Biobased Materials for Emerging Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (30 September 2022) | Viewed by 9055

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
2. Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah, Yanbu 46423, Saudi Arabia
Interests: polymer; organic; heterocyclic; catalysis; nanocomposites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biobased materials, which are defined as sustainable biomaterials produced from renewable biomass resources, are becoming attractive and promising potential materials in various scientific and industrial applications. During the last few decades, they attracted the attention of many researchers due to their unique and unusual efficiency in replacing the conventional materials in various applications. Recently, sustainable societies have driven further development of biobased materials to fit numerous industrial applications.

This Special Issue aims to introduce new and valuable findings regarding “biobased materials”. This research project will cover diverse scientific fields, including biomaterials science (biological activity), biomaterials chemistry (homogeneous and heterogeneous bio-catalysis), biomaterials physics (optical and dielectric properties), biomaterials engineering, and biotechnology, as well as other related areas. 

Dr. Khaled D. Khalil
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • biopolymers
  • biocomposites
  • biocatalysis
  • biodegradable
  • biocompatible
  • biological activity
  • optical
  • dielectric
  • nanocomposites

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 4855 KiB  
Article
Synthesis, Chemical and Biomedical Aspects of the Use of Sulfated Chitosan
by I. N. Bolshakov, L. M. Gornostaev, O. I. Fominykh and A. V. Svetlakov
Polymers 2022, 14(16), 3431; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14163431 - 22 Aug 2022
Cited by 6 | Viewed by 1575
Abstract
This work is devoted to the chemical synthesis of sulfated chitosan and its experimental verification in an animal model of early atherosclerosis. The method of chitosan quaternization with sulfate-containing ingredients resulted in a product with a high content of sulfate groups. Implantation of [...] Read more.
This work is devoted to the chemical synthesis of sulfated chitosan and its experimental verification in an animal model of early atherosclerosis. The method of chitosan quaternization with sulfate-containing ingredients resulted in a product with a high content of sulfate groups. Implantation of this product into the fascial-muscular sheath of the main limb artery along the leg and thigh in rabbits led to the extraction of cholesterol from the subintimal region. Simplified methods for the chemical synthesis of quaternized sulfated chitosan and the use of these products in a model of experimental atherosclerosis made it possible to perform a comparative morphological analysis of the vascular walls of the experimental and control limbs under conditions of a long-term high-cholesterol diet. The sulfated chitosan samples after implantation were shown to change the morphological pattern of the intimal and middle membranes of the experimental limb artery. The implantation led to the degradation of soft plaques within 30 days after surgical intervention, which significantly increased collateral blood flow. The implantation of sulfated chitosan into the local area of the atherosclerotic lesions in the artery can regulate the cholesterol content in the vascular wall and destroy soft plaques in the subintimal region. Full article
(This article belongs to the Special Issue Biobased Materials for Emerging Applications)
Show Figures

Figure 1

12 pages, 2262 KiB  
Article
Polymorphic Phases of Supramolecular Liquid Crystal Complexes Laterally Substituted with Chlorine
by Fowzia S. Alamro, Omaima A. Alhaddad, Magdi M. Naoum and Hoda A. Ahmed
Polymers 2021, 13(24), 4292; https://0-doi-org.brum.beds.ac.uk/10.3390/polym13244292 - 08 Dec 2021
Cited by 6 | Viewed by 1951
Abstract
New supramolecular complexes, based on H-bonding interactions between 4-(pyridin-4-yl) azo-(2-chlorophenyl) 4-alkoxybenzoates (Bn) and 4-[(4-(n-hexyloxy)phenylimino)methyl]benzoic acid (A6), were prepared and their thermal and mesomorphic properties investigated via differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FT-IR) in order [...] Read more.
New supramolecular complexes, based on H-bonding interactions between 4-(pyridin-4-yl) azo-(2-chlorophenyl) 4-alkoxybenzoates (Bn) and 4-[(4-(n-hexyloxy)phenylimino)methyl]benzoic acid (A6), were prepared and their thermal and mesomorphic properties investigated via differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FT-IR) in order to confirm their H-bonding interactions. The mesophase behavior of each mixture was examined by DSC and polarized optical microscopy (POM). According to the findings of the study, in all of the designed mixtures, the introduction of laterally polar chlorine atom to the supramolecular complexes produces polymorphic compounds possessing smectic A, smectic C and nematic mesophases, in addition, all products have low melting transitions. Thermal stabilities of the associated phases depend on the position and orientation of the lateral polar Cl atom as well as the length of terminal flexible alkoxy chain. Comparisons were made between the present lateral Cl complexes and previously investigated laterally-neat complexes in order to investigate the impact of the addition, nature and orientation of polar substituent on the mesomorphic behavior. The investigations revealed that, the polarity and mesomeric nature of inserted lateral substituent into the base component play an essential role in affecting their mesomorphic properties. Furthermore, for current complexes, induced polymorphic phases have been found by introducing the chlorine atom. Full article
(This article belongs to the Special Issue Biobased Materials for Emerging Applications)
Show Figures

Figure 1

16 pages, 54429 KiB  
Article
Elastic Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19, and Anti-Colistin Resistant Bacteria Evaluation
by Latifah Abdullah Alshabanah, Nada Omran, Bassma H. Elwakil, Moaaz T. Hamed, Salwa M. Abdallah, Laila A. Al-Mutabagani, Dong Wang, Qiongzhen Liu, Nader Shehata, Ahmed H. Hassanin and Mohamed Hagar
Polymers 2021, 13(22), 3987; https://0-doi-org.brum.beds.ac.uk/10.3390/polym13223987 - 18 Nov 2021
Cited by 10 | Viewed by 2605
Abstract
Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% [...] Read more.
Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90–150 nm with a significant impact of the nanoparticle type. Mechanical characterization showed that TPU nanofiber membranes exhibit excellent mechanical properties with ultra-high elastic properties. Elongation at break reached up to 92.5%. The assessment of the developed nanofiber membranes for medical and personal protection applications was done against various colistin resistant bacterial strains and the results showed an increment activity by increasing the metal oxide concentration up to 83% reduction rate by using TPU/ZnO 4% nanofibers against K. pneumoniae strain 10. The bacterial growth was completely eradicated after 8 and 16 h incubation with TPU/ZnO and TPU/CuO nanofibers, respectively. The nanofibers SEM study reveals the adsorption of the bacterial cells on the metal oxides nanofibers surface which led to cell lysis and releasing of their content. Finally, in vitro study against Spike S-protein from SARS-CoV-2 was also evaluated to investigate the potent effectiveness of the proposed nanofibers in the virus deactivation. The results showed that the metal oxide concentration is an effective factor in the antiviral activity due to the observed pattern of increasing the antibacterial and antiviral activity by increasing the metal oxide concentration; however, TPU/ZnO nanofibers showed a potent antiviral activity in relation to TPU/CuO. Full article
(This article belongs to the Special Issue Biobased Materials for Emerging Applications)
Show Figures

Figure 1

14 pages, 3075 KiB  
Article
Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions
by Metwally Madkour, Khaled D. Khalil and Fakhreia A. Al-Sagheer
Polymers 2021, 13(20), 3583; https://0-doi-org.brum.beds.ac.uk/10.3390/polym13203583 - 17 Oct 2021
Cited by 7 | Viewed by 1833
Abstract
Chitosan/magnesia hybrid films (CS-Mg) have been prepared via sol-gel process and employed as heterogeneous catalysts. An in situ generation of a magnesia network in the chitosan matrix was performed through hydrolysis/condensation reactions of magnesium ethoxide. The synthesized hybrid films were characterized using various [...] Read more.
Chitosan/magnesia hybrid films (CS-Mg) have been prepared via sol-gel process and employed as heterogeneous catalysts. An in situ generation of a magnesia network in the chitosan matrix was performed through hydrolysis/condensation reactions of magnesium ethoxide. The synthesized hybrid films were characterized using various analytical techniques, such as X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The hybrid films display excellent catalytic activities in Michael and Knoevenagel reactions via one pot or solvent-free approaches under microwave irradiation conditions. Chitosan/magnesia hybrid films, catalysed pyrimidine, benzochromene, coumarin and arylidene-malononitriles derivatives formation reactions occurred with highly efficient yields of 97%, 92%, 86% and 95% respectively. Due to the fact that the films are durable and insoluble in common organic solvents, they were easily separated and can be recycled up to five times without a considerable loss of their catalytic activity. Full article
(This article belongs to the Special Issue Biobased Materials for Emerging Applications)
Show Figures

Figure 1

Back to TopTop