Chitin and Chitosan: Properties and Applications II

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Chemistry".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 21217

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Biotechnology and Environment, Tay Nguyen University, 567 Le Duan Str., Buon Ma Thuot 630000, Vietnam
Interests: agricultural waste; coffee by-product; aquacultural waste; enzymes; bio-convention; bio-processes; active bio-products
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Further to the success of the Special Issue of Polymers Chitin and Chitosan: Properties and Applications”, we are delighted to reopen the Special Issue, now entitled “Chitin and Chitosan: Properties and Applications II”.

This Special Issue is dedicated to chitin and chitosan: properties and applications. The development of new polymer materials has recently become an extremely fascinating research topic, especially in relation to chitin and chitosan. Chitin, chitosan, and their derivatives hold great economic merit due to their versatile activities and biotechnological applications. Chitin and chitosan are traditionally prepared from chitin-containing fishery processing (shrimp shells, crab shells, and squid pens) through various procedures including chemical, enzymatic, and microbial treatments. For improving their properties, chemical modifications have also been intensively studied. Compared to synthetic polymers, chitin and their derivatives have advantages of being biocompatible, biodegradable and sustainable.

The aim of this Special Issue is to discuss their manufacturing, modification, characterization, as well as their various physical and chemical applications in biomedical and green industry fields. Both research and review articles are welcome.

Prof. Dr. San-Lang Wang
Prof. Dr. Anh Dzung Nguyen
Dr. Van Bon Nguyen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Chitin/chitosan
  • Chitin/chitosan modification
  • Chitin/chitosan film, chitin/chitosan fiber, chitin/chitosan gel
  • Chitin/chitosan oligomer
  • Chitinase/chitosanase
  • Biomacromolecules and functional materials
  • Chitin/chitosan polymer design and characterization
  • Chitin/chitosan physical and chemical properties

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 2082 KiB  
Article
Pilot-Scale Production of Chito-Oligosaccharides Using an Innovative Recombinant Chitosanase Preparation Approach
by Chih-Yu Cheng, Chia-Huang Tsai, Pei-Jyun Liou and Chi-Hang Wang
Polymers 2021, 13(2), 290; https://0-doi-org.brum.beds.ac.uk/10.3390/polym13020290 - 18 Jan 2021
Cited by 1 | Viewed by 2099
Abstract
For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl [...] Read more.
For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl β-d-1-thiogalactopyranoside) induction, the harvested cells were resuspended, disrupted by sonication, divided by selective precipitation, and stored using the same solution conditions. Several factors involved in these procedures, including ion types, ionic concentration, pH, and bacterial cell density, were examined. The optimal conditions were inferred to be pH = 4.5, 300 mM sodium dihydrogen phosphate, and cell density below 1011 cells/mL. Finally, recombinant chitosanase was purified to >70% homogeneity with an activity recovery and enzyme yield of 90% and 106 mg/L, respectively. When 10 L of 5% chitosan was hydrolyzed with 2500 units of chitosanase at ambient temperature for 72 h, hydrolyzed products having molar masses of 833 ± 222 g/mol with multiple degrees of polymerization (chito-dimer to tetramer) were obtained. This work provided an economical and eco-friendly preparation of recombinant chitosanase to scale up the hydrolysis of chitosan towards tailored oligosaccharides in the near future. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Show Figures

Graphical abstract

16 pages, 1677 KiB  
Article
Microbial Conversion of Shrimp Heads to Proteases and Chitin as an Effective Dye Adsorbent
by Chien Thang Doan, Thi Ngoc Tran, Chuan-Lu Wang and San-Lang Wang
Polymers 2020, 12(10), 2228; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12102228 - 28 Sep 2020
Cited by 17 | Viewed by 2973
Abstract
As a green and effective technique in the production of a large number of valuable products, the microbial conversion of chitinous fishery wastes is receiving much attention. In this study, protease production using the Paenibacillus mucilaginosus TKU032 strain was conducted on culture media [...] Read more.
As a green and effective technique in the production of a large number of valuable products, the microbial conversion of chitinous fishery wastes is receiving much attention. In this study, protease production using the Paenibacillus mucilaginosus TKU032 strain was conducted on culture media containing several common types of chitinous fishery by-products serving as the carbon and nitrogen (C/N) nutrition source. Among the chitinous wastes, 1.5% (w/v) shrimp head powder (SHP) was found to be the most appropriate nutritional source for protease production when a maximal enzyme activity of 3.14 ± 0.1 U/mL was observed on the 3rd day of the culture period. The molecular mass of P. mucilaginosus TKU032 protease was estimated to be nearly 32 kDa by the polyacrylamide gel electrophoresis method. The residual SHP obtained from the culture medium was also considered to be utilized for chitin extraction. The deproteinization rate of the fermentation was estimated to be 45%, and the chitin obtained from fermented SHP (fSHP) displayed a similar characteristic Fourier-transform infrared spectroscopy (FTIR) profile as that from SHP. In addition, SHP, fSHP, and chitins obtained from SHP and fSHP were investigated for their adsorptive capacity of nine types of dyes, and chitin obtained from fSHP displayed a good adsorption rate on Congo Red and Red No. 7, at 99% and 97%, respectively. In short, the results provide potential support for the utilization of SHP in the production of P. mucilaginosus TKU032 protease via the fermentation as well as the preparation of chitin from fSHP as an effective dye adsorbent. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Show Figures

Figure 1

17 pages, 3949 KiB  
Article
Gene Cloning, Characterization, and Molecular Simulations of a Novel Recombinant Chitinase from Chitinibacter Tainanensis CT01 Appropriate for Chitin Enzymatic Hydrolysis
by Yeng-Tseng Wang and Po-Long Wu
Polymers 2020, 12(8), 1648; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12081648 - 24 Jul 2020
Cited by 14 | Viewed by 2838
Abstract
Chitin, a polymer of N-acetyl-d-glucosamine (GlcNAc), can be degraded by chitinase, which is produced by higher plants, vertebrates, and bacteria. Chitinases are characterized by the ability to hydrolyze the beta-1,4-linkages in the chitin chain by either an endolytic or an exolytic mechanism. Chitinase [...] Read more.
Chitin, a polymer of N-acetyl-d-glucosamine (GlcNAc), can be degraded by chitinase, which is produced by higher plants, vertebrates, and bacteria. Chitinases are characterized by the ability to hydrolyze the beta-1,4-linkages in the chitin chain by either an endolytic or an exolytic mechanism. Chitinase 1198 is a novel endochitinase from the genome sequence of Chitinibacter tainanensis CT01. Herein, we report the findings of molecular simulations and bioassays for chitinase 1198. Our experimental results suggest that chitinase 1198 can recognize the nonreducing end of chitin and cleave the second or third glycosidic linkage from the nonreducing end of chitin oligomers. Furthermore, our simulations results revealed that chitinase 1198 is more likely to bind chitin oligomers with the main hydrogen bonds of the Asp440, the second GlcNAc unit of chitin oligomers, and degrade chitin oligomers to (GlcNAc)2 molecules. Moreover, chitinase 1198 is less likely to bind chitin oligomers with the main hydrogen bonds of the Asp440, the third GlcNAc unit of chitin oligomers, and degrade chitin oligomers to (GlcNAc)3 molecules. Lastly, chitinase 1198 can bind (GlcNAc)3 molecules with the main hydrogen bonds of the Asp440, the second GlcNAc of the (GlcNAc)3 molecules, and degrade chitin oligomers to GlcNAc and (GlcNAc)2 molecules. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Show Figures

Figure 1

16 pages, 1509 KiB  
Article
Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production
by Chien Thang Doan, Thi Ngoc Tran, Van Bon Nguyen, Trung Dung Tran, Anh Dzung Nguyen and San-Lang Wang
Polymers 2020, 12(5), 1163; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12051163 - 19 May 2020
Cited by 19 | Viewed by 3815
Abstract
Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several [...] Read more.
Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several chitinous material-containing mediums from fishery process wastes. The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047 chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 °C, pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally, the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase. The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined. The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL; and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Show Figures

Figure 1

17 pages, 4933 KiB  
Article
Coagulation of Chitin Production Wastewater from Shrimp Scraps with By-Product Chitosan and Chemical Coagulants
by Nguyen Van Nhi Tran, Qiming Jimmy Yu, Tan Phong Nguyen and San-Lang Wang
Polymers 2020, 12(3), 607; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12030607 - 06 Mar 2020
Cited by 19 | Viewed by 4009
Abstract
Chitin production wastewater contains nutrient-rich organic and mineral contents. Coagulation of the wastewater with a natural coagulant such as by-product chitosan would be an economical and environmentally friendly method of treatment. This study investigated the treatment efficiencies of a preliminary sedimentation process followed [...] Read more.
Chitin production wastewater contains nutrient-rich organic and mineral contents. Coagulation of the wastewater with a natural coagulant such as by-product chitosan would be an economical and environmentally friendly method of treatment. This study investigated the treatment efficiencies of a preliminary sedimentation process followed by coagulation. The removal efficiencies for wastewater parameters were evaluated and compared for coagulants including by-product chitosan, polyaluminum chloride, and polyacryamide. The evaluation was based on the removal of wastewater turbidity and other criteria, including tCOD, sCOD, TKN, NH4+–N, TP, TSS, calcium, and crude protein. The results showed that the preliminary sedimentation (before coagulation) can remove over 80% of turbidity and more than 93% of TSS at pH 4 in 30 min. At optimal conditions, when the ratio of crude protein and calcium was 4.95, by-product chitosan dose of 77.5 mg·L−1 and pH = 8.3, the wastewater characteristics changes were tCOD 23%, sCOD 32%, TKN and ammonium 25%, TP 90%, TSS 84%, Ca2+ 29%, and crude protein 25%. The residue recovered through coagulation consists of up to 55 mg·g−1 crude protein, which is used for animal feed or crop fertilizer. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Show Figures

Figure 1

16 pages, 2998 KiB  
Article
Chemical Modification and Processing of Chitin for Sustainable Production of Biobased Electrolytes
by Meriem Latifi, Azizan Ahmad, Hamid Kaddami, Nur Hasyareeda Hassan, Reiner Dieden and Youssef Habibi
Polymers 2020, 12(1), 207; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12010207 - 14 Jan 2020
Cited by 10 | Viewed by 4141
Abstract
In the present work we report on the development of a novel and sustainable electrolyte based on chitin. Chitin biopolymer was carboxymethylated in simple, mild, and green conditions in order to fine-tune the final properties of the electrolyte. To this end, chitin was [...] Read more.
In the present work we report on the development of a novel and sustainable electrolyte based on chitin. Chitin biopolymer was carboxymethylated in simple, mild, and green conditions in order to fine-tune the final properties of the electrolyte. To this end, chitin was modified for various reaction times, while the molar ratio of the reagents, e.g., sodium hydroxide and monochloroacetic acid, was maintained fixed. The resulting chitin derivatives were characterized using various techniques. Under optimized conditions, modified chitin derivatives exhibiting a distinct degree of carboxymethylation and acetylation were obtained. Structural features, morphology, and properties are discussed in relation to the chemical structure of the chitin derivatives. For electrolyte applications, the ionic conductivity increased by three magnitudes from 10−9 S·cm−1 for unmodified chitin to 10−6 S·cm−1 for modified chitin with the highest degree of acetylation. Interestingly, the chitin derivatives formed free-standing films with and without the addition of up to 60% of ionic liquid, the ionic conductivity of the obtained solid electrolyte system reaching the value of 10−3 S·cm−1. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Show Figures

Graphical abstract

Back to TopTop