remotesensing-logo

Journal Browser

Journal Browser

Applications of GNSS Reflectometry for Earth Observation

A special issue of Remote Sensing (ISSN 2072-4292).

Deadline for manuscript submissions: closed (31 January 2021) | Viewed by 89447

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Interests: bistatic radar; GNSS-R; freeze/thaw; vegetation characterization; sea ice; wetlands; urban/agricultural flooding
Special Issues, Collections and Topics in MDPI journals
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Interests: atmospheric & hydrologic science; geophysical remote sensing; passive microwave radiometry; GNSS-Reflectometry; inversion techniques; multi-sensor data assimilation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The availability of data from missions such as CYclone Global Navigation Satellite System (CYGNSS) and TechDemoSat-1 (TDS-1) has made a significant impact on the scientific return of the Global Navigation Satellite System–Reflectometry (GNSS-R) measurements. Data from these missions demonstrate the capabilities of GNSS-R and build on many applications that relate the properties of scattered GNSS signals to geophysical parameters. TDS-1 provides global data coverage, while the constellation of CYGNSS spacecrafts, although limited to the tropics (±37° latitude), provide observations on rapid timescales with high spatial resolution. Equally important are measurements from airborne and ground-based instruments; these data enable investigations of the sensitivity of GNSS-R measurements to different phenomena and their use in new applications at a local/regional scale.

We invite authors to submit their work on applications that use GNSS-R data for Earth science. We encourage the submission of works related to the synergistic use of GNSS-R data with data from other sensors at the same or different frequency of operations, enhancing spatial resolution and/or temporal sampling to improve estimates of geophysical parameters. Topics considered for this Special Issue should emphasize practical applications and reach beyond theoretical and model-based studies. Suggested topics include, but are not limited to, the following:

  • Ocean, land, or cryosphere applications using GNSS-R;
  • Applications using GNSS-R ground-based or airborne measurements;
  • Applications using GNSS-R satellite measurements;
  • GNSS-R based neural networks for specific applications;
  • GNSS-R based classification algorithms for targeted applications;
  • GNSS-R and SAR/Radiometer/Optical combined products;
  • Downscaling or enhancement methods employing GNSS-R.

Dr. Nereida Rodriguez-Alvarez
Dr. Mary Morris
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • GNSS-R
  • Cryosphere
  • Near-surface ocean wind vector
  • Soil moisture
  • Terrestrial hydrology
  • Biomass
  • Ship detection
  • Oil slick detection
  • Neural networks
  • Classification
  • Downscaling

Published Papers (25 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

20 pages, 31288 KiB  
Article
Computation Approach for Quantitative Dielectric Constant from Time Sequential Data Observed by CYGNSS Satellites
by Junchan Lee, Sunil Bisnath, Regina S.K. Lee and Narin Gavili Kilane
Remote Sens. 2021, 13(11), 2032; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13112032 - 21 May 2021
Cited by 1 | Viewed by 1788
Abstract
This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with [...] Read more.
This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Figure 1

18 pages, 753 KiB  
Article
Towards a Topographically-Accurate Reflection Point Prediction Algorithm for Operational Spaceborne GNSS Reflectometry—Development and Verification
by Lucinda King, Martin Unwin, Jonathan Rawlinson, Raffaella Guida and Craig Underwood
Remote Sens. 2021, 13(5), 1031; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13051031 - 09 Mar 2021
Cited by 4 | Viewed by 2949
Abstract
GNSS Reflectometry (GNSS-R), a method of remote sensing using the reflections from satellite navigation systems, was initially envisaged for ocean wind speed sensing. In recent times there has been significant interest in the use of GNSS-R for sensing land parameters such as soil [...] Read more.
GNSS Reflectometry (GNSS-R), a method of remote sensing using the reflections from satellite navigation systems, was initially envisaged for ocean wind speed sensing. In recent times there has been significant interest in the use of GNSS-R for sensing land parameters such as soil moisture, which has been identified as an Essential Climate Variable (ECV). Monitoring objectives for ECVs set by the Global Climate Observing System (GCOS) organisation include a reduction in data gaps from spaceborne sources. GNSS-R can be implemented on small, relatively cheap platforms and can enable the launch of constellations, thus reducing such data gaps in these important datasets. However in order to realise operational land sensing with GNSS-R, adaptations are required to existing instrumentation. Spaceborne GNSS-R requires the reflection points to be predicted in advance, and for land sensing this means the effect of topography must be considered. This paper presents an algorithm for on-board prediction of reflection points over the land, allowing generation of DDMs on-board as well as compression and calibration. The algorithm is tested using real satellite data from TechDemoSat-1 in a software receiver with on-board constraints being considered. Three different resolutions of Digital Elevation Model are compared. The algorithm is shown to perform better against the operational requirements of sensing land parameters than existing methods and is ready to proceed to flight testing. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Figure 1

20 pages, 32122 KiB  
Article
Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment
by Joan Francesc Munoz-Martin, Raul Onrubia, Daniel Pascual, Hyuk Park, Miriam Pablos, Adriano Camps, Christoph Rüdiger, Jeffrey Walker and Alessandra Monerris
Remote Sens. 2021, 13(4), 797; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13040797 - 22 Feb 2021
Cited by 21 | Viewed by 3114
Abstract
Global Navigation Satellite System—Reflectometry (GNSS-R) has already proven its potential for retrieving a number of geophysical parameters, including soil moisture. However, single-pass GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two different data sets acquired with the [...] Read more.
Global Navigation Satellite System—Reflectometry (GNSS-R) has already proven its potential for retrieving a number of geophysical parameters, including soil moisture. However, single-pass GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two different data sets acquired with the Microwave Interferometer Reflectometer (MIR), an airborne-based dual-band (L1/E1 and L5/E5a), multiconstellation (GPS and Galileo) GNSS-R instrument with two 19-element antenna arrays with four electronically steered beams each. The instrument was flown twice over the OzNet soil moisture monitoring network in southern New South Wales (Australia): the first flight was performed after a long period without rain, and the second one just after a rain event. In this work, the impact of surface roughness and vegetation attenuation in the reflectivity of the GNSS-R signal is assessed at both L1 and L5 bands. The work analyzes the reflectivity at different integration times, and finally, an artificial neural network is used to retrieve soil moisture from the reflectivity values. The algorithm is trained and compared to a 20-m resolution downscaled soil moisture estimate derived from SMOS soil moisture, Sentinel-2 normalized difference vegetation index (NDVI) data, and ECMWF Land Surface Temperature. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Figure 1

20 pages, 5753 KiB  
Article
Snow and Ice Thickness Retrievals Using GNSS-R: Preliminary Results of the MOSAiC Experiment
by Joan Francesc Munoz-Martin, Adrian Perez, Adriano Camps, Serni Ribó, Estel Cardellach, Julienne Stroeve, Vishnu Nandan, Polona Itkin, Rasmus Tonboe, Stefan Hendricks, Marcus Huntemann, Gunnar Spreen and Massimiliano Pastena
Remote Sens. 2020, 12(24), 4038; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12244038 - 10 Dec 2020
Cited by 30 | Viewed by 4494
Abstract
The FSSCat mission was the 2017 ESA Sentinel Small Satellite (S⌃3) Challenge winner and the Copernicus Masters competition overall winner. It was successfully launched on 3 September 2020 onboard the VEGA SSMS PoC (VV16). FSSCat aims to provide coarse and downscaled soil moisture [...] Read more.
The FSSCat mission was the 2017 ESA Sentinel Small Satellite (S⌃3) Challenge winner and the Copernicus Masters competition overall winner. It was successfully launched on 3 September 2020 onboard the VEGA SSMS PoC (VV16). FSSCat aims to provide coarse and downscaled soil moisture data and over polar regions, sea ice cover, and coarse resolution ice thickness using a combined L-band microwave radiometer and GNSS-Reflectometry payload. As part of the calibration and validation activities of FSSCat, a GNSS-R instrument was deployed as part of the MOSAiC polar expedition. The Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition was an international one-year-long field experiment led by the Alfred Wegener Institute to study the climate system and the impact of climate change in the Arctic Ocean. This paper presents the first results of the PYCARO-2 instrument, focused on the GNSS-R techniques used to measure snow and ice thickness of an ice floe. The Interference Pattern produced by the combination of the GNSS direct and reflected signals over the sea-ice has been modeled using a four-layer model. The different thicknesses of the substrate layers (i.e., snow and ice) are linked to the position of the fringes of the interference pattern. Data collected by MOSAiC GNSS-R instrument between December 2019 and January 2020 for different GNSS constellations and frequencies are presented and analyzed, showing that under general conditions, sea ice and snow thickness can be retrieved using multiangular and multifrequency data. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

19 pages, 3631 KiB  
Article
Comparing Winds near Tropical Oceanic Precipitation Systems with and without Lightning
by Timothy J. Lang
Remote Sens. 2020, 12(23), 3968; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12233968 - 04 Dec 2020
Cited by 3 | Viewed by 1795
Abstract
In order to examine how robust updraft strength and ice-based microphysical processes aloft in storms may affect convective outflows near the surface, ocean winds were compared between tropical maritime precipitation systems with and without lightning. The analysis focused on Cyclone Global Navigation Satellite [...] Read more.
In order to examine how robust updraft strength and ice-based microphysical processes aloft in storms may affect convective outflows near the surface, ocean winds were compared between tropical maritime precipitation systems with and without lightning. The analysis focused on Cyclone Global Navigation Satellite System (CYGNSS) specular point tracks, using straightforward spatiotemporal matching criteria to pair CYGNSS-measured wind speeds with satellite-based precipitation observations, Advanced Scatterometer (ASCAT) wind speeds, and lightning flash data from ground-based and space-based sensors. Based on the results, thunderstorms over the tropical oceans are associated with significantly heavier rain rates (~200% greater) than non-thunderstorms. However, wind speeds near either type of precipitation system do not differ much (~0.5 m s−1 or less). Moreover, the sign of the difference depends on the wind instrument used, with CYGNSS suggesting non-thunderstorm winds are slightly stronger, while ASCAT suggests the opposite. These observed wind differences are likely related to lingering uncertainties between CYGNSS and ASCAT measurements in precipitation. However, both CYGNSS and ASCAT observe winds near precipitation (whether lightning-producing or not) to be stronger than background winds by at least 1 m s−1. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

15 pages, 6794 KiB  
Article
Analytical Computation of the Spatial Resolution in GNSS-R and Experimental Validation at L1 and L5
by Adriano Camps and Joan Francesc Munoz-Martin
Remote Sens. 2020, 12(23), 3910; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12233910 - 28 Nov 2020
Cited by 14 | Viewed by 2633
Abstract
Global navigation satellite systems reflectometry (GNSS-R) is a relatively novel remote sensing technique, but it can be understood as a multi-static radar using satellite navigation signals as signals of opportunity. The scattered signals over sea ice, flooded areas, and even under dense vegetation [...] Read more.
Global navigation satellite systems reflectometry (GNSS-R) is a relatively novel remote sensing technique, but it can be understood as a multi-static radar using satellite navigation signals as signals of opportunity. The scattered signals over sea ice, flooded areas, and even under dense vegetation show a detectable coherent component that can be separated from the incoherent component and processed accordingly. This work derives an analytical formulation of the response of a GNSS-R instrument to a step function in the reflectivity using well-known principles of electromagnetic theory. The evaluation of the spatial resolution then requires a numerical evaluation of the proposed equations, as the width of the transition depends on the reflectivity values of two regions. However, it is found that results are fairly constant over a wide range of reflectivities, and they only vary faster for very high or very low reflectivity gradients. The predicted step response is then satisfactorily compared to airborne experimental results at L1 (1575.42 MHz) and L5 (1176.45 MHz) bands, acquired over a water reservoir south of Melbourne, in terms of width and ringing, and several examples are provided when the transition occurs from land to a rough ocean surface, where the coherent scattering component is no longer dominant. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

21 pages, 7169 KiB  
Article
First Evidences of Ionospheric Plasma Depletions Observations Using GNSS-R Data from CYGNSS
by Carlos Molina and Adriano Camps
Remote Sens. 2020, 12(22), 3782; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12223782 - 18 Nov 2020
Cited by 12 | Viewed by 3050
Abstract
At some frequencies, Earth’s ionosphere may significantly impact satellite communications, Global Navigation Satellite Systems (GNSS) positioning, and Earth Observation measurements. Due to the temporal and spatial variations in the Total Electron Content (TEC) and the ionosphere dynamics (i.e., fluctuations in the electron content [...] Read more.
At some frequencies, Earth’s ionosphere may significantly impact satellite communications, Global Navigation Satellite Systems (GNSS) positioning, and Earth Observation measurements. Due to the temporal and spatial variations in the Total Electron Content (TEC) and the ionosphere dynamics (i.e., fluctuations in the electron content density), electromagnetic waves suffer from signal delay, polarization change (i.e., Faraday rotation), direction of arrival, and fluctuations in signal intensity and phase (i.e., scintillation). Although there are previous studies proposing GNSS Reflectometry (GNSS-R) to study the ionospheric scintillation using, for example TechDemoSat-1, the amount of data is limited. In this study, data from NASA CYGNSS constellation have been used to explore a new source of data for ionospheric activity, and in particular, for travelling equatorial plasma depletions (EPBs). Using data from GNSS ground stations, previous studies detected and characterized their presence at equatorial latitudes. This work presents, for the first time to authors’ knowledge, the evidence of ionospheric bubbles detection in ocean regions using GNSS-R data, where there are no ground stations available. The results of the study show that bubbles can be detected and, in addition to measure their dimensions and duration, the increased intensity scintillation (S4) occurring in the bubbles can be estimated. The bubbles detected here reached S4 values of around 0.3–0.4 lasting for some seconds to few minutes. Furthermore, a comparison with data from ESA Swarm mission is presented, showing certain correlation in regions where there is S4 peaks detected by CYGNSS and fluctuations in the plasma density as measured by Swarm. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

22 pages, 4524 KiB  
Article
Evaluations of Machine Learning-Based CYGNSS Soil Moisture Estimates against SMAP Observations
by Volkan Senyurek, Fangni Lei, Dylan Boyd, Ali Cafer Gurbuz, Mehmet Kurum and Robert Moorhead
Remote Sens. 2020, 12(21), 3503; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12213503 - 25 Oct 2020
Cited by 45 | Viewed by 3571
Abstract
This paper presents a machine learning (ML) framework to derive a quasi-global soil moisture (SM) product by direct use of the Cyclone Global Navigation Satellite System (CYGNSS)’s high spatio-temporal resolution observations over the tropics (within ±38° latitudes) at L-band. The learning [...] Read more.
This paper presents a machine learning (ML) framework to derive a quasi-global soil moisture (SM) product by direct use of the Cyclone Global Navigation Satellite System (CYGNSS)’s high spatio-temporal resolution observations over the tropics (within ±38° latitudes) at L-band. The learning model is trained by using in-situ SM data from the International Soil Moisture Network (ISMN) sites and various space-borne ancillary data. The approach produces daily SM retrievals that are gridded to 3 km and 9 km within the CYGNSS spatial coverage. The performance of the model is independently evaluated at various temporal scales (daily, 3-day, weekly, and monthly) against Soil Moisture Active Passive (SMAP) mission’s enhanced SM products at a resolution of 9 km × 9 km. The mean unbiased root-mean-square difference (ubRMSD) between concurrent (same calendar day) CYGNSS and SMAP SM retrievals for about three years (from 2017 to 2019) is 0.044 cm3 cm3 with a correlation coefficient of 0.66 over SMAP recommended grids. The performance gradually improves with temporal averaging and degrades over regions regularly flagged by SMAP such as dense forest, high topography, and coastlines. Furthermore, CYGNSS and SMAP retrievals are evaluated against 170 ISMN in-situ observations that result in mean unbiased root-mean-square errors (ubRMSE) of 0.055 cm3 cm3 and 0.054 cm3 cm3, respectively, and a higher correlation coefficient with CYGNSS retrievals. It is important to note that the proposed approach is trained over limited in-situ observations and is independent of SMAP observations in its training. The retrieval performance indicates current applicability and future growth potential of GNSS-R-based, directly measured spaceborne SM products that can provide improved spatio-temporal resolution than currently available datasets. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Figure 1

17 pages, 5573 KiB  
Article
Neural Network Based Quality Control of CYGNSS Wind Retrieval
by Rajeswari Balasubramaniam and Christopher Ruf
Remote Sens. 2020, 12(17), 2859; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12172859 - 03 Sep 2020
Cited by 15 | Viewed by 3206
Abstract
Global Navigation Satellite System – Reflectometry (GNSS-R) is a relatively new field in remote sensing that uses reflected GPS signals from the Earth’s surface to study the state of the surface geophysical parameters under observation. The CYGNSS is a first of its kind [...] Read more.
Global Navigation Satellite System – Reflectometry (GNSS-R) is a relatively new field in remote sensing that uses reflected GPS signals from the Earth’s surface to study the state of the surface geophysical parameters under observation. The CYGNSS is a first of its kind GNSS-R constellation mission launched in December 2016. It aims at providing high quality global scale GNSS-R measurements that can reliably be used for ocean science applications such as the study of ocean wind speed dynamics, tropical cyclone genesis, coupled ocean wave modelling, and assimilation into Numerical Weather Prediction models. To achieve this goal, strong quality control filters are needed to detect and remove outlier measurements. Currently, quality control of CYGNSS data products are based on fixed thresholds on various engineering, instrument, and measurement conditions. In this work we develop a Neural Network based quality control filter for automated outlier detection of CYGNSS retrieved winds. The primary merit of the proposed ML filter is its ability to better account for interactions between the individual engineering, instrument and measurement conditions than can separate thresholded flags for each one. Use of Machine Learning capabilities to capture inherent patterns in the data can create an efficient and effective mechanism to detect and remove outlier measurements. The resulting filter has a probability of outlier detection (PD) >75% and False Alarm Rate (FAR) < 20% for a wind speed range of 5 to 18 m/s. At least 75% of the outliers with wind speed errors of at least 5 m/s are removed while ~100% of the outliers with wind speed errors of at least 10 m/s are removed. This filter significantly improves data quality. The standard deviation of wind speed retrieval error is reduced from 2.6 m/s without the filter to 1.7 m/s with it over a wind speed range of 0 to 25 m/s. The design space for this filter is also analyzed in this work to characterize trade-offs between PD and FAR. Currently the filter performance is applicable only up to moderate wind speeds, as sufficient data is available only in this range to train the filter, as a way forward, more data over time can help expand the usability of this filter to higher wind speed ranges as well. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

18 pages, 4396 KiB  
Article
Retrieval of Ocean Surface Wind Speed Using Reflected BPSK/BOC Signals
by Hao-Yu Wang and Jyh-Ching Juang
Remote Sens. 2020, 12(17), 2698; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12172698 - 20 Aug 2020
Cited by 5 | Viewed by 2443
Abstract
The Global Navigation Satellite System (GNSS) has become a valuable resource as a remote sensing technique. In the past decade, the use of reflected GNSS signals for sensing the Earth, also known as GNSS reflectometry (GNSS-R), has grown rapidly. On the other hand, [...] Read more.
The Global Navigation Satellite System (GNSS) has become a valuable resource as a remote sensing technique. In the past decade, the use of reflected GNSS signals for sensing the Earth, also known as GNSS reflectometry (GNSS-R), has grown rapidly. On the other hand, with the continuous development of GNSS, multi-frequency multi-modulation signals have been used to enhance not only positioning performance, but also remote sensing applications. It is known that for some constellations, navigation satellites broadcast signals employing BPSK (binary phase-shift keying) modulation and BOC (binary offset carrier) modulation at the same frequency band. This paper proposes a new GNSS-R measurement, called a composite delay-Doppler map (cDDM), by utilizing the received reflected GNSS signals with different modulation techniques for the purpose of retrieving wind speed. The GNSS-R receiver can receive BPSK and BOC signals simultaneously at the same frequency band (e.g., GPS III L1 C/A and L1C or QZSS L1 C/A and L1C) and process the signals to generate GNSS-R measurements. Exploration of the observable features extracted from the composite DDM and the wind speed retrieval algorithm are also provided. The simulation verifies the proposed method under a configuration that is specified for the orbital and instrument specification of the upcoming TRITON mission. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

17 pages, 9647 KiB  
Article
L-Band Vegetation Optical Depth Estimation Using Transmitted GNSS Signals: Application to GNSS-Reflectometry and Positioning
by Adriano Camps, Alberto Alonso-Arroyo, Hyuk Park, Raul Onrubia, Daniel Pascual and Jorge Querol
Remote Sens. 2020, 12(15), 2352; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12152352 - 22 Jul 2020
Cited by 17 | Viewed by 2829
Abstract
At L-band (1–2 GHz), and particularly in microwave radiometry (1.413 GHz), vegetation has been traditionally modeled with the τ-ω model. This model has also been used to compensate for vegetation effects in Global Navigation Satellite Systems-Reflectometry (GNSS-R) with modest success. This manuscript presents [...] Read more.
At L-band (1–2 GHz), and particularly in microwave radiometry (1.413 GHz), vegetation has been traditionally modeled with the τ-ω model. This model has also been used to compensate for vegetation effects in Global Navigation Satellite Systems-Reflectometry (GNSS-R) with modest success. This manuscript presents an analysis of the vegetation impact on GPS L1 C/A (coarse acquisition code) signals in terms of attenuation and depolarization. A dual polarized instrument with commercial off-the-shelf (COTS) GPS receivers as back-ends was installed for more than a year under a beech forest collecting carrier-to-noise (C/N0) data. These data were compared to different ground-truth datasets (greenness, blueness, and redness indices, sky cover index, rain data, leaf area index or LAI, and normalized difference vegetation index (NDVI)). The highest correlation observed is between C/N0 and NDVI data, obtaining R2 coefficients larger than 0.85 independently from the elevation angle, suggesting that for beech forest, NDVI is a good descriptor of signal attenuation at L-band, which is known to be related to the vegetation optical depth (VOD). Depolarization effects were also studied, and were found to be significant at elevation angles as large as ~50°. Data were also fit to a simple τ-ω model to estimate a single scattering albedo parameter (ω) to try to compensate for vegetation scattering effects in soil moisture retrieval algorithms using GNSS-R. It is found that, even including dependence on the elevation angle (ω(θe)), at elevation angles smaller than ~67°, the ω(θe) model is not related to the NDVI. This limits the range of elevation angles that can be used for soil moisture retrievals using GNSS-R. Finally, errors of the GPS-derived position were computed over time to assess vegetation impact on the accuracy of the positioning. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

20 pages, 12498 KiB  
Article
Single-Pass Soil Moisture Retrievals Using GNSS-R: Lessons Learned
by Adriano Camps, Hyuk Park, Jordi Castellví, Jordi Corbera and Emili Ascaso
Remote Sens. 2020, 12(12), 2064; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12122064 - 26 Jun 2020
Cited by 28 | Viewed by 3164
Abstract
In this paper, an algorithm to retrieve surface soil moisture from GNSS-R (Global Navigaton Satellite System Reflectometry) observations is presented. Surface roughness and vegetation effects are found to be the most critical ones to be corrected. On one side, the NASA SMAP (Soil [...] Read more.
In this paper, an algorithm to retrieve surface soil moisture from GNSS-R (Global Navigaton Satellite System Reflectometry) observations is presented. Surface roughness and vegetation effects are found to be the most critical ones to be corrected. On one side, the NASA SMAP (Soil Moisture Active and Passive) correction for vegetation opacity (multiplied by two to account for the descending and ascending passes) seems too high. Surface roughness effects cannot be compensated using in situ measurements, as they are not representative. An ad hoc correction for surface roughness, including the dependence with the incidence angle, and the actual reflectivity value is needed. With this correction, reasonable surface soil moisture values are obtained up to approximately a 30° incidence angle, beyond which the GNSS-R retrieved surface soil moisture spreads significantly. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

18 pages, 9906 KiB  
Article
Experimental Evidence of Swell Signatures in Airborne L5/E5a GNSS-Reflectometry
by Joan Francesc Munoz-Martin, Raul Onrubia, Daniel Pascual, Hyuk Park, Adriano Camps, Christoph Rüdiger, Jeffrey Walker and Alessandra Monerris
Remote Sens. 2020, 12(11), 1759; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12111759 - 29 May 2020
Cited by 12 | Viewed by 2548
Abstract
As compared to GPS L1C/A signals, L5/E5a Global Navigation Satellite System-Reflectometry (GNSS-R) improves the spatial resolution due to the narrower auto-correlation function. Furthermore, the larger transmitted power (+3 dB), and correlation gain (+10 dB) allow the reception of weaker reflected signals. If directive [...] Read more.
As compared to GPS L1C/A signals, L5/E5a Global Navigation Satellite System-Reflectometry (GNSS-R) improves the spatial resolution due to the narrower auto-correlation function. Furthermore, the larger transmitted power (+3 dB), and correlation gain (+10 dB) allow the reception of weaker reflected signals. If directive antennas are used, very short incoherent integration times are enough to achieve good signal-to-noise ratios, allowing the reception of multiple specular reflection points without the blurring induced by long incoherent integration times. This study presents for the first time experimental evidence of the wind and swell waves signatures in the GNSS-R waveforms, and it performs a statistical analysis, a time-domain analysis, and a frequency-domain analysis for a unique data set of waveforms collected by the UPC MIR instrument during a series of flights over the Bass Strait, Australia. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

26 pages, 12621 KiB  
Article
Description of the UCAR/CU Soil Moisture Product
by Clara Chew and Eric Small
Remote Sens. 2020, 12(10), 1558; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12101558 - 14 May 2020
Cited by 101 | Viewed by 7614
Abstract
Currently, the ability to use remotely sensed soil moisture to investigate linkages between the water and energy cycles and for use in data assimilation studies is limited to passive microwave data whose temporal revisit time is 2–3 days or active microwave products with [...] Read more.
Currently, the ability to use remotely sensed soil moisture to investigate linkages between the water and energy cycles and for use in data assimilation studies is limited to passive microwave data whose temporal revisit time is 2–3 days or active microwave products with a much longer (>10 days) revisit time. This paper describes a dataset that provides soil moisture retrievals, which are gridded to 36 km, for the upper 5 cm of the soil surface at sparsely sampled 6-hour intervals for +/− 38 degrees latitude for 2017–present. Retrievals are derived from the Cyclone Global Navigation Satellite System (CYGNSS) constellation, which uses GNSS-Reflectometry to obtain L-band reflectivity observations over the Earth’s surface. The product was developed by calibrating CYGNSS reflectivity observations to soil moisture retrievals from NASA’s Soil Moisture Active Passive (SMAP) mission. Retrievals were validated against observations from 171 in-situ soil moisture probes, with a median unbiased root-mean-square error (ubRMSE) of 0.049 cm3 cm−3 (standard deviation = 0.026 cm3 cm−3) and median correlation coefficient of 0.4 (standard deviation = 0.27). For the same stations, the median ubRMSE between SMAP and in-situ observations was 0.045 cm3 cm−3 (standard deviation = 0.025 cm3 cm−3) and median correlation coefficient was 0.69 (standard deviation = 0.27). The UCAR/CU Soil Moisture Product is thus complementary to SMAP, albeit with a larger random noise component, providing soil moisture retrievals for applications that require faster revisit times than passive microwave remote sensing currently provides. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

19 pages, 3232 KiB  
Article
Geolocation, Calibration and Surface Resolution of CYGNSS GNSS-R Land Observations
by Scott Gleason, Andrew O’Brien, Anthony Russel, Mohammad M. Al-Khaldi and Joel T. Johnson
Remote Sens. 2020, 12(8), 1317; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12081317 - 22 Apr 2020
Cited by 39 | Viewed by 4024
Abstract
This paper presents the processing algorithms for geolocating and calibration of the Cyclone Global Navigation Satellite System (CYGNSS) level 1 land data products, as well as analysis of the spatial resolution of Global Navigation Satellite System Reflectometry (GNSS-R) coherent reflections. Accurate and robust [...] Read more.
This paper presents the processing algorithms for geolocating and calibration of the Cyclone Global Navigation Satellite System (CYGNSS) level 1 land data products, as well as analysis of the spatial resolution of Global Navigation Satellite System Reflectometry (GNSS-R) coherent reflections. Accurate and robust geolocation and calibration of GNSS-R land observations are necessary first steps that enable subsequent geophysical parameter retrievals. The geolocation algorithm starts with an initial specular point location on the Earth’s surface, predicted by modeling the Earth as a smooth ellipsoid (the WGS84 representation) and using the known transmitting and receiving satellite locations. Information on terrain topography is then compiled from the Shuttle Radar Topography Mission (SRTM) generated Digital Elevation Map (DEM) to generate a grid of local surface points surrounding the initial specular point location. The delay and Doppler values for each point in the local grid are computed with respect to the empirically observed location of the Delay Doppler Map (DDM) signal peak. This is combined with local incident and reflection angles across the surface using SRTM estimated terrain heights. The final geolocation confidence is estimated by assessing the agreement of the three geolocation criteria at the estimated surface specular point on the local grid, including: the delay and Doppler values are in agreement with the CYGNSS observed signal peak and the incident and reflection angles are suitable for specular reflection. The resulting geolocation algorithm is first demonstrated using an example GNSS-R reflection track that passes over a variety of terrain conditions. It is then analyzed using a larger set of CYGNSS data to obtain an assessment of geolocation confidence over a wide range of land surface conditions. Following, an algorithm for calibrating land reflected signals is presented that considers the possibility of both coherent and incoherent scattering from land surfaces. Methods for computing both the bistatic radar cross section (BRCS, for incoherent returns) and the surface reflectivity (for coherent returns) are presented. a flag for classifying returns as coherent or incoherent developed in a related paper is recommended for use in selecting whether the BRCS or reflectivity should be used in further analyses for a specific DDM. Finally, a study of the achievable surface feature detection resolution when coherent reflections occur is performed by examining a series of CYGNSS coherent reflections across an example river. Ancillary information on river widths is compared to the observed CYGNSS coherent observations to evaluate the achievable surface feature detection resolution as a function of the DDM non-coherent integration interval. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

17 pages, 1624 KiB  
Article
Untangling the Incoherent and Coherent Scattering Components in GNSS-R and Novel Applications
by Joan Francesc Munoz-Martin, Raul Onrubia, Daniel Pascual, Hyuk Park, Adriano Camps, Christoph Rüdiger, Jeffrey Walker and Alessandra Monerris
Remote Sens. 2020, 12(7), 1208; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12071208 - 09 Apr 2020
Cited by 18 | Viewed by 3729
Abstract
As opposed to monostatic radars where incoherent backscattering dominates, in bistatic radars, such as Global Navigation Satellite Systems Reflectometry (GNSS-R), the forward scattered signals exhibit both an incoherent and a coherent component. Current models assume that either one or the other are dominant, [...] Read more.
As opposed to monostatic radars where incoherent backscattering dominates, in bistatic radars, such as Global Navigation Satellite Systems Reflectometry (GNSS-R), the forward scattered signals exhibit both an incoherent and a coherent component. Current models assume that either one or the other are dominant, and the calibration and geophysical parameter retrieval (e.g., wind speed, soil moisture, etc.) are developed accordingly. Even the presence of the coherent component of a GNSS reflected signal itself has been a matter of discussion in the last years. In this work, a method developed to separate the leakage of the direct signal in the reflected one is applied to a data set of GNSS-R signals collected over the ocean by the Microwave Interferometer Reflectometer (MIR) instrument, an airborne dual-band (L1/E1 and L5/E5a), multi-constellation (GPS and Galileo) GNSS-R instrument with two 19-elements antenna arrays with 4 beam-steered each. The presented results demonstrate the feasibility of the proposed technique to untangle the coherent and incoherent components from the total power waveform in GNSS reflected signals. This technique allows the processing of these components separately, which increases the calibration accuracy (as today both are mixed and processed together), allowing higher resolution applications since the spatial resolution of the coherent component is determined by the size of the first Fresnel zone (300–500 meters from a LEO satellite), and not by the size of the glistening zone (25 km from a LEO satellite). The identification of the coherent component enhances also the location of the specular reflection point by determining the peak maximum from this coherent component rather than the point of maximum derivative of the incoherent one, which is normally noisy and it is blurred by all the glistening zone contributions. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

24 pages, 7402 KiB  
Article
Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS
by Volkan Senyurek, Fangni Lei, Dylan Boyd, Mehmet Kurum, Ali Cafer Gurbuz and Robert Moorhead
Remote Sens. 2020, 12(7), 1168; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12071168 - 05 Apr 2020
Cited by 87 | Viewed by 5694
Abstract
Soil moisture (SM) derived from satellite-based remote sensing measurements plays a vital role for understanding Earth’s land and near-surface atmosphere interactions. Bistatic Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R) has emerged in recent years as a new domain of microwave remote sensing with [...] Read more.
Soil moisture (SM) derived from satellite-based remote sensing measurements plays a vital role for understanding Earth’s land and near-surface atmosphere interactions. Bistatic Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R) has emerged in recent years as a new domain of microwave remote sensing with great potential for SM retrievals, particularly at high spatio-temporal resolutions. In this work, a machine learning (ML)-based framework is presented for obtaining SM data products over the International Soil Moisture Network (ISMN) sites in the Continental United States (CONUS) by leveraging spaceborne GNSS-R observations provided by NASA’s Cyclone GNSS (CYGNSS) constellation alongside remotely sensed geophysical data products. Three widely-used ML approaches—artificial neural network (ANN), random forest (RF), and support vector machine (SVM)—are compared and analyzed for the SM retrieval through utilizing multiple validation strategies. Specifically, using a 5-fold cross-validation method, overall RMSE values of 0.052, 0.061, and 0.065 cm3/cm3 are achieved for the RF, ANN, and SVM techniques, respectively. In addition, both a site-independent and a year-based validation techniques demonstrate satisfactory accuracy of the proposed ML model, suggesting that this SM approach can be generalized in space and time domains. Moreover, the achieved accuracy can be further improved when the model is trained and tested over individual SM networks as opposed to combining all available SM networks. Additionally, factors including soil type and land cover are analyzed with respect to their impacts on the accuracy of SM retrievals. Overall, the results demonstrated here indicate that the proposed technique can confidently provide SM estimates over lightly-vegetated areas with vegetation water content (VWC) less than 5 kg/m2 and relatively low spatial heterogeneity. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

31 pages, 15441 KiB  
Article
The Polarimetric Sensitivity of SMAP-Reflectometry Signals to Crop Growth in the U.S. Corn Belt
by Nereida Rodriguez-Alvarez, Sidharth Misra and Mary Morris
Remote Sens. 2020, 12(6), 1007; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12061007 - 21 Mar 2020
Cited by 17 | Viewed by 2874
Abstract
Crop growth is an important parameter to monitor in order to obtain accurate remotely sensed estimates of soil moisture, as well as assessments of crop health, productivity, and quality commonly used in the agricultural industry. The Soil Moisture Active Passive (SMAP) mission has [...] Read more.
Crop growth is an important parameter to monitor in order to obtain accurate remotely sensed estimates of soil moisture, as well as assessments of crop health, productivity, and quality commonly used in the agricultural industry. The Soil Moisture Active Passive (SMAP) mission has been collecting Global Positioning System (GPS) signals as they reflect off the Earth’s surface since August 2015. The L-band dual-polarization reflection measurements enable studies of the evolution of geophysical parameters during seasonal transitions. In this paper, we examine the sensitivity of SMAP-reflectometry signals to agricultural crop growth related characteristics: crop type, vegetation water content (VWC), crop height, and vegetation opacity (VOP). The study presented here focuses on the United States “Corn Belt,” where an extensive area is planted every year with mostly corn, soybean, and wheat. We explore the potential to generate regularly an alternate source of crop growth information independent of the data currently used in the soil moisture (SM) products developed with the SMAP mission. Our analysis explores the variability of the polarimetric ratio (PR), computed from the peak signals at V- and H-polarization, during the United States Corn Belt crop growing season in 2017. The approach facilitates the understanding of the evolution of the observed surfaces from bare soil to peak growth and the maturation of the crops until harvesting. We investigate the impact of SM on PR for low roughness scenes with low variability and considering each crop type independently. We analyze the sensitivity of PR to the selected crop height, VWC, VOP, and Normalized Differential Vegetation Index (NDVI) reference datasets. Finally, we discuss a possible path towards a retrieval algorithm based on Global Navigation Satellite System-Reflectometry (GNSS-R) measurements that could be used in combination with passive SMAP soil moisture algorithms to correct simultaneously for the VWC and SM effects on the electromagnetic signals. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

18 pages, 9332 KiB  
Article
An Aircraft Wetland Inundation Experiment Using GNSS Reflectometry
by Stephen T. Lowe, Clara Chew, Jesal Shah and Michael Kilzer
Remote Sens. 2020, 12(3), 512; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12030512 - 05 Feb 2020
Cited by 3 | Viewed by 2565
Abstract
In early May of 2017, a flight campaign was conducted over Caddo Lake, Texas, to test the ability of Global Navigation Satellite System-Reflectometry (GNSS-R) to detect water underlying vegetation canopies. This paper presents data from that campaign and compares them to Sentinel-1 data [...] Read more.
In early May of 2017, a flight campaign was conducted over Caddo Lake, Texas, to test the ability of Global Navigation Satellite System-Reflectometry (GNSS-R) to detect water underlying vegetation canopies. This paper presents data from that campaign and compares them to Sentinel-1 data collected during the same week. The low-altitude measurement allows for a more detailed assessment of the forward-scattering GNSS-R technique, and at a much higher spatial resolution, than is possible using currently available space-based GNSS-R data. Assumptions about the scattering model are verified, as is the assumption that the surface spot size is approximately the Fresnel zone. The results of this experiment indicate GNSS signals reflected from inundated short, thick vegetation, such as the giant Salvinia observed here, results in only a 2.15 dB loss compared to an open water reflection. GNSS reflections off inundated cypress forests show a 9.4 dB loss, but still 4.25 dB above that observed over dry regions. Sentinel-1 data show a 6-dB loss over the inundated giant Salvinia, relative to open water, and are insensitive to standing water beneath the cypress forests, as there is no difference between the signal over inundated cypress forests and that over dry land. These results indicate that, at aircraft altitudes, forward-scattered GNSS signals are able to map inundated regions even in the presence of dense overlying vegetation, whether that vegetation consists of short plants or tall trees. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

20 pages, 6012 KiB  
Article
First Evaluation of Topography on GNSS-R: An Empirical Study Based on a Digital Elevation Model
by Hugo Carreno-Luengo, Guido Luzi and Michele Crosetto
Remote Sens. 2019, 11(21), 2556; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11212556 - 31 Oct 2019
Cited by 23 | Viewed by 3487
Abstract
Understanding the effects of Earth’s surface topography on Global Navigation Satellite Systems Reflectometry (GNSS-R) space-borne data is important to calibrate experimental measurements, so as to provide accurate soil moisture content (SMC) retrievals. In this study, several scientific observables obtained from delay-Doppler maps (DDMs) [...] Read more.
Understanding the effects of Earth’s surface topography on Global Navigation Satellite Systems Reflectometry (GNSS-R) space-borne data is important to calibrate experimental measurements, so as to provide accurate soil moisture content (SMC) retrievals. In this study, several scientific observables obtained from delay-Doppler maps (DDMs) | Y r , t o p o ( τ , f ) | 2 generated on board the Cyclone Global Navigation Satellite System (CyGNSS) mission were evaluated as a function of several topographic parameters derived from a digital elevation model (DEM). This assessment was performed as a function of Soil Moisture Active Passive (SMAP)-derived SMC at grazing angles θ e ~ [20,30] ° and in a nadir-looking configuration θ e ~ [80,90] °. Global scale results showed that the width of the trailing edge (TE) was small T E ~ [100, 250] m and the reflectivity was high Γ ~ [–10, –3] dB over flat areas with low topographic heterogeneity, because of an increasing coherence of Earth-reflected Global Positioning System (GPS) signals. However, the strong impact of several topographic features over areas with rough topography provided motivation to perform a parametric analysis. A specific target area with little vegetation, low small-scale surface roughness, and a wide variety of terrains in South Asia was selected. A significant influence of several topographic parameters i.e., surface slopes and curvatures was observed. This triggered our study of the sensitivity of T E and Γ to SMC and topographic wetness index ( T W I ). Regional scale results showed that T E and Γ are strongly correlated with the T W I , while the sensitivity to SMC was almost negligible. The Pearson correlation coefficients of T E and Γ with T W I are r Γ ~ 0.59 and r T E ~−0.63 at θ e ~ [20, 30] ° and r Γ ~ 0.48 and r T E ~ −0.50 at θ e ~ [80, 90] °, respectively. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

17 pages, 6942 KiB  
Article
Detecting Targets above the Earth’s Surface Using GNSS-R Delay Doppler Maps: Results from TDS-1
by Changjiang Hu, Craig Benson, Hyuk Park, Adriano Camps, Li Qiao and Chris Rizos
Remote Sens. 2019, 11(19), 2327; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11192327 - 07 Oct 2019
Cited by 11 | Viewed by 4654
Abstract
Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface [...] Read more.
Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface objects. This work proposes a new application of GNSS-R, namely to detect objects above the Earth’s surface, such as low Earth orbit (LEO) satellites. To discuss its feasibility, 14 delay Doppler maps (DDMs) are first presented which contain unusually bright reflected signals as delays shorter than the specular reflection point over the Earth’s surface. Then, seven possible causes of these anomalies are analysed, reaching the conclusion that the anomalies are likely due to the signals being reflected from objects above the Earth’s surface. Next, the positions of the objects are calculated using the delay and Doppler information, and an appropriate geometry assumption. After that, suspect satellite objects are searched in the satellite database from Union of Concerned Scientists (UCS). Finally, three objects have been found to match the delay and Doppler conditions. In the absence of other reasons for these anomalies, GNSS-R could potentially be used to detect some objects above the Earth’s surface. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

Other

Jump to: Research

16 pages, 5914 KiB  
Technical Note
From GPS Receiver to GNSS Reflectometry Payload Development for the Triton Satellite Mission
by Yung-Fu Tsai, Wen-Hao Yeh, Jyh-Ching Juang, Dian-Syuan Yang and Chen-Tsung Lin
Remote Sens. 2021, 13(5), 999; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13050999 - 05 Mar 2021
Cited by 8 | Viewed by 3263
Abstract
The global positioning system (GPS) receiver has been one of the most important navigation systems for more than two decades. Although the GPS system was originally designed for near-Earth navigation, currently it is widely used in highly dynamic environments (such as low Earth [...] Read more.
The global positioning system (GPS) receiver has been one of the most important navigation systems for more than two decades. Although the GPS system was originally designed for near-Earth navigation, currently it is widely used in highly dynamic environments (such as low Earth orbit (LEO)). A space-capable GPS receiver (GPSR) is capable of providing timing and navigation information for spacecraft to determine the orbit and synchronize the onboard timing; therefore, it is one of the essential components of modern spacecraft. However, a space-grade GPSR is technology-sensitive and under export control. In order to overcome export control, the National Space Organization (NSPO) in Taiwan completed the development of a self-reliant space-grade GPSR in 2014. The NSPO GPSR, built in-house, has passed its qualification tests and is ready to fly onboard the Triton satellite. In addition to providing navigation, the GPS/global navigation satellite system (GNSS) is facilitated to many remote sensing missions, such as GNSS radio occultation (GNSS-RO) and GNSS reflectometry (GNSS-R). Based on the design of the NSPO GPSR, the NSPO is actively engaged in the development of the Triton program (a GNSS reflectometry mission). In a GNSS-R mission, the reflected signals are processed to form delay Doppler maps (DDMs) so that various properties (including ocean surface roughness, vegetation, soil moisture, and so on) can be retrieved. This paper describes not only the development of the NSPO GPSR but also the design, development, and special features of the Triton’s GNSS-R mission. Moreover, in order to verify the NSPO GNSS-R receiver, ground/flight tests are deemed essential. Then, data analyses of the airborne GNSS-R tests are presented in this paper. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Figure 1

12 pages, 4931 KiB  
Letter
Can GNSS-R Detect Abrupt Water Level Changes?
by Sajad Tabibi and Olivier Francis
Remote Sens. 2020, 12(21), 3614; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12213614 - 03 Nov 2020
Cited by 9 | Viewed by 2410
Abstract
Global navigation satellite system reflectometry (GNSS-R) uses signals of opportunity in a bi-static configuration of L-band microwave radar to retrieve environmental variables such as water level. The line-of-sight signal and its coherent surface reflection signal are not separate observables in geodetic GNSS-R. The [...] Read more.
Global navigation satellite system reflectometry (GNSS-R) uses signals of opportunity in a bi-static configuration of L-band microwave radar to retrieve environmental variables such as water level. The line-of-sight signal and its coherent surface reflection signal are not separate observables in geodetic GNSS-R. The temporally constructive and destructive oscillations in the recorded signal-to-noise ratio (SNR) observations can be used to retrieve water-surface levels at intermediate spatial scales that are proportional to the height of the GNSS antenna above the water surface. In this contribution, SNR observations are used to retrieve water levels at the Vianden Pumped Storage Plant (VPSP) in Luxembourg, where the water-surface level abruptly changes up to 17 m every 4-8 h to generate a peak current when the energy demand increases. The GNSS-R water level retrievals are corrected for the vertical velocity and acceleration of the water surface. The vertical velocity and acceleration corrections are important corrections that mitigate systematic errors in the estimated water level, especially for VPSP with such large water-surface changes. The root mean square error (RMSE) between the 10-min multi-GNSS water level time series and water level gauge records is 7.0 cm for a one-year period, with a 0.999 correlation coefficient. Our results demonstrate that GNSS-R can be used as a new complementary approach to study hurricanes or storm surges that cause abnormal rises of water levels. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

15 pages, 6877 KiB  
Technical Note
Flood Inundation Mapping by Combining GNSS-R Signals with Topographical Information
by S L Kesav Unnithan, Basudev Biswal and Christoph Rüdiger
Remote Sens. 2020, 12(18), 3026; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12183026 - 17 Sep 2020
Cited by 14 | Viewed by 4499
Abstract
The Cyclone Global Navigation Satellite System (CYGNSS) mission collects near-global hourly, pseudo-randomly distributed Global Navigation Satellite System - Reflectometry (GNSS-R) signals in the form of signal-to-noise ratio (SNR) point data, which is sensitive to the presence of surface water, due to their operating [...] Read more.
The Cyclone Global Navigation Satellite System (CYGNSS) mission collects near-global hourly, pseudo-randomly distributed Global Navigation Satellite System - Reflectometry (GNSS-R) signals in the form of signal-to-noise ratio (SNR) point data, which is sensitive to the presence of surface water, due to their operating frequency at L-band. However, because of the pseudo-random nature of these points, it is not possible to obtain continuous flood inundation maps at adequately high resolution. By considering topological indicators, such as height above nearest drainage (HAND) and slope of nearest drainage (SND), which indicate the probability of a certain area being prone to flooding, we hypothesize that combining static topographic information with the dynamic GNSS-R signals can result in large-scale, high-resolution flood inundation maps. Flood mapping was performed and validated with flood extent derived using available Sentinel-1A synthetic aperture radar (SAR) data for flooding in Kerala during August 2018, and North India during August 2017. The results obtained after thresholding indicate that the model exhibits a flooding accuracy ranging from 60% to 80% for lower threshold values. We observed significant overestimation error in mapping inundation across the flooding period, resulting in an optimal critical success index of 0.22 for threshold values between 17–19. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Graphical abstract

12 pages, 6501 KiB  
Letter
First Evidence of Mesoscale Ocean Eddies Signature in GNSS Reflectometry Measurements
by Mostafa Hoseini, Milad Asgarimehr, Valery Zavorotny, Hossein Nahavandchi, Chris Ruf and Jens Wickert
Remote Sens. 2020, 12(3), 542; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12030542 - 06 Feb 2020
Cited by 11 | Viewed by 3607
Abstract
Feasibility of sensing mesoscale ocean eddies using spaceborne Global Navigation Satellite Systems-Reflectometry (GNSS-R) measurements is demonstrated for the first time. Measurements of Cyclone GNSS (CYGNSS) satellite missions over the eddies, documented in the Aviso eddy trajectory atlas, are studied. The investigation reports on [...] Read more.
Feasibility of sensing mesoscale ocean eddies using spaceborne Global Navigation Satellite Systems-Reflectometry (GNSS-R) measurements is demonstrated for the first time. Measurements of Cyclone GNSS (CYGNSS) satellite missions over the eddies, documented in the Aviso eddy trajectory atlas, are studied. The investigation reports on the evidence of normalized bistatic radar cross section ( σ 0 ) responses over the center or the edges of the eddies. A statistical analysis using profiles over eddies in 2017 is carried out. The potential contributing factors leaving the signature in the measurements are discussed. The analysis of GNSS-R observations collocated with ancillary data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis-5 (ERA-5) shows strong inverse correlations of σ 0 with the sensible heat flux and surface stress in certain conditions. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation)
Show Figures

Figure 1

Back to TopTop