Polymeric Materials for Wastewater Purification

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: closed (20 August 2022) | Viewed by 18610

Special Issue Editors

School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Interests: membrane; wastewater treatment; microalgae; AnMBR; bio-cementation
School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Interests: biogas; wastewater treatment; heavy metals; microalgae; AnMBR; MICP
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleagues,

We cordially invite you to submit your original work or review article to this Special Issue entitled “Polymeric Materials Wastewater Purification”. Water pollution and freshwater scarcity are a worldwide problem, with dramatic economic and social implications. As a result, modern societies have dedicated enormous economic, political, industrial, and scientific efforts in order to treat, purify, recover, and reuse water from municipal, industrial, and/or agro-industrial waste sources. Specific efforts have considered the research and application of polymeric-based materials for water purification. Polymeric materials can be applied in very different forms and thorough different process or unit operations. Typical examples of applications are precipitation, flocculation, adsorption, and filtration.

This issue is dedicated to presenting some of the latest advances in the use of polymeric materials for wastewater treatment, purification, and/or water reuse. The topics of interests include but are not limited to polymeric-based membranes (microfiltration, ultrafiltration, nanofiltration reverse osmosis, forward osmosis), chemical precipitation through polymeric coagulants/flocculants, polymeric-based nanocomposites, hydrogels for physical adsorption, water disinfectants (such as chitosan), etc.

We look forward to receiving your outstanding work for this Special Issue.

Dr. David Alejandro Jeison Nuñez
Dr. Alvaro Esteban Torres-Aravena
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymeric-based membranes
  • hydrogels
  • coagulants
  • flocculants
  • wastewater
  • polymeric materials
  • polymeric-based nanocomposites
  • polymeric disinfectants

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3608 KiB  
Article
Co-Zeolitic Imidazolate Framework@Cellulose Aerogels from Sugarcane Bagasse for Activating Peroxymonosulfate to Degrade P-Nitrophenol
by Wen Sun, Kunyapat Thummavichai, Ding Chen, Yongxin Lei, Hui Pan, Taize Song, Nannan Wang and Yanqiu Zhu
Polymers 2021, 13(5), 739; https://0-doi-org.brum.beds.ac.uk/10.3390/polym13050739 - 27 Feb 2021
Cited by 10 | Viewed by 2138
Abstract
An efficient, green and reusable catalyst for organic pollutant wastewater treatment has been a subject of intense research in recent decades due to the limitation of current technologies. Cellulose based aerogel composites are considered to be an especially promising candidate for next-generation catalytic [...] Read more.
An efficient, green and reusable catalyst for organic pollutant wastewater treatment has been a subject of intense research in recent decades due to the limitation of current technologies. Cellulose based aerogel composites are considered to be an especially promising candidate for next-generation catalytic material. This project was conducted in order to evaluate the behavior and ability of green and reusable sugarcane bagasse aerogels to remove P-Nitrophesnol from waste-water aqueous. Co-Zeolitic imidazolate framework@ sugarcane bagasse aerogels composite catalysts were successfully prepared via simple in situ synthesis. The structure of hybrid aerogels and their efficient catalyst in peroxymonosulfate (PMS) activation for the degradation of p-nitrophenol (PNP) was investigated. As a result, the hybrid aerogels/PMS system removed 98.5% of PNP (10 mg/L) within 60~70 min, while the traditional water treatment technology could not achieve this. In addition, through a free radical capture experiment and electron paramagnetic resonance (EPR), the degradation mechanism of PNP was investigated. Further research found that the hybrid aerogels can effectively activate PMS to produce sulfate (SO4 ) and hydroxyl (OH ). Both of them contributed to the degradation of PNP, and SO4  plays a crucial role in the degradative process. The most important feature of hybrid aerogels can be easily separated from the solution. The obtained results showed that the outer coating structure of cellulose can stabilize Co-ZIF and reduce the dissolution of cobalt ions under complex reaction conditions. Moreover, the prepared hybrid aerogels exhibit excellent reusability and are environmentally friendly with efficient catalytic efficiency. This work provides a new strategy for bagasse applications and material reusability. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Purification)
Show Figures

Graphical abstract

21 pages, 4918 KiB  
Article
Crosslinked Carboxymethyl Sago Starch/Citric Acid Hydrogel for Sorption of Pb2+, Cu2+, Ni2+ and Zn2+ from Aqueous Solution
by Amyrah Auni Keirudin, Norhazlin Zainuddin and Nor Azah Yusof
Polymers 2020, 12(11), 2465; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12112465 - 24 Oct 2020
Cited by 22 | Viewed by 6493
Abstract
In the present study, CMSS (carboxymethyl sago starch)-based hydrogel was synthesized by crosslinking with citric acid via esterification and then applied as a metal sorbent to overcome excessive heavy metal pollution. The CMSS/CA (carboxymethyl sago starch/citric acid) hydrogel was characterized by Fourier Transform [...] Read more.
In the present study, CMSS (carboxymethyl sago starch)-based hydrogel was synthesized by crosslinking with citric acid via esterification and then applied as a metal sorbent to overcome excessive heavy metal pollution. The CMSS/CA (carboxymethyl sago starch/citric acid) hydrogel was characterized by Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The absorption band at 1726 cm−1 was observed in the FT-IR spectrum of CMSS/CA hydrogel and indicated ester bonds formed. Further findings show that the cross-linkages in the CMSS/CA hydrogel increased the thermal stability of CMSS and various sizes of pores were also shown in the SEM micrograph. Conversely, the removal of heavy metals was analyzed using Inductively Coupled Plasma-Optic Emission Spectra (ICP-OES). The effects of the pH of the metal solution, contact time, initial concentration of the metal ions and temperature on the sorption capacity were investigated. Under optimum condition, the sorption capacity of Pb2+, Cu2+, Ni2+ and Zn2+ onto CMSS/CA hydrogel were 64.48, 36.56, 16.21, 18.45 mg/g, respectively. The experiments demonstrated that CMSS/CA hydrogel has high selectivity towards Pb2+ in both non-competitive and competitive conditions. In conclusion, the CMSS/CA hydrogel as a natural based heavy metal sorption material exhibited a promising performance, especially in the sorption of Pb2+ for wastewater treatment. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Purification)
Show Figures

Figure 1

19 pages, 2223 KiB  
Article
Fouling Mitigation by Cationic Polymer Addition into a Pilot-Scale Anaerobic Membrane Bioreactor Fed with Blackwater
by Magela Odriozola, Nicolás Morales, Jose R. Vázquez-Padín, Maria Lousada-Ferreira, Henri Spanjers and Jules B. van Lier
Polymers 2020, 12(10), 2383; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12102383 - 16 Oct 2020
Cited by 4 | Viewed by 2084
Abstract
Cationic polymers have proven to be suitable flux enhancers (FEs) in large-scale aerobic membrane bioreactors (MBRs), whereas in anaerobic membrane bioreactors (AnMBRs) research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly translated to AnMBRs because the [...] Read more.
Cationic polymers have proven to be suitable flux enhancers (FEs) in large-scale aerobic membrane bioreactors (MBRs), whereas in anaerobic membrane bioreactors (AnMBRs) research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly translated to AnMBRs because the extent and nature of membrane fouling under anaerobic and aerobic conditions are different. Our research focused on the long-term effect of dosing the cationic polymer Adifloc KD451 to a pilot AnMBR, fed with source-separated domestic blackwater. A single dosage of Adifloc KD451 at 50 mg L−1 significantly enhanced the filtration performance in the AnMBR, revealed by a decrease in both fouling rate and total filtration resistance. Nevertheless, FE addition had an immediate negative effect on the specific methanogenic activity (SMA), but this was a reversible process that had no adverse effect on permeate quality or chemical oxygen demand (COD) removal in the AnMBR. Moreover, the FE had a long-term positive effect on AnMBR filtration performance and sludge filterability. These findings indicate that dosing Adifloc KD451 is a suitable strategy for fouling mitigation in AnMBRs because it led to a long-term improvement in filtration performance, while having no significant adverse effects on permeate quality or COD removal. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Purification)
Show Figures

Graphical abstract

15 pages, 4085 KiB  
Article
Enhanced Removal and Toxicity Decline of Diclofenac by Combining UVA Treatment and Adsorption of Photoproducts to Polyvinylidene Difluoride
by Kristina Fischer, Stephan Sydow, Jan Griebel, Sergej Naumov, Christian Elsner, Isabell Thomas, Amira Abdul Latif and Agnes Schulze
Polymers 2020, 12(10), 2340; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12102340 - 13 Oct 2020
Cited by 18 | Viewed by 2348
Abstract
The occurrence of micropollutants in the environment is an emerging issue. Diclofenac, a non-steroidal anti-inflammatory drug, is one of the most frequently detected pharmaceuticals in the environment worldwide. Diclofenac is transformed by UVA light into different products with higher toxicity. The absorbance of [...] Read more.
The occurrence of micropollutants in the environment is an emerging issue. Diclofenac, a non-steroidal anti-inflammatory drug, is one of the most frequently detected pharmaceuticals in the environment worldwide. Diclofenac is transformed by UVA light into different products with higher toxicity. The absorbance of the transformation products overlaps with the absorbance of diclofenac itself and inhibits the ongoing photoreaction. By adding polyvinylidene difluoride (PVDF), the products adsorb to the surface of PVDF. Therefore, phototransformation of diclofenac and total organic carbon (TOC) removal is enhanced and the toxicity decreased. At 15 min and 18 h of UVA treatment, removal of diclofenac and TOC increases from 56% to 65% and 18% to 54%, respectively, when PVDF is present. The toxicity of a UVA treated (18 h) diclofenac solution doubles (from 5 to 10, expressed in toxicity units, TU), while no toxicity was detectable when PVDF is present during UVA treatment (TU = 0). PVDF does not need to be irradiated itself but must be present during photoreaction. The adsorbent can be reused by washing with water or ethanol. Diclofenac (25 mg L−1) UVA light irradiation was monitored with high performance liquid chromatography (HPLC), UV-Vis spectroscopy and by analysing the decrease of TOC. The toxicity towards Vibrio fischeri was examined according to DIN EN ISO 11348-1: 2009-05. Density functional theory (DFT) was used to simulate the phototransformation products known in literature as well as further products identified via gas chromatography–mass spectrometry (GC-MS). The absorption spectra, reaction enthalpies (ΔH) and Gibbs free energy of reactions (ΔG) were calculated. The combination of UVA irradiation of diclofenac with adsorption of photoproducts to PVDF is unique and opens up new possibilities to enhance removal of pollutants from water. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Purification)
Show Figures

Graphical abstract

11 pages, 1360 KiB  
Article
Micro-Oxygenation in Upflow Anaerobic Sludge Bed (UASB) Reactors Using a Silicon Membrane for Sulfide Oxidation
by Freddy Valdés, Priscila Rosseto Camiloti, Jan Bartacek, Álvaro Torres-Aravena, Javiera Toledo-Alarcón, Marcelo Zaiat and David Jeison
Polymers 2020, 12(9), 1990; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12091990 - 01 Sep 2020
Viewed by 2085
Abstract
Sulfide produced by sulphate-reducing bacteria in anaerobic reactors can seriously affect biogas quality. Microaeration has become a reliable way to remove sulfide, by promoting its oxidation. However, limited research is available regarding its application in upflow anaerobic sludge bed (UASB) reactors. In this [...] Read more.
Sulfide produced by sulphate-reducing bacteria in anaerobic reactors can seriously affect biogas quality. Microaeration has become a reliable way to remove sulfide, by promoting its oxidation. However, limited research is available regarding its application in upflow anaerobic sludge bed (UASB) reactors. In this research, silicon membranes were studied as a mechanism to dose oxygen in USAB reactors. Two configurations were tested: the membrane placed inside the reactor or in an external module. Our results show that the external membrane proved to be a more practical alternative, providing conditions for sulfide oxidation. This led to a reduction in its concentration in the liquid effluent and biogas. External membrane configuration achieved a sulfide conversion rate of 2.4 g-S m2 d−1. Since the membrane was not sulfide-selective, methane losses were observed (about 9%). In addition, excessive oxygen consumption was observed, compared to the stoichiometric requirement. As is the case for many membrane-based systems, membrane area is a key factor determining the correct operation of the system. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Purification)
Show Figures

Graphical abstract

15 pages, 3902 KiB  
Article
Composite Polymeric Cryogel Cartridges for Selective Removal of Cadmium Ions from Aqueous Solutions
by Sabina Huseynli, Monireh Bakhshpour, Tahira Qureshi, Muge Andac and Adil Denizli
Polymers 2020, 12(5), 1149; https://0-doi-org.brum.beds.ac.uk/10.3390/polym12051149 - 18 May 2020
Cited by 12 | Viewed by 2441
Abstract
In this study, composite polymeric cryogel cartridges were achieved by using Cd(II) imprinted poly(hydroxyethyl methacrylate N-methacryloly-(L)-cysteine methylester) beads and poly(hydroxyethyl methacrylate) cryogel cartridges with two different mole ratios of functional monomer. The N-methacryloly-(L)-cysteinemethylester was used as a functional monomer and Cd(II) 1:1 and [...] Read more.
In this study, composite polymeric cryogel cartridges were achieved by using Cd(II) imprinted poly(hydroxyethyl methacrylate N-methacryloly-(L)-cysteine methylester) beads and poly(hydroxyethyl methacrylate) cryogel cartridges with two different mole ratios of functional monomer. The N-methacryloly-(L)-cysteinemethylester was used as a functional monomer and Cd(II) 1:1 and 2:1, which were then notated as MIP1 and MIP2, respectively. Various characterization methods have confirmed the structural transformation on the MIP1 and MIP2 composite cryogel cartridges by scanning electron microscopy, Fourier-transform infrared spectroscopy-Attenuated Total Reflectance, and swelling tests. The maximum amount of Cd(II) adsorption with composite cryogel cartridges was determined by altering the Cd(II) initial concentration, temperature, and pH values. The maximum adsorption capacity of MIP1 and MIP2 composite cryogel cartridges obtained was 76.35 and 98.8 µmol/g of composite cryogels, respectively. The adsorption studies revealed that the MIP2 possessed a good adsorption performance for Cd(II). The obtained composite cryogel cartridges have a selective, reusable, and cost-friendly potential for the removal of Cd(II) from aqueous solutions, and are used many times without decreasing their adsorption capacities significantly. The Cd(II) removal rate of the MIP1 and MIP2 composite cryogel cartridges from synthetic wastewater samples was determined as 98.8%. The obtained cryogel cartridges’ adsorption material exhibited a good directional removal performance for Cd(II) from wastewater samples. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Purification)
Show Figures

Graphical abstract

Back to TopTop