Special Issue "Improving Fertilizer Use Efficiency–Methods and Strategies for the Future"

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Nutrition".

Deadline for manuscript submissions: closed (30 June 2022) | Viewed by 6919

Special Issue Editors

Dr. Przemysław Barłóg
E-Mail Website
Guest Editor
Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznan University of Life Sciences, Wojska Polskiego 71F, 60-625 Poznan, Poland
Interests: plant growth functions; crop quality; plant testing methods; nutrient efficiency; nutrient imbalance; nitrogen fixation; fertilizers and fertilization
Dr. Jim Moir
E-Mail Website
Guest Editor
Associate Professor, Soil Science Department, Lincoln University, Christchurch, Lincoln 7647, New Zealand
Interests: soil fertility; nutrient cycling in soil/plant/animal systems, fertilisers; plant nutrition; pasture legumes; nutrient use efficiency
Special Issues, Collections and Topics in MDPI journals
Dr. Lukáš Hlisnikovský
E-Mail Website
Guest Editor
Department of Nutrition Management, Division of Crop Management Systems, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6 –Ruzyně, Czech Republic
Interests: agroecosystems; plant nutrition; soil; soil chemical properties; crop quality
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Xinhua He
E-Mail Website
Guest Editor
1. Centre of Excellence for Soil Biology, Southwest University, Chongqing 400715, China
2. School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
Interests: C3 and C4 plants; application of carbon and nitrogen stable isotopes; Mycorrhizal symbiosis; nitrogen movement between plants; nutrient use efficiency

Special Issue Information

Dear Colleagues, 

Nutrition of an ever-increasing world population, simultaneously with a continuous trend of decreasing arable soil areas per capita, is only feasible through the improvement of crop yields. The major limiting factor of crop yielding and its long-term stability is water availability. The influence of water depends, however, on an optimal nitrogen supply level to plant and secondary factors, which control plants’ metabolism and their ability to benefit from fertilizers. Concurrently, nitrogen fertilization is the main cause of a release of reactive nitrogen to the environment, consequently leading to a cascade of negative results such as malfunction of local ecosystems, enhancement of the global warming, and environmental acidification. Therefore, it is crucial to determine to what extent other nutrients (macro- and micronutrients) affect plants’ nitrogen use efficiency (NUE) and thereby affect their potential to utilize soil water resources and take advantage of other yield-forming factors.

Phosphorus and potassium are of a particular importance with respect to their role in plants’ NUE and secondary nutrient metabolism functionality. Unlike potassium, a negative impact of phosphorus excess content levels in the environment has been well recognized (i.e., eutrophication). The use of both nutrients from mineral fertilizers differs significantly, as their geochemical cycles in soil and specific functions in plants also vary. During their uptake from soil solution, transporting and involving nutrients in specific metabolic and structure building processes, a whole range of biochemical and physiological activities take place, all jointly named as interactions. They dictate the content of nutrients and their distribution to various parts of a plant, thus impacting photosynthesis, transport of assimilates, and the quality, yield, and yield component formation. Every stage of plant growth and plant development outlines a distinctive influence of nutrients on nitrogen balance, determining not only the plant’s dry matter but also the morphology of its shoot system and roots—the main organ responsible for the uptake of water, nitrogen, and other nutrients.

A full and comprehensive recognition of agronomic and physiological determinants of effective uptake, use, and recognition of genetic determinants of their expression, with a particular focus on nitrogen, is therefore required. 

I am serving as Guest Editor for the Special Issue “Improving Fertilizer Use Efficiency—Methods and Strategies for the Future” in the journal Plants

I would be very pleased if you would agree to contribute a research paper or comprehensive review on any aspect related to the theme of this issue. Below, you will find some information that you may find useful when considering this invitation. Feel free to contact me with any questions.

Dr. Przemysław Barłóg
Dr. Jim Moir
Dr. Lukas Hlisnikovsky
Prof. Dr. Xinhua He
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Soil acidity and nutrient uptake
  • Critical stages of nutrient requirement by crop plants
  • Effect of nutrients on yield component formation
  • Nutrient balance
  • Macronutrient impact on crop growth rate and physiological determinants of yielding
  • Nutrients and tolerance to abiotic and biotic stresses
  • Nitrogen use effectivity
  • Urease and nitrification inhibitors
  • Crop plant quality

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Optimizing Nitrogen and Seed Rate Combination for Improving Grain Yield and Nitrogen Uptake Efficiency in Winter Wheat
Plants 2022, 11(13), 1745; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11131745 - 30 Jun 2022
Viewed by 258
Abstract
Nitrogen (N) supply and seed rate (SR) are two essential factors that affect the accumulation and partitioning of N and dry matter (DM) and, therefore, grain yield (GY) and N use efficiency (NUE). The objective of this experiment was to optimize N application [...] Read more.
Nitrogen (N) supply and seed rate (SR) are two essential factors that affect the accumulation and partitioning of N and dry matter (DM) and, therefore, grain yield (GY) and N use efficiency (NUE). The objective of this experiment was to optimize N application and SR to regulate wheat growth and increase both GY and NUE. The results revealed that net photosynthetic rate (Pn), stomatal conductance (Gs), chlorophyll content, and activities of metabolic enzymes (NR and GS) significantly increased with increasing of N levels while decreasing SR. Plant tillers, GY, DM before anthesis, and N translocation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N uptake efficiency (NUPE) were highest in a combined treatment of N235 and SR180. However, N levels beyond 235 kg ha−1 significantly decreased NAE, NRE, and NUPE. By increasing SR from 135 to 180 kg ha−1 an increase of 12.9 % and 9.1% GY and NUPE, respectively, was observed. Based on this result, we estimate that 1 kg N ha−1 might be replaced by an increase of approximately 0.6 kg ha−1 SR. Our study suggested that using a combination of N and SR (N235 + SR180) could attain maximum GY and improve NUE parameters. Full article
Show Figures

Figure 1

Article
Band Phosphorus and Sulfur Fertilization as Drivers of Efficient Management of Nitrogen of Maize (Zea mays L.)
Plants 2022, 11(13), 1660; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11131660 - 23 Jun 2022
Viewed by 266
Abstract
Increasing the efficiency of nitrogen use (NUE) from mineral fertilizers is one of the most important priorities of modern agriculture. The objectives of the present study were to assess the role of different nitrogen (N), phosphorus (P) and sulfur (S) rates on maize [...] Read more.
Increasing the efficiency of nitrogen use (NUE) from mineral fertilizers is one of the most important priorities of modern agriculture. The objectives of the present study were to assess the role of different nitrogen (N), phosphorus (P) and sulfur (S) rates on maize grain yield (GY), crop residue biomass, NUE indices, N concentration in plants during the growing season, N management indices and to select the most suitable set of NUE indicators. The following factors were tested: band application of di-ammonium phosphate and ammonium sulphate mixture (NPS fertilizer at rates 0, 8.7, 17.4, 26.2 kg ha−1 of P) and different total N rates (0, 60, 120, 180 kg ha−1 of N). In each year of the study, a clear trend of increased GY after NP(S) band application was observed. A particularly positive influence of that factor was confirmed at the lowest level of N fertilization. On average, the highest GY values were obtained for N2P3 and N3P1 treatments. The total N uptake and NUE indices also increased after the band application. In addition, a trend of improved N remobilization efficiency and the N contribution of remobilized N to grain as a result of band application of NP(S) was observed. Among various NUE indices, internal N utilization efficiency (IE) exhibited the strongest, yet negative, correlation with GY, whereas IE was a function of the N harvest index. Full article
Show Figures

Figure 1

Article
Does Elemental Sulfur Act as an Effective Measure to Control the Seasonal Growth Dynamics of Potato Tubers (Solanum tuberosum L.)?
Plants 2022, 11(3), 248; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11030248 - 18 Jan 2022
Viewed by 427
Abstract
The in-season dynamics of potato tuber biomass (TTB) growth requires effective nitrogen (N) control. This hypothesis was tested in 2006 and 2007. The two-factorial experiment with two rates of N (60, 120 kg ha−1) and sulfur (S; 0, 50 kg ha [...] Read more.
The in-season dynamics of potato tuber biomass (TTB) growth requires effective nitrogen (N) control. This hypothesis was tested in 2006 and 2007. The two-factorial experiment with two rates of N (60, 120 kg ha−1) and sulfur (S; 0, 50 kg ha−1) was carried out in the split-plot design. The third factor was the sampling of plants at 10-day intervals. The collected plant material was divided into leaves, stems, stolons + roots, and tubers. The seasonal trend of TTB was linear, while the biomass of leaves, stems, and stolons + roots was consistent with polynomial regression models. TTB was controlled by (i) the date of potato growth after emergence, when the TTB exceeded the leaf biomass (DAEcrit); (ii) the stem growth rate; and iii) the share of stems in the total potato biomass. TTB growth was reduced when DAEcrit preceded the DAEop for leaf biomass, determining its maximum. This phenomenon appeared in 2007 on plots fertilized only with N. The absolute growth rate of the stem biomass, exceeding ¼ of that of the tuber biomass in the descending phase, resulted in an increased and prolonged share of stems in the total potato biomass, which ultimately led to a decrease in tuber yield. The use of sulfur to balance the N, applied effectively, controlled the growth rate of potato organs competing with tubers. Full article
Show Figures

Figure 1

Article
The Effect of Soil-Climate Conditions, Farmyard Manure and Mineral Fertilizers on Potato Yield and Soil Chemical Parameters
Plants 2021, 10(11), 2473; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10112473 - 16 Nov 2021
Viewed by 628
Abstract
If available to farmers, potatoes represent a crop classically fertilized with farmyard manure in the Czech Republic. At the same time, potatoes are a crop sensitive to soil–climate conditions. We evaluated the effect of cattle manure (FYM), manure and mineral nitrogen (FYM + [...] Read more.
If available to farmers, potatoes represent a crop classically fertilized with farmyard manure in the Czech Republic. At the same time, potatoes are a crop sensitive to soil–climate conditions. We evaluated the effect of cattle manure (FYM), manure and mineral nitrogen (FYM + N1, FYM + N2), manure and mineral fertilizers (FYM + N1PK, FYM + N2PK, FYM + N3PK) application and the effect of three soil-climatic conditions (Caslav—maize production area with degraded Chernozem, Ivanovice—maize production area with Chernozem, Lukavec—potatoes production area with Cambisol) over four years (2016–2019) on potatoes yield and soil chemical properties. Of all the factors, yields were most affected by location. Lukavec provided the highest average yields (37.2 t ha−1), followed by Ivanovice (23.5 t ha−1) and Caslav (15.5 t ha−1). The second most important factor was the climatic conditions of the year. Fertilization was the third most important parameter. FYM significantly increased yields compared to Control, but applied alone cannot cover the needs of potatoes. Similarly, the application of FYM and N increases yields, but for the highest yields, it is best to apply FYM + NPK (80 kg ha−1 N). Co-application of FYM and mineral N fertilizers mitigates the negative impact of mineral N on soil pH. Full article
Show Figures

Figure 1

Article
Using Waste Sulfur from Biogas Production in Combination with Nitrogen Fertilization of Maize (Zea mays L.) by Foliar Application
Plants 2021, 10(10), 2188; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10102188 - 15 Oct 2021
Viewed by 425
Abstract
In Europe, mainly due to industrial desulfurization, the supply of soil sulfur (S), an essential nutrient for crops, has been declining. One of the currently promoted sources of renewable energy is biogas production, which produces S as a waste product. In order to [...] Read more.
In Europe, mainly due to industrial desulfurization, the supply of soil sulfur (S), an essential nutrient for crops, has been declining. One of the currently promoted sources of renewable energy is biogas production, which produces S as a waste product. In order to confirm the effect of the foliar application of waste elemental S in combination with liquid urea ammonium nitrate (UAN) fertilizer, a vegetation experiment was conducted with maize as the main crop grown for biogas production. The following treatments were included in the experiment: 1. Control (no fertilization), 2. UAN, 3. UANS1 (N:S ratio, 2:1), 4. UANS2 (1:1), 5. UANS3 (1:2). The application of UAN increased the N content in the plant and significantly affected the chlorophyll content (N-tester value). Despite the lower increase in nitrogen (N) content and uptake by the plant due to the application of UANS, these combinations had a significant effect on the quantum yield of PSII. The application of UANS significantly increased the S content of the plant. The increase in the weight of plants found on the treatment fertilized with UANS can be explained by the synergistic relationship between N and S, which contributed to the increase in crop nitrogen use efficiency. This study suggests that the foliar application of waste elemental S in combination with UAN at a 1:1 ratio could be an effective way to optimize the nutritional status of maize while reducing mineral fertilizer consumption. Full article
Show Figures

Figure 1

Article
Impact of Foliar Fertilization on Growth, Flowering, and Corms Production of Five Gladiolus Varieties
Plants 2021, 10(9), 1963; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10091963 - 20 Sep 2021
Viewed by 1010
Abstract
Degraded and salt affected soils are appearing more often in cultivated areas. These specific problems could reduce nutrient uptake, which can result in quality and yield loss of the cultivated plants. In order to cope with this pedo-climatic condition growers are applying fertilizers; [...] Read more.
Degraded and salt affected soils are appearing more often in cultivated areas. These specific problems could reduce nutrient uptake, which can result in quality and yield loss of the cultivated plants. In order to cope with this pedo-climatic condition growers are applying fertilizers; however, due to inadequate application, soil degradation will continue. Five Gladiolus varieties were subjected to foliar fertilization treatments to assess the effect on the plant’s growth parameters, vase durability and daughter corm production. Our results indicate that plants treated with foliar fertilization show significant increase in the measured parameters, flower stem length, vase durability and daughter corm production. In conclusion, our study suggests that application of foliar fertilization can increase Gladiolus plants decoration and propagation, even with a smaller footprint on nature. Full article
Show Figures

Figure 1

Article
Productivity and Nutrient Balance of an Intensive Rice–Rice Cropping System Are Influenced by Different Nutrient Management in the Red and Lateritic Belt of West Bengal, India
Plants 2021, 10(8), 1622; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10081622 - 06 Aug 2021
Cited by 4 | Viewed by 936
Abstract
Rice is the lifeline for more than half of the world population, and in India, in view of its huge demand in the country, farmers adopt a rice–rice cropping system where the irrigation facility is available. As rice is a nutrient-exhausting crop, sustainable [...] Read more.
Rice is the lifeline for more than half of the world population, and in India, in view of its huge demand in the country, farmers adopt a rice–rice cropping system where the irrigation facility is available. As rice is a nutrient-exhausting crop, sustainable productivity of rice–rice cropping system greatly depends on appropriate nutrient management in accordance with the inherent soil fertility. The application of an ample dose of fertilizer is the key factor for maintaining sustainable rice yields and nutrient balance of the soil. Considering the above facts, an experiment was conducted on nutrient management in a rice–rice cropping system at the university farm of Visva-Bharati, situated in a sub-tropical climate under the red and lateritic belt of the western part of West Bengal, India, during two consecutive years (2014–2016). The experiment was laid out in a Randomized Completely Block Design with 12 treatments and three replications, with different rates of N:P:K:Zn:S application in both of the growing seasons, namely, kharif and Boro. The recommended (ample) dose of nutrients was 80:40:40:25:20 and 120:60:60:25:20 kg ha−1 of N:P2O5:K2O:Zn:S in the Kharif and Boro season, respectively. A high yielding variety, named MTU 7029, and a hybrid, Arize 6444 GOLD, were taken in the Kharif and Boro seasons, respectively. The results clearly indicated that the application of a recommended dose of nutrients showed its superiority over the control (no fertilizer application) in the expression of growth characters, yield attributes, yields, and nutrient uptake of Kharif as well as Boro rice. Out of the all treatments, the best result was found in the treatment where the ample dose of nutrients was applied, resulting in maximum grain yield in both the Kharif (5.6 t ha−1) and Boro (6.6 t ha−1) season. The corresponding yield attributes for the same treatment in the Kharif (panicles m−2: 247.9; grains panicle−1: 132.0; spikelets panicle−1: 149.6; test weight: 23.8 g; and panicle length: 30.6 cm) and Boro (panicles m−2: 281.6; grains panicle−1: 142.7; spikelets panicle−1: 157.2; test weight: 24.8 g; and panicle length: 32.8 cm) season explained the maximum yield in this treatment. Further, a reduction or omission of individual nutrients adversely impacted on the above traits and resulted in a negative balance of the respective nutrients. The study concluded that the application of a recommended dose of nutrients was essential for proper nutrient balance and sustainable yields in the rice–rice cropping system. Full article
Show Figures

Graphical abstract

Article
Response of Normal and Low-Phytate Genotypes of Pea (Pisum sativum L.) on Phosphorus Foliar Fertilization
Plants 2021, 10(8), 1608; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10081608 - 05 Aug 2021
Cited by 1 | Viewed by 863
Abstract
Phosphorus (P) is an important nutrient in plant nutrition. Its absorption by plants from the soil is influenced by many factors. Therefore, a foliar application of this nutrient could be utilized for the optimal nutrition state of plants. The premise of the study [...] Read more.
Phosphorus (P) is an important nutrient in plant nutrition. Its absorption by plants from the soil is influenced by many factors. Therefore, a foliar application of this nutrient could be utilized for the optimal nutrition state of plants. The premise of the study is that foliar application of phosphorus will increase the yield of normal-phytate (npa) cultivars (CDC Bronco a Cutlass) and low-phytate (lpa) lines (1-2347-144, 1-150-81) grown in soils with low phosphorus supply and affect seed quality depending on the ability of the pea to produce phytate. A graded application of phosphorus (H₃PO₄) in four doses: without P (P0), 27.3 mg P (P1), 54.5 mg P (P2), and 81.8 mg P/pot (P3) realized at the development stages of the 6th true leaf led to a significant increase of chlorophyll contents, and fluorescence parameters of chlorophyll expressing the CO2 assimilation velocity. The P fertilization increased the yield of seeds significantly, except the highest dose of phosphorus (P3) at which the yield of the npa cultivars was reduced. The line 1-2347-144 was the most sensible to the P application when the dose P3 increased the seed production by 42.1%. Only the lpa line 1-150-81 showed a decreased tendency in the phytate content at the stepped application of the P nutrition. Foliar application of phosphorus significantly increased ash material in seed, but did not tend to affect the protein and mineral content of seeds. Only the zinc content in seeds was significantly reduced by foliar application of P in npa and lpa pea genotypes. It is concluded from the present study that foliar phosphorus application could be an effective way to enhance the pea growth in P-deficient condition with a direct effect on seed yield and quality. Full article
Show Figures

Figure 1

Article
Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition
Plants 2021, 10(8), 1605; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10081605 - 05 Aug 2021
Cited by 1 | Viewed by 827
Abstract
Fertilizer coating can increase the efficiency of N fertilizers and reduce their negative impact on the environment. This may be achieved by the utilization of biodegradable natural coating materials instead of polyurethane-based polymers. The aim of this study was to detect the effect [...] Read more.
Fertilizer coating can increase the efficiency of N fertilizers and reduce their negative impact on the environment. This may be achieved by the utilization of biodegradable natural coating materials instead of polyurethane-based polymers. The aim of this study was to detect the effect of calcium ammonium nitrate (CAN) fertilizer coated with modified conventional polyurethane enhanced with vegetable oils on the yield and quality of Brassica napus L. compared to CAN fertilizer with a vegetable oil-based polymer and to assess the risks of nitrogen loss. Three types of treatments were tested for both coated fertilizers: divided application (CAN, coated CAN), a single application of coated CAN, and a single application of CAN with coated CAN (1:2). A single application of coated CAN with both types of coating in the growth stage of the 9th true leaf significantly increased the yield, the thousand seed weight, and oil production compared to the uncoated CAN. The potential of using coated CAN may be seen in a slow nitrogen release ensuring the nitrogen demand for rapeseed plants throughout vegetation and eliminating the risk of its loss. The increased potential of NH4+ volatilization and NO3 leaching were determined using the uncoated CAN fertilizer compared to the coated variants. Oil-based polymer coatings on CAN fertilizer can be considered as an adequate replacement for partially modified conventional polyurethane. Full article
Show Figures

Figure 1

Back to TopTop