remotesensing-logo

Journal Browser

Journal Browser

Topical Collection "Feature Papers of Section Atmosphere Remote Sensing"

A topical collection in Remote Sensing (ISSN 2072-4292). This collection belongs to the section "Atmosphere Remote Sensing".

Editor

Prof. Dr. Gerrit de Leeuw
E-Mail Website
Guest Editor
Royal Netherlands Meteorological Institute (KNMI), R & D Satellite Observations, 3731 GA De Bilt, The Netherlands
Interests: aerosols; satellite remotes sensing; air quality; climate; aerosol-cloud interaction; sea spray aerosol
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

Atmospheric composition and meteorology play a key role in many different processes that determine, or influence, climate, climate change, air quality, UV index, renewable energy, water balance, nitrogen and carbon cycles, and weather, to name but a few. The observation of variables such as solar radiation, clouds, aerosols, trace gases, greenhouse gases, water vapor, precipitation, meteorological parameters, etc. is therefore essential to understand the underlying atmospheric processes, feedback mechanisms, and effects on the state of the atmosphere, as well as the interaction with the biosphere, cryosphere, land, oceans, socioeconomic aspects, and health.

This Collection offers a platform to present and discuss the development and application of remote sensing techniques toward improving our knowledge and understanding of the atmosphere, atmospheric processes, and their effects on a wide variety of applications.

Prof. Gerrit de Leeuw
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

2021

Jump to: 2020

Article
Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires
Remote Sens. 2021, 13(16), 3092; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13163092 - 05 Aug 2021
Viewed by 557
Abstract
The present study contributes to the scientific effort for a better understanding of the potential of the Australian biomass burning events to influence tropospheric trace gas abundances at the regional scale. In order to exclude the influence of the long-range transport of ozone [...] Read more.
The present study contributes to the scientific effort for a better understanding of the potential of the Australian biomass burning events to influence tropospheric trace gas abundances at the regional scale. In order to exclude the influence of the long-range transport of ozone precursors from biomass burning plumes originating from Southern America and Africa, the analysis of the Australian smoke plume has been driven over the period December 2019 to January 2020. This study uses satellite (IASI, MLS, MODIS, CALIOP) and ground-based (sun-photometer, FTIR, ozone radiosondes) observations. The highest values of aerosol optical depth (AOD) and carbon monoxide total columns are observed over Southern and Central Australia. Transport is responsible for the spatial and temporal distributions of aerosols and carbon monoxide over Australia, and also the transport of the smoke plume outside the continent. The dispersion of the tropospheric smoke plume over Oceania and Southern Pacific extends from tropical to extratropical latitudes. Ozone radiosonde measurements performed at Samoa (14.4°S, 170.6°W) and Lauder (45.0°S, 169.4°E) indicate an increase in mid-tropospheric ozone (6–9 km) (from 10% to 43%) linked to the Australian biomass burning plume. This increase in mid-tropospheric ozone induced by the transport of the smoke plume was found to be consistent with MLS observations over the tropical and extratropical latitudes. The smoke plume over the Southern Pacific was organized as a stretchable anticyclonic rolling which impacted the ozone variability in the tropical and subtropical upper-troposphere over Oceania. This is corroborated by the ozone profile measurements at Samoa which exhibit an enhanced ozone layer (29%) in the upper-troposphere. Our results suggest that the transport of Australian biomass burning plumes have significantly impacted the vertical distribution of ozone in the mid-troposphere southern tropical to extratropical latitudes during the 2019–20 extreme Australian bushfires. Full article
Show Figures

Graphical abstract

Article
Detection of Upper and Lower Planetary-Boundary Layer Curves and Estimation of Their Heights from Ceilometer Observations under All-Weather Conditions: Case of Athens, Greece
Remote Sens. 2021, 13(11), 2175; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13112175 - 02 Jun 2021
Viewed by 774
Abstract
The planetary-boundary layer (PBL) plays an important role in air-pollution studies over urban/industrial areas. Therefore, numerous experimental/modelling efforts have been conducted to determine the PBL height and provide statistics. Nowadays, remote-sensing techniques such as ceilometers are valuable tools in PBL-height estimation. The National [...] Read more.
The planetary-boundary layer (PBL) plays an important role in air-pollution studies over urban/industrial areas. Therefore, numerous experimental/modelling efforts have been conducted to determine the PBL height and provide statistics. Nowadays, remote-sensing techniques such as ceilometers are valuable tools in PBL-height estimation. The National Observatory of Athens operates a Vaisala CL31 ceilometer. This study analyses its records over a 2-year period and provides statistics about the PBL height over Athens. A specifically developed algorithm reads the CL31 records and estimates the PBL height. The algorithm detects an upper and a lower PBL curve. The results show maximum values of about 2500 m above sea level (asl)/3000 m asl in early afternoon hours in all months for upper PBL, and particularly the summer ones, under all-/clear-sky conditions, respectively. On the contrary, the lower PBL does not possess a clear daily pattern. Nevertheless, one morning and another afternoon peak can be identified. The intra-annual variation of the upper PBL height shows a peak in August in all-weather conditions and in September under clear-sky ones. Season-wise, the upper PBL height varies showing an autumn peak for all-weather cases, while the lower PBL height shows a winter maximum due to persistent surface-temperature inversions in this season. Full article
Show Figures

Figure 1

2020

Jump to: 2021

Technical Note
Image Collection Simulation Using High-Resolution Atmospheric Modeling
Remote Sens. 2020, 12(19), 3214; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12193214 - 01 Oct 2020
Cited by 1 | Viewed by 1368
Abstract
A new method is described for simulating the passive remote sensing image collection of ground targets that includes effects from atmospheric physics and dynamics at fine spatial and temporal scales. The innovation in this research is the process of combining a high-resolution weather [...] Read more.
A new method is described for simulating the passive remote sensing image collection of ground targets that includes effects from atmospheric physics and dynamics at fine spatial and temporal scales. The innovation in this research is the process of combining a high-resolution weather model with image collection simulation to attempt to account for heterogeneous and high-resolution atmospheric effects on image products. The atmosphere was modeled on a 3D voxel grid by a Large-Eddy Simulation (LES) driven by forcing data constrained by local ground-based and air-based observations. The spatial scale of the atmospheric model (10–100 m) came closer than conventional weather forecast scales (10–100 km) to approaching the scale of typical commercial multispectral imagery (2 m). This approach was demonstrated through a ground truth experiment conducted at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains site. In this experiment, calibrated targets (colored spectral tarps) were placed on the ground, and the scene was imaged with WorldView-3 multispectral imagery at a resolution enabling the tarps to be visible in at least 9–12 image pixels. The image collection was simulated with Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, using the 3D atmosphere from the LES model to generate a high-resolution cloud mask. The high-resolution atmospheric model-predicted cloud coverage was usually within 23% of the measured cloud cover. The simulated image products were comparable to the WorldView-3 satellite imagery in terms of the variations of cloud distributions and spectral properties of the ground targets in clear-sky regions, suggesting the potential utility of the proposed modeling framework in improving simulation capabilities, as well as testing and improving the operation of image collection processes. Full article
Show Figures

Graphical abstract

Article
The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China
Remote Sens. 2020, 12(10), 1613; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12101613 - 18 May 2020
Cited by 61 | Viewed by 4276
Abstract
The outbreak of the COVID-19 virus in Wuhan, China, in January 2020 just before the Spring Festival and subsequent country-wide measures to contain the virus, effectively resulted in the lock-down of the country. Most industries and businesses were closed, traffic was largely reduced, [...] Read more.
The outbreak of the COVID-19 virus in Wuhan, China, in January 2020 just before the Spring Festival and subsequent country-wide measures to contain the virus, effectively resulted in the lock-down of the country. Most industries and businesses were closed, traffic was largely reduced, and people were restrained to their homes. This resulted in the reduction of emissions of trace gases and aerosols, the concentrations of which were strongly reduced in many cities around the country. Satellite imagery from the TROPOspheric Monitoring Instrument (TROPOMI) showed an enormous reduction of tropospheric NO2 concentrations, but aerosol optical depth (AOD), as a measure of the amount of aerosols, was less affected, likely due to the different formation mechanisms and the influence of meteorological factors. In this study, satellite data and ground-based observations were used together to estimate the separate effects of the Spring Festival and the COVID-19 containment measures on atmospheric composition in the winter of 2020. To achieve this, data were analyzed for a period from 30 days before to 60 days after the Spring Festivals in 2017–2020. This extended period of time, including similar periods in previous years, were selected to account for both the decreasing concentrations in response to air pollution control measures, and meteorological effects on concentrations of trace gases and aerosols. Satellite data from TROPOMI provided the spatial distributions over mainland China of the tropospheric vertical column density (VCD) of NO2, and VCD of SO2 and CO. The MODerate resolution Imaging Spectroradiometer (MODIS) provided the aerosol optical depth (AOD). The comparison of the satellite data for different periods showed a large reduction of, e.g., NO2 tropospheric VCDs due to the Spring Festival of up to 80% in some regions, and an additional reduction due to the COVID-19 containment measures of up to 70% in highly populated areas with intensive anthropogenic activities. In other areas, both effects are very small. Ground-based in situ observations from 26 provincial capitals provided concentrations of NO2, SO2, CO, O3, PM2.5, and PM10. The analysis of these data was focused on the situation in Wuhan, based on daily averaged concentrations. The NO2 concentrations started to decrease a few days before the Spring Festival and increased after about two weeks, except in 2020 when they continued to be low. SO2 concentrations behaved in a similar way, whereas CO, PM2.5, and PM10 also decreased during the Spring Festival but did not trace NO2 concentrations as SO2 did. As could be expected from atmospheric chemistry considerations, O3 concentrations increased. The analysis of the effects of the Spring Festival and the COVID-19 containment measures was complicated due to meteorological influences. Uncertainties contributing to the estimates of the different effects on the trace gas concentrations are discussed. The situation in Wuhan is compared with that in 26 provincial capitals based on 30-day averages for four years, showing different effects across China. Full article
Show Figures

Figure 1

Article
A First Case Study of CCN Concentrations from Spaceborne Lidar Observations
Remote Sens. 2020, 12(10), 1557; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12101557 - 14 May 2020
Cited by 7 | Viewed by 1390
Abstract
We present here the first cloud condensation nuclei (CCN) concentration profiles derived from measurements with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), for different aerosol types at a supersaturation of 0.15%. CCN concentrations, [...] Read more.
We present here the first cloud condensation nuclei (CCN) concentration profiles derived from measurements with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), for different aerosol types at a supersaturation of 0.15%. CCN concentrations, along with the corresponding uncertainties, were inferred for a nighttime CALIPSO overpass on 9 September 2011, with coincident observations with the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft, within the framework of the Evaluation of CALIPSO’s Aerosol Classification scheme over Eastern Mediterranean (ACEMED) research campaign over Thessaloniki, Greece. The CALIPSO aerosol typing is evaluated, based on data from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis. Backward trajectories and satellite-based fire counts are used to examine the origin of air masses on that day. Our CCN retrievals are evaluated against particle number concentration retrievals at different height levels, based on the ACEMED airborne measurements and compared against CCN-related retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard Terra and Aqua product over Thessaloniki showing that it is feasible to obtain CCN concentrations from CALIPSO, with an uncertainty of a factor of two to three. Full article
Show Figures

Graphical abstract

Back to TopTop