Special Issue "Frontiers in Remote Sensing Techniques and Applications Using Visible Infrared Imaging Radiometer Suites"

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Satellite Missions for Earth and Planetary Exploration".

Deadline for manuscript submissions: 31 May 2022.

Special Issue Editors

Dr. Xi Shao
E-Mail Website
Guest Editor
Cooperative Institute for Satellite Earth System Studies (CISESS), Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
Interests: imaging and sounding sensor calibration and validation; astrodynamics; RF antenna/receiver design; space weather; space environment effects on satellite and sensor
Dr. Xiaoxiong Xiong
E-Mail Website
Guest Editor
Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Interests: satellite instrument pre-launch testing and on-orbit calibration and characterization; vicarious calibration and validation methodologies and applications; calibration inter-comparisons; and using the Moon for sensor on-orbit calibration and characterization
Dr. Changyong Cao
E-Mail Website
Guest Editor
NOAA National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, College Park, MD 20740, USA
Interests: satellite instrument calibration/validation; inter-satellite calibration with simultaneous nadir overpass; satellite measurments for weather and climate applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments onboard Suomi National Polar-Orbiting Partnership (SNPP), NOAA-20, as well as future JPSS spacecraft. The VIIRS instrument provides moderate-resolution, radiometrically accurate global images using 22 visible/near-infrared and infrared bands covering wavelengths from 0.41 to 12.5 microns. With NOAA-20 and SNPP spacecraft being operational and 50 minutes apart along the same sun-synchronous orbit, the VIIRS instruments ensure a continuation of the Earth system observations. The on-orbit calibration/validation, data verification and long term monitoring suggest that the VIIRS on both SNPP and NOAA-20 have been performing well above the specification, maintaining its legacy and serving a broad range of VIIRS user community.

With SNPP VIIRS entering its ten years in-orbit and NOAA-20 VIIRS completing 3 years in-orbit, advances in VIIRS calibration/validation and applications emerge in a wide range of frontiers. The aim of this Remote Sensing special issue is to explore the frontiers in remote sensing techniques and applications enabled by VIIRS onboard SNPP and NOAA-20. The topics contributing to the special issue include, but not limited to:

  • Calibration technique development and results from the on-orbit verification in the post-launch check-out, calibration and validation, and long term monitoring of SNPP and NOAA-20 VIIRS sensor data records.
  • Applications of VIIRS data to empower operational environmental monitoring and numerical weather forecasting.
  • Applications of VIIRS data to provide insight into the properties and dynamics of different geophysical phenomena, including aerosol and cloud properties, sea, land and ice surface temperatures, ice motion, fires, albedo of Earth, and others.
  • Applications of VIIRS data to monitor and investigate changes and properties in surface vegetation, land cover/use, the hydrologic cycle, and the Earth's energy budget over both regional and global scales.
  • Applications of VIIRS day/night band data in studies involving both geophysical and social economic activities.
  • GEO-LEO and LEO-LEO data fusion involving VIIRS to better understand the Earth observation dynamics.

Both submissions of original manuscripts of latest research results and review contributions are welcome.

Dr. Xi Shao
Dr. Xiaoxiong Xiong
Dr. Changyong Cao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • VIIRS
  • SNPP
  • NOAA-20
  • DNB
  • calibration and validation
  • aerosol
  • cloud
  • fire

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
SNPP VIIRS Day Night Band: Ten Years of On-Orbit Calibration and Performance
Remote Sens. 2021, 13(20), 4179; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13204179 - 19 Oct 2021
Viewed by 305
Abstract
Aboard the polar-orbiting SNPP satellite, the VIIRS instrument has been in operation since launch in October 2011. It is a visible and infrared radiometer with a unique panchromatic channel capability designated as a day-night band (DNB). This channel covers wavelengths from 0.5 to [...] Read more.
Aboard the polar-orbiting SNPP satellite, the VIIRS instrument has been in operation since launch in October 2011. It is a visible and infrared radiometer with a unique panchromatic channel capability designated as a day-night band (DNB). This channel covers wavelengths from 0.5 to 0.9 µm and is designed with a near-constant spatial resolution for Earth observations 24 h a day. The DNB operates at 3 gain stages (low, middle, and high) to cover a large dynamic range. An onboard solar diffuser (SD) is used for calibration in the low gain stage, and to enable the derivation of gain ratios between the different stages. In this paper, we present the SNPP VIIRS DNB calibration performed by the NASA VIIRS characterization support team (VCST). The DNB calibration algorithms are described to generate the calibration coefficient look up tables (LUTs) for the latest NASA Level 1B Collection 2 products. We provide an evaluation of DNB on-orbit calibration performance. This activity supports the NASA Earth science community by delivering consistent VIIRS sensor data products via the Land Science Investigator-led Processing Systems, including the SD degradation applied for DNB calibrations in detector gain and gain ratio trending. The DNB stray light contamination and its correction are highlighted. Performance validations are presented using comparisons to the calibration methods employed by NOAA’s operational Interface Data Processing Segment. Further work on stray light corrections is also discussed. Full article
Show Figures

Figure 1

Article
S-NPP VIIRS Thermal Emissive Bands 10-Year On-Orbit Calibration and Performance
Remote Sens. 2021, 13(19), 3917; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13193917 - 30 Sep 2021
Viewed by 350
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership Program (S-NPP) satellite, launched in late 2011, has reached the decade landmark under successful operations. VIIRS has 22 spectral bands, 7 of which are thermal emissive bands (TEB) that cover [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership Program (S-NPP) satellite, launched in late 2011, has reached the decade landmark under successful operations. VIIRS has 22 spectral bands, 7 of which are thermal emissive bands (TEB) that cover the 3.70 to 11.84 μm wavelength range. Over the years, VIIRS TEB observations have been used to generate several data products (e.g., surface/cloud/atmospheric temperatures, cloud top altitude, and water vapor properties). The VIIRS TEB calibration uses a quadratic algorithm and is referenced to an on-board blackbody with temperature measurements traceable to the National Institute of Standards and Technology standard. This manuscript provides an overview of the VIIRS instrument operations and TEB calibration activities and algorithms used in the level 1B data and describes the TEB on-orbit performance for S-NPP VIIRS. The 10-year on-orbit performance of the S-NPP VIIRS TEB has generally been stable, and the degradations in the S-NPP TEB detector responses are minor after a decade in orbit. The noise characterization performance repeatedly meets the design requirements for all TEB detectors as well. On-orbit changes in the TEB response-versus-scan-angle, based on pitch maneuver observations, have been demonstrated to be extremely small. Moreover, multiple time series over select ground targets have shown that the sensor’s on-orbit performance is quite stable. Full article
Show Figures

Figure 1

Article
Ten Years of SNPP VIIRS Reflective Solar Bands On-Orbit Calibration and Performance
Remote Sens. 2021, 13(15), 2944; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13152944 - 27 Jul 2021
Viewed by 496
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) has successfully operated on-orbit for nearly ten years since its launch in October 2011, continuously making global observations and improving studies of changes in the Earth’s climate and environment. [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) has successfully operated on-orbit for nearly ten years since its launch in October 2011, continuously making global observations and improving studies of changes in the Earth’s climate and environment. VIIRS has 22 spectral bands, among which 14 are reflective solar bands (RSBs) covering a spectral range from 0.41 to 2.25 μm. The SNPP VIIRS RSBs are primarily calibrated by the onboard solar diffuser (SD), with its on-orbit degradation tracked by an onboard SD stability monitor (SDSM). The near-monthly scheduled lunar observations, together with the sensor responses over stable ground targets, have contributed to the sensor’s mission-long on-orbit calibration and characterization. Numerous improvements have been made in the RSB calibration methodology since SNPP VIIRS was launched, and the RSB calibration has reached a mature stage after almost ten years of on-orbit operation. SNPP is a joint NASA/NOAA mission and there are two teams, the NASA VIIRS Calibration Support Team (VCST) and the NOAA VIIRS Sensor Data Record Team, which are dedicated to SNPP VIIRS on-orbit calibration. In this paper, we focus on the calibration performed by the NASA VCST. The SNPP VIIRS RSB calibration methodologies used to produce the calibration coefficient look up tables for the latest NASA Level 1B Collection 2 products are reviewed and the calibration improvements incorporated in this collection are described. Recent calibration changes include the removal of image striping caused by non-uniform degradation of the SD, improvements to the method for combining lunar and SD data, mitigation of the effects due a recent anomaly in the SD measurements, estimation of the SD degradation beyond 935 nm, and fitting strategy improvements for look-up table delivery. Overall, the SNPP VIIRS RSBs have performed well since its launch and continue to meet design specifications. Full article
Show Figures

Figure 1

Article
S-NPP VIIRS Day Night Band On-Board Solar Diffuser Calibration Validation Using the Scheduled Lunar Collections
Remote Sens. 2021, 13(6), 1093; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13061093 - 13 Mar 2021
Cited by 1 | Viewed by 704
Abstract
Similar to the Reflective Solar Band (RSB) calibration, Suomi-National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) on-board calibration of Day Night Band (DNB) is based on the Solar Diffuser (SD) observations in the Low Gain State (LGS). DNB has a broad [...] Read more.
Similar to the Reflective Solar Band (RSB) calibration, Suomi-National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) on-board calibration of Day Night Band (DNB) is based on the Solar Diffuser (SD) observations in the Low Gain State (LGS). DNB has a broad spectral response covering a wavelength range roughly from 500 nm to 900 nm with a large dynamic range from three different gain states called High Gain State (HGS), Mid Gain State (MGS), and LGS. The calibration of MGS and HGS is also dependent on the LGS gain estimation with the gain ratios for each gain state. Over the lifetime of S-NPP VIIRS operations, the LGS gains have been derived from the on-board SD observations since its launch in October 2011. In this study, the lifetime LGS gains are validated by the lunar calibration coefficients (defined as F-factors) using a lunar irradiance model called Global Space-based Inter-Calibration System (GSICS) Implementation of RObotic Lunar Observatory (ROLO) (GIRO). Using the moon as an independent on-orbit calibration source, the S-NPP VIIRS DNB on-board SD based radiometric calibration is validated by the lunar F-factors within two percent of the lunar F-factors in terms of the standard deviation in the long-term trends over nine years of the S-NPP VIIRS operation. Full article
Show Figures

Graphical abstract

Article
Mission-Long Recalibrated Science Quality Suomi NPP VIIRS Radiometric Dataset Using Advanced Algorithms for Time Series Studies
Remote Sens. 2021, 13(6), 1075; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13061075 - 12 Mar 2021
Cited by 7 | Viewed by 4469
Abstract
Suomi NPP has been successfully operating since its launch on 28 October 2011. As one of the major payloads, along with microwave and infrared sounders (Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS)), and ozone mapping/profiling (OMPS) instruments, the Visible Infrared Imaging [...] Read more.
Suomi NPP has been successfully operating since its launch on 28 October 2011. As one of the major payloads, along with microwave and infrared sounders (Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS)), and ozone mapping/profiling (OMPS) instruments, the Visible Infrared Imaging Radiometer Suite (VIIRS) has performed for well beyond its mission design life. Its data have been used for a variety of applications for nearly 30 environmental data products, including global imagery twice daily with 375 and 750 m resolutions, clouds, aerosol, cryosphere, ocean color and sea-surface temperature, a number of land products (vegetation, land-cover, fire and others), and geophysical and social economic studies with nightlights. During the early days of VIIRS operational calibration and data production, there were inconsistencies in both algorithms and calibration inputs, for several reasons. While these inconsistencies have less impact on nowcasting and near real-time applications, they introduce challenges for time series analysis due to calibration artifacts. To address this issue, we developed a comprehensive algorithm, and recalibrated and reprocessed the Suomi NPP VIIRS radiometric data that have been produced since the launch. In the recalibration, we resolved inconsistencies in the processing algorithms, terrain correction, straylight correction, and anomalies in the thermal bands. To improve the stability of the reflective solar bands, we developed a Kalman filtering model to incorporate onboard solar, lunar, desert site, inter-satellite calibration, and a deep convective cloud calibration methodology. We further developed and implemented the Solar Diffuser Surface Roughness Rayleigh Scattering model to account for the sensor responsivity degradation in the near infrared bands. The recalibrated dataset was validated using vicarious sites and alternative methods, and compared with independent processing from other organizations. The recalibrated radiometric dataset (namely, the level 1b or sensor data records) also incorporates a bias correction for the reflective solar bands, which not only addresses known calibration biases, but also allows alternative calibrations to be applied if so desired. The recalibrated data have been proven to be of high quality, with much improved stability (better than 0.3%) and accuracy (by up to 2%). The recalibrated radiance data are now available from 2012 to 2020 for users and will eventually be archived on the NOAA CLASS database. Full article
Show Figures

Graphical abstract

Article
NOAA-20 and S-NPP VIIRS Thermal Emissive Bands On-Orbit Calibration Algorithm Update and Long-Term Performance Inter-Comparison
Remote Sens. 2021, 13(3), 448; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13030448 - 27 Jan 2021
Cited by 4 | Viewed by 723
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Oceanic and Atmospheric Administration-20 (NOAA-20) and the Suomi National Polar-orbiting Partnership Program (S-NPP) satellites were launched in late 2017 and 2011, respectively. This paper presents a recent update in the VIIRS thermal [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Oceanic and Atmospheric Administration-20 (NOAA-20) and the Suomi National Polar-orbiting Partnership Program (S-NPP) satellites were launched in late 2017 and 2011, respectively. This paper presents a recent update in the VIIRS thermal emissive bands (TEB) on-orbit calibration algorithm and inter-compares long-term instrument and TEB sensor data records (SDR) performances of the two VIIRS, to support user communities. The VIIRS TEB calibration algorithm was improved to mitigate calibration biases during the blackbody warm-up/cool-down (WUCD) events. Four WUCD bias correction methods were implemented in the NOAA operational processing in 2019: (1) the Nominal-F method, (2) the WUCD-C method, (3) the Ltrace method, and (4) the Ltrace-2 method. Our evaluation results indicate that the on-orbit performances of the two VIIRS instruments have been generally stable and comparable with each other, except that NOAA-20 VIIRS blackbody and instrument temperatures are lower than those of the S-NPP VIIRS. The degradations in the S-NPP TEB detector responsivities remain small after 9 years on-orbit. NOAA-20 detector responsivities have been generally stable after the longwave infrared degradation during its early mission was resolved by the mid-mission outgassing. NOAA-20 and S-NPP VIIRS TEB SDRs agree with co-located Cross-track Infrared Sounder observations, with daily averaged biases within 0.1 K at nadir. After the implementation of operational WUCD bias correction, residual TEB WUCD biases are similar for NOAA-20 and S-NPP, with daily averaged biases ~0.01 K in all bands. Full article
Show Figures

Graphical abstract

Article
Assessment of BRDF Impact on VIIRS DNB from Observed Top-of-Atmosphere Reflectance over Dome C in Nighttime
Remote Sens. 2021, 13(2), 301; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13020301 - 16 Jan 2021
Viewed by 767
Abstract
The Day–Night Band (DNB) imaging sensor of the Visible Infrared Imaging Radiometer Suite (VIIRS) adds nighttime monitoring capability to the Suomi National Polar-Orbiting Partnership and National Oceanic and Atmospheric Administration 20 weather satellite launched in 2011 and 2017, respectively. Nighttime visible imagery has [...] Read more.
The Day–Night Band (DNB) imaging sensor of the Visible Infrared Imaging Radiometer Suite (VIIRS) adds nighttime monitoring capability to the Suomi National Polar-Orbiting Partnership and National Oceanic and Atmospheric Administration 20 weather satellite launched in 2011 and 2017, respectively. Nighttime visible imagery has already found diverse applications, but image quality is often unsatisfactory. In this study, variations in observed top-of-atmosphere (TOA) reflectance were examined in terms of nighttime bidirectional effects. The Antarctica Dome C ground site was selected due to high uniformity. First, variation of reflectance was characterized in terms of viewing zenith angle, lunar zenith angle, and relative lunar azimuth angle, using DNB data from 2012 to 2020 and Miller–Turner 2009 simulations. Variations in reflectance were observed to be strongly anisotropic, suggesting the presence of bidirectional effects. Then, based on this finding, three popular bidirectional reflectance distribution function (BRDF) models were evaluated for effectiveness in correcting for these effects on the nighttime images. The observed radiance of VIIRS DNB was compared with the simulated radiance respectively based on the three BRDF models under the same geometry. Compared with the RossThick-LiSparseReciprocal (RossLi) BRDF model and Hudson model, the Warren model has a higher correlation coefficient (0.9899–0.9945) and a lower root-mean-square-error (0.0383–0.0487). Moreover, the RossLi BRDF model and Hudson model may have similar effects in the description of the nighttime TOA over Dome C. These findings are potentially useful to evaluate the radiometric calibration stability and consistency of nighttime satellite sensors. Full article
Show Figures

Graphical abstract

Back to TopTop