane Conceição dos Santos, Ênio José Bassi and Edeildo Ferreira da Silva-Júnior
Pharmaceuticals 2020, 13(7), 141; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13070141 - 30 Jun 2020
Cited by 24 | Viewed by 4657
Abstract
Chikungunya virus (CHIKV) causes an infectious disease characterized by inflammation and pain of the musculoskeletal tissues accompanied by swelling in the joints and cartilage damage. Currently, there are no licensed vaccines or chemotherapeutic agents to prevent or treat CHIKV infections. In this context, [...] Read more.
Chikungunya virus (CHIKV) causes an infectious disease characterized by inflammation and pain of the musculoskeletal tissues accompanied by swelling in the joints and cartilage damage. Currently, there are no licensed vaccines or chemotherapeutic agents to prevent or treat CHIKV infections. In this context, our research aimed to explore the potential in vitro anti-CHIKV activity of acrylamide derivatives. In silico methods were applied to 132 Michael’s acceptors toward the six most important biological targets from CHIKV. Subsequently, the ten most promising acrylamides were selected and synthesized. From the cytotoxicity MTT assay, we verified that LQM330, 334, and 336 demonstrate high cell viability at 40 µM. Moreover, these derivatives exhibited anti-CHIKV activities, highlighting the compound LQM334 which exhibited an inhibition value of 81%. Thus, docking simulations were performed to suggest a potential CHIKV-target for LQM334. It was observed that the LQM334 has a high affinity towards the E3-E2-E1 glycoproteins complex. Moreover, LQM334 reduced the percentage of CHIKV-positive cells from 74.07 to 0.88%, 48h post-treatment on intracellular flow cytometry staining. In conclusion, all virtual simulations corroborated with experimental results, and LQM334 could be used as a promising anti-CHIKV scaffold for designing new drugs in the future. Full article
Show Figures

Graphical abstract

11 pages, 3270 KiB  
Communication
Physicochemical Investigation of Psoralen Binding to Double Stranded DNA through Electroanalytical and Cheminformatic Approaches
by Douglas Vieira Thomaz, Matheus Gabriel de Oliveira, Edson Silvio Batista Rodrigues, Vinicius Barreto da Silva and Pierre Alexandre dos Santos
Pharmaceuticals 2020, 13(6), 108; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13060108 - 28 May 2020
Cited by 6 | Viewed by 3003
Abstract
This work showcased the first physicochemical investigation of psoralen (PSO) binding to double stranded DNA (dsDNA) through electroanalytical methods. Results evidenced that PSO presents one non-reversible anodic peak at electric potential (Epa) ≈ 1.42 V, which is associated with its [...] Read more.
This work showcased the first physicochemical investigation of psoralen (PSO) binding to double stranded DNA (dsDNA) through electroanalytical methods. Results evidenced that PSO presents one non-reversible anodic peak at electric potential (Epa) ≈ 1.42 V, which is associated with its oxidation and the formation of an epoxide derivative. Moreover, PSO analytical signal (i.e., faradaic current) decreases linearly with the addition of dsDNA, while the electric potential associated to PSO oxidation shifts towards more positive values, indicating thence that dsDNA addition hinders PSO oxidation. These findings were corroborated by the chemoinformatic study, which evidenced that PSO intercalated noncovalently at first between base-pairs of the DNA duplex, and then irreversibly formed adducts with both DNA strands, leading up to the formation of a cross-link which bridges the DNA helix, which explains the linear dependence between the faradaic current generated by PSO oxidation and the concentration of DNA in the test-solution, as well as the dependence between Ep and the addition of dsDNA solution. Therefore, the findings herein reported evidence of the applicability of electroanalytical approaches, such as voltammetry in the study of DNA intercalating agents. Full article
Show Figures

Graphical abstract

9 pages, 2233 KiB  
Communication
Identification and Quantification of Stilbenes (Piceatannol and Resveratrol) in Passiflora edulis By-Products
by Karolline Krambeck, Ana Oliveira, Delfim Santos, Maria Manuela Pintado, João Baptista Silva, José Manuel Sousa Lobo and Maria Helena Amaral
Pharmaceuticals 2020, 13(4), 73; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13040073 - 20 Apr 2020
Cited by 20 | Viewed by 4365
Abstract
Recently, studies on the by-products from the food industry, such as passion fruit seeds, have significantly increased, as these can have an added value, due to their properties, such as potential antioxidant activity. This study was conducted to determine the presence of piceatannol [...] Read more.
Recently, studies on the by-products from the food industry, such as passion fruit seeds, have significantly increased, as these can have an added value, due to their properties, such as potential antioxidant activity. This study was conducted to determine the presence of piceatannol and resveratrol in various extracts of passion fruit (Passiflora edulis) seeds from Madeira Island and a commercial passion fruit oil was used as reference. The commercial oil and the extracts that were obtained by traditional Soxhlet method with ethanol and acetone did not reveal the presence of the two stilbenes, piceatannol and resveratrol. However, the extracts that were obtained by the ultrasound method showed significant amounts of piceatannol and resveratrol when compared with the commercial oil. The presence of these compounds indicates that this oil could have potential application in cosmetic and pharmaceutical industries, due to their proven antioxidant and anti-aging properties. Full article
Show Figures

Graphical abstract

Other

Jump to: Research

10 pages, 2408 KiB  
Brief Report
Two Examples of RNA Aptamers with Antiviral Activity. Are Aptamers the Wished Antiviral Drugs?
by Alfredo Berzal-Herranz and Cristina Romero-López
Pharmaceuticals 2020, 13(8), 157; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13080157 - 22 Jul 2020
Cited by 7 | Viewed by 2331
Abstract
The current Covid-19 pandemic has pointed out some major deficiencies of the even most advanced societies to fight against viral RNA infections. Once more, it has been demonstrated that there is a lack of efficient drugs to control RNA viruses. Aptamers are efficient [...] Read more.
The current Covid-19 pandemic has pointed out some major deficiencies of the even most advanced societies to fight against viral RNA infections. Once more, it has been demonstrated that there is a lack of efficient drugs to control RNA viruses. Aptamers are efficient ligands of a great variety of molecules including proteins and nucleic acids. Their specificity and mechanism of action make them very promising molecules for interfering with the function encoded in viral RNA genomes. RNA viruses store essential information in conserved structural genomic RNA elements that promote important steps for the consecution of the infective cycle. This work describes two well documented examples of RNA aptamers with antiviral activity against highly conserved structural domains of the HIV-1 and HCV RNA genome, respectively, performed in our laboratory. They are two good examples that illustrate the potential of the aptamers to fill the therapeutic gaps in the fight against RNA viruses. Full article
Show Figures

Graphical abstract

Back to TopTop