-
Towards Sustainable Composite Manufacturing with Recycled Carbon Fiber Reinforced Thermoplastic Composites
-
Integration of Biofunctional Molecules into 3D-Printed Polymeric Micro-/Nanostructures
-
Vertical Alignment of Liquid Crystal on Sustainable 2,4-Di-tert-butylphenoxymethyl-Substituted Polystyrene Films
-
Spectroscopic Ellipsometry and Quartz Crystal Microbalance with Dissipation for the Assessment of Polymer Layers and for the Application in Biosensing
Journal Description
Polymers
Polymers
is a peer-reviewed, open access journal of polymer science published semimonthly online by MDPI. Belgian Polymer Group (BPG), European Colloid & Interface Society (ECIS) and National Interuniversity Consortium of Materials Science and Technology (INSTM) are affiliated with Polymers and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Ei Compendex, PubMed, PMC, FSTA, CAPlus / SciFinder, Inspec, and many other databases.
- Journal Rank: JCR - Q1 (Polymer Science) / CiteScore - Q1 (Polymers and Plastics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 11.2 days after submission; acceptance to publication is undertaken in 3.6 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in MDPI journals, in appreciation of the work.
- Companion journals for Polymers include: Polysaccharides and Macromol.
- Testimonials: See what our authors and editors say about Polymers.
Impact Factor:
4.329 (2020)
;
5-Year Impact Factor:
4.493 (2020)
Latest Articles
Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction
Polymers 2022, 14(11), 2135; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14112135 (registering DOI) - 24 May 2022
Abstract
Fabrication of scaffolds with hierarchical structures exhibiting the blood vessel topological and biochemical features of the native extracellular matrix that maintain long-term patency remains a major challenge. Within this context, scaffold assembly using biodegradable synthetic polymers (BSPs) via electrospinning had led to soft-tissue-resembling
[...] Read more.
Fabrication of scaffolds with hierarchical structures exhibiting the blood vessel topological and biochemical features of the native extracellular matrix that maintain long-term patency remains a major challenge. Within this context, scaffold assembly using biodegradable synthetic polymers (BSPs) via electrospinning had led to soft-tissue-resembling microstructures that allow cell infiltration. However, BSPs fail to exhibit the sufficient surface reactivity, limiting protein adsorption and/or cell adhesion and jeopardizing the overall graft performance. Here, we present a methodology for the fabrication of three-layered polycaprolactone (PCL)-based tubular structures with biochemical cues to improve protein adsorption and cell adhesion. For this purpose, PCL was backbone-oxidized (O-PCL) and cast over a photolithography-manufactured microgrooved mold to obtain a bioactive surface as demonstrated using a protein adsorption assay (BSA), Fourier transform infrared spectroscopy (FTIR) and calorimetric analyses. Then, two layers of PCL:gelatin (75:25 and 95:5 w/w), obtained using a novel single-desolvation method, were electrospun over the casted O-PCL to mimic a vascular wall with a physicochemical gradient to guide cell adhesion. Furthermore, tensile properties were shown to withstand the physiological mechanical stresses and strains. In vitro characterization, using L929 mouse fibroblasts, demonstrated that the multilayered scaffold is a suitable platform for cell infiltration and proliferation from the innermost to the outermost layer as is needed for vascular wall regeneration. Our work holds promise as a strategy for the low-cost manufacture of next-generation polymer-based hierarchical scaffolds with high bioactivity and resemblance of ECM’s microstructure to accurately guide cell attachment and proliferation.
Full article
(This article belongs to the Section Biomacromolecules, Biobased and Biodegradable Polymers)
Open AccessArticle
Effects of the Temperature and Salt Concentration on the Structural Characteristics of the Protein (PDB Code 1BBL)
Polymers 2022, 14(11), 2134; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14112134 (registering DOI) - 24 May 2022
Abstract
The effect of the temperature and salt solution on the structural characteristics of the protein 1BBL was investigated by molecular dynamics simulations. The paper presents simulation results regarding the non-bonded energy and the structural stability of the protein immersed in salt solutions with
[...] Read more.
The effect of the temperature and salt solution on the structural characteristics of the protein 1BBL was investigated by molecular dynamics simulations. The paper presents simulation results regarding the non-bonded energy and the structural stability of the protein immersed in salt solutions with different concentrations and temperatures. Our work demonstrates that the electrostatic potential energy and van der Waals energy of the system show the opposite changes with the influence of the external environment. Since the electrostatic potential energy changes more obviously, it is dominated in the non-bonding interactions. The structural parameters, such as the root mean square deviation and the radius of gyration, increased initially and decreased afterward with the increase of the salt concentration. The protein presented the loose structure with a relative low stability when it was immersed in a monovalent solution with a salt concentration of 0.8 mol/L. The salt concentration corresponding to the maximum value of structural parameters in the monovalent salt solution was double that in the divalent salt solution. It was also concluded that the protein presented a compact and stable structure when immersed in salt solutions with a high concentration of 2.3 mol/L. The analysis of the root mean square deviation and root mean square fluctuation of the protein sample also exhibited that the structural stability and chain flexibility are strongly guided by the effect of the temperature. These conclusions help us to understand the structural characteristics of the protein immersed in the salt solutions with different concentrations and temperatures.
Full article
(This article belongs to the Special Issue Molecular Dynamics Simulations of Polymers)
►▼
Show Figures

Figure 1
Open AccessArticle
Scalable Manufacture of Curcumin-Loaded Chitosan Nanocomplex for pH-Responsive Delivery by Coordination-Driven Flash Nanocomplexation
Polymers 2022, 14(11), 2133; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14112133 (registering DOI) - 24 May 2022
Abstract
Metal coordination-driven nanocomplexes are known to be responsive to physiologically relevant stimuli such as pH, redox, temperature or light, making them well-suited for antitumor drug delivery. The ever-growing demand for such nanocomplexes necessitates the design of a scalable approach for their production. In
[...] Read more.
Metal coordination-driven nanocomplexes are known to be responsive to physiologically relevant stimuli such as pH, redox, temperature or light, making them well-suited for antitumor drug delivery. The ever-growing demand for such nanocomplexes necessitates the design of a scalable approach for their production. In this study, we demonstrate a novel coordination self-assembly strategy, termed flash nanocomplexation (FNC), which is rapid and efficient for the fabrication of drug-loaded nanoparticles (NPs) in a continuous manner. Based on this strategy, biocompatible chitosan (CS) and Cu2+ can be regarded anchors to moor the antitumor drug (curcumin, Cur) through coordination, resulting in curcumin-loaded chitosan nanocomplex (Cur-loaded CS nanocomplex) with a narrow size distribution (PDI < 0.124) and high drug loading (up to 41.75%). Owing to the excellent stability of Cur-loaded CS nanocomplex at neutral conditions (>50 days), premature Cur leakage was limited to lower than 1.5%, and pH-responsive drug release behavior was realized in acidic tumor microenvironments. An upscaled manufacture of Cur-loaded CS nanocomplex is demonstrated with continuous FNC, which shows an unprecedented method toward practical applications of nanomedicine for tumor therapy. Furthermore, intracellular uptake study and cytotoxicity experiments toward H1299 cells demonstrates the satisfied anticancer efficacy of the Cur-loaded CS nanocomplex. These results confirm that coordination-driven FNC is an effective method that enables the rapid and scalable fabrication of antitumor drugs.
Full article
(This article belongs to the Special Issue Functional Polymers for Drug Delivery System)
►▼
Show Figures

Figure 1
Open AccessArticle
Hybrid Films Prepared from a Combination of Electrospinning and Casting for Offering a Dual-Phase Drug Release
Polymers 2022, 14(11), 2132; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14112132 (registering DOI) - 24 May 2022
Abstract
One of the most important trends in developments in electrospinning is to combine itself with traditional materials production and transformation methods to take advantage of the unique properties of nanofibers. In this research, the single-fluid blending electrospinning process was combined with the casting
[...] Read more.
One of the most important trends in developments in electrospinning is to combine itself with traditional materials production and transformation methods to take advantage of the unique properties of nanofibers. In this research, the single-fluid blending electrospinning process was combined with the casting film method to fabricate a medicated double-layer hybrid to provide a dual-phase drug controlled release profile, with ibuprofen (IBU) as a common model of a poorly water-soluble drug and ethyl cellulose (EC) and polyvinylpyrrolidone (PVP) K60 as the polymeric excipients. Electrospun medicated IBU-PVP nanofibers (F7), casting IBU-EC films (F8) and the double-layer hybrid films (DHFs, F9) with one layer of electrospun nanofibers containing IBU and PVP and the other layer of casting films containing IBU, EC and PVP, were prepared successfully. The SEM assessments demonstrated that F7 were in linear morphologies without beads or spindles, F8 were solid films, and F9 were composed of one porous fibrous layer and one solid layer. XRD and FTIR results verified that both EC and PVP were compatible with IBU. In vitro dissolution tests indicated that F7 were able to provide a pulsatile IBU release, F8 offered a typical drug sustained release, whereas F9 were able to exhibit a dual-phase controlled release with 40.3 ± 5.1% in the first phase for a pulsatile manner and the residues were released in an extended manner in the second phase. The DHFs from a combination of electrospinning and the casting method pave a new way for developing novel functional materials.
Full article
(This article belongs to the Special Issue Polymer-Based Functional Nanomaterials: Preparation, Property and Performance)
►▼
Show Figures

Graphical abstract
Open AccessReview
Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives
by
, , , , , and
Polymers 2022, 14(11), 2131; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14112131 - 24 May 2022
Abstract
Chitosan has come a long way in biomedical applications: drug delivery is one of its core areas of imminent application. Chitosan derivatives are the new generation variants of chitosan. These modified chitosans have overcome limitations and progressed in the area of drug delivery.
[...] Read more.
Chitosan has come a long way in biomedical applications: drug delivery is one of its core areas of imminent application. Chitosan derivatives are the new generation variants of chitosan. These modified chitosans have overcome limitations and progressed in the area of drug delivery. This review briefly surveys the current chitosan derivatives available for biomedical applications. The biomedical applications of chitosan derivatives are revisited and their key inputs for oral drug delivery have been discussed. The limited use of the vast chitosan resources for oral drug delivery applications, speculated to be probably due to the interdisciplinary nature of this research, is pointed out in the discussion. Chitosan-derivative synthesis and practical implementation for oral drug delivery require distinct expertise from chemists and pharmacists. The lack of enthusiasm could be related to the inadequacy in the smooth transfer of the synthesized derivatives to the actual implementers. With thiolated chitosan derivatives predominating the oral delivery of drugs, the need for representation from the vast array of ready-to-use chitosan derivatives is emphasized. There is plenty to explore in this direction.
Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Poly-ε-Caprolactone-Hydroxyapatite-Alumina (PCL-HA-α-Al2O3) Electrospun Nanofibers in Wistar Rats
by
, , , , , and
Polymers 2022, 14(11), 2130; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14112130 - 24 May 2022
Abstract
Biodegradable polymers of natural origin are ideal for the development of processes in tissue engineering due to their immunogenic potential and ability to interact with living tissues. However, some synthetic polymers have been developed in recent years for use in tissue engineering, such
[...] Read more.
Biodegradable polymers of natural origin are ideal for the development of processes in tissue engineering due to their immunogenic potential and ability to interact with living tissues. However, some synthetic polymers have been developed in recent years for use in tissue engineering, such as Poly-ε-caprolactone. The nanotechnology and the electrospinning process are perceived to produce biomaterials in the form of nanofibers with diverse unique properties. Biocompatibility tests of poly-ε-caprolactone nanofibers embedded with hydroxyapatite and alumina nanoparticles manufactured by means of the electrospinning technique were carried out in Wistar rats to be used as oral dressings. Hydroxyapatite as a material is used because of its great compatibility, bioactivity, and osteoconductive properties. The PCL, PCL-HA, PCL-α-Al2O3, and PCL-HA-α-Al2O3 nanofibers obtained in the process were characterized by infrared spectroscopy and scanning electron microscopy. The nanofibers had an average diameter of (840 ± 230) nm. The nanofiber implants were placed and tested at 2, 4, and 6 weeks in the subcutaneous tissue of the rats to give a chronic inflammatory infiltrate, characteristic foreign body reaction, which decreased slightly at 6 weeks with the addition of hydroxyapatite and alumina ceramic particles. The biocompatibility test showed a foreign body reaction that produces a layer of collagen and fibroblasts. Tissue loss and necrosis were not observed due to the coating of the material, but a slight decrease in the inflammatory infiltrate occurred in the last evaluation period, which is indicative of the beginning of the acceptance of the tested materials by the organism.
Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymeric Fibers and Textiles)
►▼
Show Figures

Figure 1
Open AccessArticle
Experimental Study of Fatigue and Fracture Behavior of Carbon Fiber-Reinforced Polymer (CFRP) Straps
Polymers 2022, 14(10), 2129; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102129 (registering DOI) - 23 May 2022
Abstract
The hanger is one of the important components for through and half-through arch bridges. Conventional steel hangers are vulnerable to corrosion due to corrosive environments. Therefore, a new type of bridge hangers consisting of Carbon Fiber-Reinforced Polymer (CFRP) straps was developed recently. The
[...] Read more.
The hanger is one of the important components for through and half-through arch bridges. Conventional steel hangers are vulnerable to corrosion due to corrosive environments. Therefore, a new type of bridge hangers consisting of Carbon Fiber-Reinforced Polymer (CFRP) straps was developed recently. The CFRP straps are self-anchored, which is formed by layers-winding, and they have great advantages in corrosive environments such as high resistance to corrosion. In this study, the fatigue and fracture behavior of CFRP straps has been experimentally investigated. Firstly, the tensile testing of four CFRP strap specimens was conducted to investigate the static fracture behavior of CFRP straps, and three stages were observed, including delamination, cracking, and brittle rupture. Then, a fatigue test of thirty-nine specimens (four groups) was carried out to study the fatigue behavior of CFRP straps, where two types of pins, titanium alloy pin and CFRP pin, and two loading frequencies, 10 Hz and 15 Hz, were used. The number of cycles to failure, displacement, fatigue failure strain, outside surface temperature at the vertex of specimen, and scanning electron microscope (SEM) photographs were recorded and analyzed to investigate the fatigue behavior of CFRP straps. The experiment results show that the temperature development at the vertex of the CFRP strap varies obviously if different pins are used due to the different friction coefficients. In addition, the fatigue life of CFRP straps decreases significantly with the increase in loading rate for the titanium pin, while it only reduces slightly with the increase in loading rate for the CFRP pin.
Full article
(This article belongs to the Special Issue Polymers (or Adhesives) and Polymer Composites for Construction Application)
►▼
Show Figures

Figure 1
Open AccessArticle
Compressive Strength Estimation of Geopolymer Composites through Novel Computational Approaches
by
, , , , , , and
Polymers 2022, 14(10), 2128; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102128 - 23 May 2022
Abstract
The application of artificial intelligence approaches like machine learning (ML) to forecast material properties is an effective strategy to reduce multiple trials during experimentation. This study performed ML modeling on 481 mixes of geopolymer concrete with nine input variables, including curing time, curing
[...] Read more.
The application of artificial intelligence approaches like machine learning (ML) to forecast material properties is an effective strategy to reduce multiple trials during experimentation. This study performed ML modeling on 481 mixes of geopolymer concrete with nine input variables, including curing time, curing temperature, specimen age, alkali/fly ash ratio, Na2SiO3/NaOH ratio, NaOH molarity, aggregate volume, superplasticizer, and water, with CS as the output variable. Four types of ML models were employed to anticipate the compressive strength of geopolymer concrete, and their performance was compared to find out the most accurate ML model. Two individual ML techniques, support vector machine and multi-layer perceptron neural network, and two ensembled ML methods, AdaBoost regressor and random forest, were employed to achieve the study’s aims. The performance of all models was confirmed using statistical analysis, k-fold evaluation, and correlation coefficient (R2). Moreover, the divergence of the estimated outcomes from those of the experimental results was noted to check the accuracy of the models. It was discovered that ensembled ML models estimated the compressive strength of the geopolymer concrete with higher precision than individual ML models, with random forest having the highest accuracy. Using these computational strategies will accelerate the application of construction materials by decreasing the experimental efforts.
Full article
(This article belongs to the Special Issue Development in Geopolymers)
►▼
Show Figures

Figure 1
Open AccessArticle
Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with pH-Dependent Solubility
Polymers 2022, 14(10), 2127; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102127 - 23 May 2022
Abstract
A challenge in the pharmaceutical sector is the development of controlled release dosage forms for oral administration of poorly soluble drugs, in particular, drugs characterized by pH-dependent solubility through the gastrointestinal tract, which itself shows wide variability in terms of environmental pHs. The
[...] Read more.
A challenge in the pharmaceutical sector is the development of controlled release dosage forms for oral administration of poorly soluble drugs, in particular, drugs characterized by pH-dependent solubility through the gastrointestinal tract, which itself shows wide variability in terms of environmental pHs. The best approach is to increase the dissolution rate of the drugs at the different pHs and only then modify its release behavior from the pharmaceutical form. This work aims to demonstrate the ability of properly designed polymeric nanofibers in enhancing the release rate of model drugs with different pH-dependent solubility in the different physiological pHs of the gastrointestinal tract. Polymeric nanofibers loaded with meloxicam and carvedilol were prepared using the electrospinning technique and were then included in properly designed tablet formulations to obtain fast or sustained release dosage forms. The nanofibers and the tablets were characterized for their morphological, physico-chemical and dissolution properties. The tablets are able to deliver the dose according to the expected release behavior, and zero-order, first-order, Higuchi, Korsmeyer–Peppas and Hixon–Crowell kinetics models were used to analyze the prevailing release mechanism of the tablets. This study shows that the electrospun fibers can be advantageously included in oral dosage forms to improve their release performances.
Full article
(This article belongs to the Special Issue Fiber and Polymer Composites: Processing, Simulation, Properties and Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Influence of the Polarity of the Plasticizer on the Mechanical Stability of the Filler Network by Simultaneous Mechanical and Dielectric Analysis
Polymers 2022, 14(10), 2126; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102126 - 23 May 2022
Abstract
Four styrene butadiene rubber (SBR) compounds were prepared to investigate the influence of the plasticizer polarity on the mechanical stability of the filler network using simultaneous mechanical and dielectric analysis. One compound was prepared without plasticizer and serves as a reference. The other
[...] Read more.
Four styrene butadiene rubber (SBR) compounds were prepared to investigate the influence of the plasticizer polarity on the mechanical stability of the filler network using simultaneous mechanical and dielectric analysis. One compound was prepared without plasticizer and serves as a reference. The other three compounds were expanded with different plasticizers that have different polarities. Compared with an SBR sample without plasticizer, the conductivity of mechanically unloaded oil-extended SBR samples decreases by an order of magnitude. The polarity of the plasticizer shows hardly any influence because the plasticizers only affect the distribution of the filler clusters. Under static load, the dielectric properties seem to be oil-dependent. However, this behavior also results from the new distribution of the filler clusters caused by the mechanical damage and supported by the polarity grade of the plasticizer used. The Cole–Cole equation affirms these observations. The Cole–Cole relaxation time and thus, the position of maximal dielectric loss increases as the polarity of the plasticizer used is also increased. This, in turn, decreases the broadness parameter implying a broader response function.
Full article
(This article belongs to the Special Issue Advanced Testing of Soft Polymer Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and Microsponge Drug-Delivery Systems
by
, , , , , , , , , and
Polymers 2022, 14(10), 2125; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102125 - 23 May 2022
Abstract
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential
[...] Read more.
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind.
Full article
(This article belongs to the Special Issue Polymers and Drug Delivery)
Open AccessArticle
Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate
Polymers 2022, 14(10), 2124; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102124 - 23 May 2022
Abstract
The viscoelastic properties of materials such as polymers can be quantitatively evaluated by measuring and analyzing the viscoelastic behaviors such as stress relaxation and creep. The standard linear solid model is a classical and commonly used mathematical model for analyzing stress relaxation and
[...] Read more.
The viscoelastic properties of materials such as polymers can be quantitatively evaluated by measuring and analyzing the viscoelastic behaviors such as stress relaxation and creep. The standard linear solid model is a classical and commonly used mathematical model for analyzing stress relaxation and creep behaviors. Traditionally, the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model are derived using the assumption that the loading is a step function, implying that the loading rate used in the loading process of stress relaxation and creep tests is infinite. Using such constitutive equations may cause significant errors in analyses since the loading rate must be finite (no matter how fast it is) in a real stress relaxation or creep experiment. The purpose of this paper is to introduce the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model derived with a finite loading rate. The finite element computational simulation results demonstrate that the constitutive equations derived with a finite loading rate can produce accurate results in the evaluation of all viscoelastic parameters regardless of the loading rate in most cases. It is recommended that the constitutive equations derived with a finite loading rate should replace the traditional ones derived with an infinite loading rate to analyze stress relaxation and creep behaviors for quantitatively evaluating the viscoelastic properties of materials.
Full article
(This article belongs to the Special Issue Computational Modeling of Polymers)
Open AccessReview
Bone Mineralization in Electrospun-Based Bone Tissue Engineering
by
Polymers 2022, 14(10), 2123; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102123 - 23 May 2022
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features,
[...] Read more.
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Full article
(This article belongs to the Special Issue Nanomaterials Template for Organic or Composite Polymers in Biomedical Application II)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Preparation Conditions on Application Properties of Environment Friendly Polymer Soil Consolidation Agent
by
, , , , , , , , , , , and
Polymers 2022, 14(10), 2122; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102122 - 23 May 2022
Abstract
In order to improve the survival rate of transplanted seedlings and improve the efficiency of seedling transplantation, we developed an environmental friendly polymer konjac glucomannan (KGM)/chitosan (CA)/polyvinyl alcohol (PVA) ternary blend soil consolidation agent to consolidate the soil ball at the root of
[...] Read more.
In order to improve the survival rate of transplanted seedlings and improve the efficiency of seedling transplantation, we developed an environmental friendly polymer konjac glucomannan (KGM)/chitosan (CA)/polyvinyl alcohol (PVA) ternary blend soil consolidation agent to consolidate the soil ball at the root of transplanted seedlings. In the previous research, we found that although the prepared KGM/CA/PVA ternary blend soil consolidation agent can consolidate the soil ball at the root of the seedling, the medium solid content of the adhesive was high, which affects its spraying at the root of the seedling. At the same time, the preparation temperature of the KGM/CA/PVA ternary blend was also high. Therefore, to reduce the energy consumption and the cost of the KGM/CA/PVA ternary blend soil consolidation agent in the preparation process, this paper studied the influence of preparation conditions on the application performance of the environmental friendly polymer soil consolidation agent. We aimed to reduce the highest value CA content and preparation temperature of the KGM/CA/PVA ternary blend adhesive on the premise of ensuring the consolidation performance of the KGM/CA/PVA ternary blend adhesive on soil balls. It was prepared for the popularization and application of the environmental friendly polymer KGM/CA/PVA ternary blend soil consolidation agent in seedling transplanting. Through this study, it was found that the film-forming performance of the adhesive was better when the KGM content was 4.5%, the CA content was in the range of 2–3%, the PVA content was in the range of 3–4%, and the preparation temperature was higher than 50 °C. The polymer soil consolidation agent prepared under this condition has a good application prospect in seedling transplanting.
Full article
(This article belongs to the Special Issue Eco Polymeric Materials and Natural Polymer)
►▼
Show Figures

Figure 1
Open AccessArticle
Physical Properties of Slide-Ring Material Reinforced Ethylene Propylene Diene Rubber Composites
Polymers 2022, 14(10), 2121; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102121 - 23 May 2022
Abstract
High-damping rubber composites were prepared by mixing ethylene propylene diene monomer rubber (EPDM) with slide-ring (SR) materials using a two-roll mill, followed by a compression molding technique. SR material has a novel supramolecular structure with unique softness and slidable crosslink junctions. The mechanical
[...] Read more.
High-damping rubber composites were prepared by mixing ethylene propylene diene monomer rubber (EPDM) with slide-ring (SR) materials using a two-roll mill, followed by a compression molding technique. SR material has a novel supramolecular structure with unique softness and slidable crosslink junctions. The mechanical strength, thermal stability, compression set property, and damping performance of the composites were investigated. The use of the high damping SR phase dispersed in the EPDM matrix displayed improved physical properties and damping performance compared to those of virgin rubber. As SR content increases in the composites, the damping factor of SR/EPDM blends becomes higher at room temperature. In addition to this, the SR composites showed excellent improvements in the compression set properties. The composites showed a compression set improvement of 35–38% compared to virgin EPDM. These improvements are due to the “pulley effect” of slide-ring materials. Therefore, these materials present a robust platform for making novel elastomer composites for high-performance damping and sealing applications.
Full article
(This article belongs to the Special Issue RubberCon 2021: Innovative Pioneers for Smart and Sustainable Rubber Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Design and Economic Assessment of Alternative Evaporation Processes for Poly-Lactic Acid Production
Polymers 2022, 14(10), 2120; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102120 - 23 May 2022
Abstract
In this work, alternative evaporation processes for PLA production were designed with economic assessment. The suggested processes are the multiple-effect evaporation (MEE) process and thermal vapor recompression (TVR)-assisted evaporation process. First, the MEE process can efficiently reuse waste heat by additional column installation,
[...] Read more.
In this work, alternative evaporation processes for PLA production were designed with economic assessment. The suggested processes are the multiple-effect evaporation (MEE) process and thermal vapor recompression (TVR)-assisted evaporation process. First, the MEE process can efficiently reuse waste heat by additional column installation, thereby reducing the steam energy consumption. The proposed MEE process involves five columns, and after the evaporation in each column, the waste heat of the emitted vapor is reused to heat steam in the reboiler of the next column. Second, the suggested TVR-assisted evaporation process utilizes an additional steam ejector and recovers waste heat from the emitted vapor by increasing the pressure using high-pressure driving steam at the steam ejector. Each alternative process was modeled to predict the steam energy consumption, and to determine the cost-optimal process; the total annualized cost (TAC) of each alternative process was calculated as evaluation criteria. In the simulation results, the alternative processes using MEE and TVR reduced the steam consumption by 71.36% and 89.97%, respectively, compared to the conventional process. As a result of economic assessment, the cost-optimal process is the alternative process using TVR and the TAC can be decreased by approximately 90%.
Full article
(This article belongs to the Section Polymer Processing and Engineering)
►▼
Show Figures

Figure 1
Open AccessReview
A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds
Polymers 2022, 14(10), 2119; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102119 - 23 May 2022
Abstract
The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical strength, and the internal scaffold architecture.
[...] Read more.
The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical strength, and the internal scaffold architecture. The technology of the additive manufacturing (AM) method via photo-polymerization 3D printing is reported to have the capability to fabricate high resolution and finely controlled dimensions of a scaffold. This technology is also easy to operate, low cost and enables fast printing, compared to traditional methods and other additive manufacturing techniques. This article aims to review the potential of the photo-polymerization 3D-printing technique in the fabrication of tissue engineering scaffolds. This review paper also highlights the comprehensive comparative study between photo-polymerization 3D printing with other scaffold fabrication techniques. Various parameter settings that influence mechanical properties, biocompatibility and porosity behavior are also discussed in detail.
Full article
(This article belongs to the Special Issue Scaffolds and Surfaces with Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Spontaneous DNA Synapsis by Forming Noncanonical Intermolecular Structures
by
, , , , and
Polymers 2022, 14(10), 2118; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102118 - 23 May 2022
Abstract
We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies.
[...] Read more.
We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.
Full article
(This article belongs to the Special Issue Nucleic Acids as Polymers)
►▼
Show Figures

Figure 1
Open AccessReview
A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering
Polymers 2022, 14(10), 2117; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102117 - 23 May 2022
Abstract
With the ability to fabricate complex structures while meeting individual needs, additive manufacturing (AM) offers unprecedented opportunities for bone tissue engineering in the biomedical field. However, traditional metal implants have many adverse effects due to their poor integration with host tissues, and therefore
[...] Read more.
With the ability to fabricate complex structures while meeting individual needs, additive manufacturing (AM) offers unprecedented opportunities for bone tissue engineering in the biomedical field. However, traditional metal implants have many adverse effects due to their poor integration with host tissues, and therefore new material implants with porous structures are gradually being developed that are suitable for clinical medical applications. From the perspectives of additive manufacturing technology and materials, this article discusses a suitable manufacturing process for ideal materials for biological bone tissue engineering. It begins with a review of the methods and applicable materials in existing additive manufacturing technologies and their applications in biomedicine, introducing the advantages and disadvantages of various AM technologies. The properties of materials including metals and polymers, commonly used AM technologies, recent developments, and their applications in bone tissue engineering are discussed in detail and summarized. In addition, the main challenges for different metallic and polymer materials, such as biodegradability, anisotropy, growth factors to promote the osteogenic capacity, and enhancement of mechanical properties are also introduced. Finally, the development prospects for AM technologies and biomaterials in bone tissue engineering are considered.
Full article
(This article belongs to the Topic Material and Process Innovations for 3D Printing Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Innovative Approach for Controlling Black Rot of Persimmon Fruits by Means of Nanobiotechnology from Nanochitosan and Rosmarinic Acid-Mediated Selenium Nanoparticles
Polymers 2022, 14(10), 2116; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102116 - 23 May 2022
Abstract
The protection of persimmon fruits (Diospyros kaki L.) from postharvest fungal infestation with Alternaria alternata (A. alternate; black rot) is a major agricultural and economic demand worldwide. Edible coatings (ECs) based on biopolymers and phytocompounds were proposed to maintain fruit
[...] Read more.
The protection of persimmon fruits (Diospyros kaki L.) from postharvest fungal infestation with Alternaria alternata (A. alternate; black rot) is a major agricultural and economic demand worldwide. Edible coatings (ECs) based on biopolymers and phytocompounds were proposed to maintain fruit quality, especially with nanomaterials’ applications. Chitosan nanoparticles (NCt), rosmarinic acid bio-mediated selenium nanoparticles (RA/SeNPs) and their composites were produced, characterized and evaluated as ECs for managing persimmon black rot. The constructed NCt, RA/SeNPs and NCt/RA/SeNPs composite had diminished particles’ size diameters. The ECs solution of 1% NCt and NCt/RA/SeNPs composite led to a significant reduction of A. alternata radial growth in vitro, with 77.4 and 97.2%, respectively. The most powerful ECs formula contained 10 mg/mL from NCt/RA/SeNPs composite, which significantly reduced fungal growth than imazalil fungicide. The coating of persimmon with nanoparticles-based ECs resulted in a significant reduction of black rot disease severity and incidence in artificially infected fruits; the treatment with 1% of NCt/RA/SeNPs could completely (100%) hinder disease incidence and severity in coated fruits, whereas imazalil reduced them by 88.6 and 73.4%, respectively. The firmness of fruits is greatly augmented after ECs treatments, particularly with formulated coatings with 1% NCt/RA/SeNPs composite, which maintain fruits firmness by 85.7%. The produced ECs in the current study, based on NCt/RA/SeNPs composite, are greatly recommended as innovatively constructed human-friendly matrix to suppress the postharvest destructive fungi (A. alternata) and maintain the shelf-life and quality of persimmon fruits.
Full article
(This article belongs to the Special Issue Chitosan-Based Nanocomposite Materials and Their Applications)
►▼
Show Figures

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Polymers Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Coatings, Materials, Polymers, Metals
Surface Treatmens for Protecting from Fracture and Fatigue Damage
Topic Editors: Filippo Berto, Ricardo Branco, Yanxin QiaoDeadline: 10 July 2022
Topic in
Foods, Materials, Polymers, Sensors, Sustainability
Scientific Advances in STEM: Synergies to Achieve Success. 2nd Edition
Topic Editors: Yadir Torres Hernández, Ana María Beltrán Custodio, Manuel Félix ÁngelDeadline: 31 July 2022
Topic in
Materials, Metals, Applied Sciences, Polymers, JMMP
Material and Process Innovations for 3D Printing Applications
Topic Editors: Ludwig Cardon, Clemens HolzerDeadline: 20 August 2022
Topic in
Materials, Polymers, Metals, Compounds
Recent Advances in Metallurgical Extractive Processes
Topic Editors: Norman Toro, Edelmira Gálvez, Ricardo JeldresDeadline: 31 October 2022

Conferences
Special Issues
Special Issue in
Polymers
Printed Organic Electronics—Solution Processable Polymers and Interlayers
Guest Editors: Jacek Ulanski, Beata LuszczynskaDeadline: 30 May 2022
Special Issue in
Polymers
Functional Polymer Microspheres
Guest Editor: Rajkumar PatelDeadline: 15 June 2022
Special Issue in
Polymers
Epoxy Resins and Composites
Guest Editors: Krzysztof Formela, Mohammad Reza SaebDeadline: 20 June 2022
Special Issue in
Polymers
Polymer-Based Membrane Technology and Applications II
Guest Editor: Tiziana MarinoDeadline: 15 July 2022
Topical Collections
Topical Collection in
Polymers
Progress in Theory of Polymers at Interfaces
Collection Editors: Jens-Uwe Sommer, Martin Kröger
Topical Collection in
Polymers
State-of-the-Art Polymer Science and Technology in Poland (2021,2022)
Collection Editors: Marek M. Kowalczuk, Mirosława El Fray, Łukasz Klapiszewski, Dorota Neugebauer, Michał Cegłowski
Topical Collection in
Polymers
Proteins and Peptides
Collection Editors: Horia Iovu, Vladimir N. Uversky