remotesensing-logo

Journal Browser

Journal Browser

Remote Sensing of Volcanic Processes and Risk

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing in Geology, Geomorphology and Hydrology".

Deadline for manuscript submissions: closed (30 April 2019) | Viewed by 108179

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors

Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
Interests: landscape evolution; geophysical hazards; archaeology; cultural heritage; remote sensing; earth observation; InSAR; landslides; land subsidence; ground instability
Special Issues, Collections and Topics in MDPI journals
Italian Space Agency (ASI), Via del Politecnico snc, 00133 Rome, Italy
Interests: earth observation; radar and optical remote sensing; InSAR; time series analysis; Earth Sciences; environmental geology; natural hazards; urban environments; geoheritage; geoconservation; cultural heritage
Special Issues, Collections and Topics in MDPI journals
Institute of Geophysics and Tectonics, University of Leeds, Leeds LS2 9JT, UK
Interests: satellite remote sensing of volcanic activity; magma storage; volcanic interactions; edifice growth and collapse; volcano monitoring; volcanic hazards

Special Issue Information

Dear Colleagues,

Understanding volcanic processes and hazards, assessing the associated risk for exposed communities, critical infrastructure and business, and enhancing risk awareness, are activities of vital importance towards risk mitigation. Remote sensing observations are increasingly being embedded into assessments of volcanic processes and risk, thanks to their capability to provide a spectrum of opportunities to accurately sense dynamics, magnitude, frequency and impacts of volcanic eruptions in the ultraviolet, visible, infrared, and microwave domains. Crucial is their potential to monitor volcanoes where no ground sensor networks exist, as well as otherwise inaccessible locations.

This Special Issue will gather original research articles, reviews, technical notes and letters on the use of satellite, aerial and ground-based remote sensing data and methods to sense volcanic processes (e.g., deformation, lava and pyroclastic flows, gas emissions and plumes), and assess the associated hazard and risk.

Extremely welcome are research studies combining two or more remote sensing methods or types of data, integrating remote sensing with in situ observations (e.g., GPS, seismic, geochemical data), or embedding remotely sensed information into volcanic processes and hazard and risk assessment models, near-real time monitoring, early warning and decision-making. Submissions of reviews on global or continental volcano databases, monitoring and models are equally encouraged.

Dr. Francesca Cigna
Dr. Deodato Tapete
Prof. Zhong Lu
Dr. Susanna K. Ebmeier
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • volcano deformation
  • gas emissions
  • magma accumulation
  • edifice growth and collapse
  • inflation and deflation
  • volcano monitoring
  • volcanic unrest
  • lava flows
  • pyroclastic flows
  • ash plumes
  • SAR imaging
  • radar interferometry, InSAR
  • multispectral and hyperspectral imaging
  • thermal imaging
  • photogrammetry
  • LiDAR

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Other

17 pages, 1103 KiB  
Editorial
Remote Sensing of Volcanic Processes and Risk
by Francesca Cigna, Deodato Tapete and Zhong Lu
Remote Sens. 2020, 12(16), 2567; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12162567 - 10 Aug 2020
Cited by 16 | Viewed by 3756
Abstract
Remote sensing data and methods are increasingly being embedded into assessments of volcanic processes and risk. This happens thanks to their capability to provide a spectrum of observation and measurement opportunities to accurately sense the dynamics, magnitude, frequency, and impacts of volcanic activity [...] Read more.
Remote sensing data and methods are increasingly being embedded into assessments of volcanic processes and risk. This happens thanks to their capability to provide a spectrum of observation and measurement opportunities to accurately sense the dynamics, magnitude, frequency, and impacts of volcanic activity in the ultraviolet (UV), visible (VIS), infrared (IR), and microwave domains. Launched in mid-2018, the Special Issue “Remote Sensing of Volcanic Processes and Risk” of Remote Sensing gathers 19 research papers on the use of satellite, aerial, and ground-based remote sensing to detect thermal features and anomalies, investigate lava and pyroclastic flows, predict the flow path of lahars, measure gas emissions and plumes, and estimate ground deformation. The strong multi-disciplinary character of the approaches employed for volcano monitoring and the combination of a variety of sensor types, platforms, and methods that come out from the papers testify the current scientific and technology trends toward multi-data and multi-sensor monitoring solutions. The research advances presented in the published papers are achieved thanks to a wealth of data including but not limited to the following: thermal IR from satellite missions (e.g., MODIS, VIIRS, AVHRR, Landsat-8, Sentinel-2, ASTER, TET-1) and ground-based stations (e.g., FLIR cameras); digital elevation/surface models from airborne sensors (e.g., Light Detection And Ranging (LiDAR), or 3D laser scans) and satellite imagery (e.g., tri-stereo Pléiades, SPOT-6/7, PlanetScope); airborne hyperspectral surveys; geophysics (e.g., ground-penetrating radar, electromagnetic induction, magnetic survey); ground-based acoustic infrasound; ground-based scanning UV spectrometers; and ground-based and satellite Synthetic Aperture Radar (SAR) imaging (e.g., TerraSAR-X, Sentinel-1, Radarsat-2). Data processing approaches and methods include change detection, offset tracking, Interferometric SAR (InSAR), photogrammetry, hotspots and anomalies detection, neural networks, numerical modeling, inversion modeling, wavelet transforms, and image segmentation. Some authors also share codes for automated data analysis and demonstrate methods for post-processing standard products that are made available for end users, and which are expected to stimulate the research community to exploit them in other volcanological application contexts. The geographic breath is global, with case studies in Chile, Peru, Ecuador, Guatemala, Mexico, Hawai’i, Alaska, Kamchatka, Japan, Indonesia, Vanuatu, Réunion Island, Ethiopia, Canary Islands, Greece, Italy, and Iceland. The added value of the published research lies on the demonstration of the benefits that these remote sensing technologies have brought to knowledge of volcanoes that pose risk to local communities; back-analysis and critical revision of recent volcanic eruptions and unrest periods; and improvement of modeling and prediction methods. Therefore, this Special Issue provides not only a collection of forefront research in remote sensing applied to volcanology, but also a selection of case studies proving the societal impact that this scientific discipline can potentially generate on volcanic hazard and risk management. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Figure 1

Research

Jump to: Editorial, Other

18 pages, 7814 KiB  
Article
Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala
by Anna Aldeghi, Simon Carn, Rudiger Escobar-Wolf and Gianluca Groppelli
Remote Sens. 2019, 11(18), 2151; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11182151 - 16 Sep 2019
Cited by 18 | Viewed by 6223
Abstract
Fuego volcano (Guatemala) is one of the most active and hazardous volcanoes in the world. Its persistent activity generates lava flows, pyroclastic density currents (PDCs), and lahars that threaten the surrounding areas and produce frequent morphological change. Fuego’s eruption deposits are often rapidly [...] Read more.
Fuego volcano (Guatemala) is one of the most active and hazardous volcanoes in the world. Its persistent activity generates lava flows, pyroclastic density currents (PDCs), and lahars that threaten the surrounding areas and produce frequent morphological change. Fuego’s eruption deposits are often rapidly eroded or remobilized by heavy rains and its constant activity and inaccessible terrain makes ground-based assessment of recent eruptive deposits very challenging. Earth-orbiting satellites can provide unique observations of volcanoes during eruptive activity, when ground-based techniques may be too hazardous, and also during inter-eruptive phases, but have typically been hindered by relatively low spatial and temporal resolution. Here, we use a new source of Earth observation data for volcano monitoring: high resolution (~3 m pixel size) images acquired from a constellation of over 150 CubeSats (‘Doves’) operated by Planet Labs Inc. The Planet Labs constellation provides high spatial resolution at high cadence (<1–72 h), permitting space-based tracking of volcanic activity with unprecedented detail. We show how PlanetScope images collected before, during, and after an eruption can be applied for mapping ash clouds, PDCs, lava flows, or the analysis of morphological change. We assess the utility of the PlanetScope data as a tool for volcano monitoring and rapid deposit mapping that could assist volcanic hazard mitigation efforts in Guatemala and other active volcanic regions. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

31 pages, 10653 KiB  
Article
Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System
by Sébastien Valade, Andreas Ley, Francesco Massimetti, Olivier D’Hondt, Marco Laiolo, Diego Coppola, David Loibl, Olaf Hellwich and Thomas R. Walter
Remote Sens. 2019, 11(13), 1528; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11131528 - 27 Jun 2019
Cited by 98 | Viewed by 17037
Abstract
Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for [...] Read more.
Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for a comprehensive monitoring of volcanic hazards. We here present the volcano monitoring platform MOUNTS (Monitoring Unrest from Space), which aims for global monitoring, using multisensor satellite-based imagery (Sentinel-1 Synthetic Aperture Radar SAR, Sentinel-2 Short-Wave InfraRed SWIR, Sentinel-5P TROPOMI), ground-based seismic data (GEOFON and USGS global earthquake catalogues), and artificial intelligence (AI) to assist monitoring tasks. It provides near-real-time access to surface deformation, heat anomalies, SO2 gas emissions, and local seismicity at a number of volcanoes around the globe, providing support to both scientific and operational communities for volcanic risk assessment. Results are visualized on an open-access website where both geocoded images and time series of relevant parameters are provided, allowing for a comprehensive understanding of the temporal evolution of volcanic activity and eruptive products. We further demonstrate that AI can play a key role in such monitoring frameworks. Here we design and train a Convolutional Neural Network (CNN) on synthetically generated interferograms, to operationally detect strong deformation (e.g., related to dyke intrusions), in the real interferograms produced by MOUNTS. The utility of this interdisciplinary approach is illustrated through a number of recent eruptions (Erta Ale 2017, Fuego 2018, Kilauea 2018, Anak Krakatau 2018, Ambrym 2018, and Piton de la Fournaise 2018–2019). We show how exploiting multiple sensors allows for assessment of a variety of volcanic processes in various climatic settings, ranging from subsurface magma intrusion, to surface eruptive deposit emplacement, pre/syn-eruptive morphological changes, and gas propagation into the atmosphere. The data processed by MOUNTS is providing insights into eruptive precursors and eruptive dynamics of these volcanoes, and is sharpening our understanding of how the integration of multiparametric datasets can help better monitor volcanic hazards. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

18 pages, 5174 KiB  
Article
Recent Developments and Applications of Acoustic Infrasound to Monitor Volcanic Emissions
by Silvio De Angelis, Alejandro Diaz-Moreno and Luciano Zuccarello
Remote Sens. 2019, 11(11), 1302; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11111302 - 31 May 2019
Cited by 34 | Viewed by 5402
Abstract
Volcanic ash is a well-known hazard to population, infrastructure, and commercial and civil aviation. Early assessment of the parameters that control the development and evolution of volcanic plumes is crucial to effective risk mitigation. Acoustic infrasound is a ground-based remote sensing technique—increasingly popular [...] Read more.
Volcanic ash is a well-known hazard to population, infrastructure, and commercial and civil aviation. Early assessment of the parameters that control the development and evolution of volcanic plumes is crucial to effective risk mitigation. Acoustic infrasound is a ground-based remote sensing technique—increasingly popular in the past two decades—that allows rapid estimates of eruption source parameters, including fluid flow velocities and volume flow rates of erupted material. The rate at which material is ejected from volcanic vents during eruptions, is one of the main inputs into models of atmospheric ash transport used to dispatch aviation warnings during eruptive crises. During explosive activity at volcanoes, the injection of hot gas-laden pyroclasts into the atmosphere generates acoustic waves that are recorded at local, regional and global scale. Within the framework of linear acoustic theory, infrasound sources can be modelled as multipole series, and acoustic pressure waveforms can be inverted to obtain the time history of volume flow at the vent. Here, we review near-field (<10 km from the vent) linear acoustic wave theory and its applications to the assessment of eruption source parameters. We evaluate recent advances in volcano infrasound modelling and inversion, and comment on the advantages and current limitations of these methods. We review published case studies from different volcanoes and show applications to new data that provide a benchmark for future acoustic infrasound studies. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

23 pages, 4308 KiB  
Article
Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka
by René Mania, Thomas R. Walter, Marina Belousova, Alexander Belousov and Sergey L. Senyukov
Remote Sens. 2019, 11(11), 1278; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11111278 - 29 May 2019
Cited by 20 | Viewed by 5333
Abstract
Lava domes grow by extrusions and intrusions of viscous magma often initiating from a central volcanic vent, and they are frequently defining the source region of hazardous explosive eruptions and pyroclastic density currents. Thus, close monitoring of dome building processes is crucial, but [...] Read more.
Lava domes grow by extrusions and intrusions of viscous magma often initiating from a central volcanic vent, and they are frequently defining the source region of hazardous explosive eruptions and pyroclastic density currents. Thus, close monitoring of dome building processes is crucial, but often limited to low data resolution, hazardous access, and poor visibility. Here, we investigated the 2016–2017 eruptive sequence of the dome building Bezymianny volcano, Kamchatka, with spot-mode TerraSAR-X acquisitions, and complement the analysis with webcam imagery and seismic data. Our results reveal clear morphometric changes preceding eruptions that are associated with intrusions and extrusions. Pixel offset measurements show >7 months of precursory plug extrusion, being locally defined and exceeding 30 m of deformation, chiefly without detected seismicity. After a short explosion, three months of lava dome evolution were characterised by extrusions and intrusion. Our data suggest that the growth mechanisms were significantly governed by magma supply rate and shallow upper conduit solidification that deflected magmatic intrusions into the uppermost parts of the dome. The integrated approach contributes significantly to a better understanding of precursory activity and complex growth interactions at dome building volcanoes, and shows that intrusive and extrusive growth is acting in chorus at Bezymianny volcano. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

21 pages, 5031 KiB  
Article
Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data
by Dario Delle Donne, Alessandro Aiuppa, Marcello Bitetto, Roberto D’Aleo, Mauro Coltelli, Diego Coppola, Emilio Pecora, Maurizio Ripepe and Giancarlo Tamburello
Remote Sens. 2019, 11(10), 1201; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11101201 - 20 May 2019
Cited by 21 | Viewed by 4543
Abstract
We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, [...] Read more.
We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5–2 times higher than the 2016 average (1588 tons/day) during the Etna’s May 16–25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fountain. Here, the average SO2 degassing rate was ~158 kg/s, the peak emission was ~260 kg/s, and the total released SO2 mass was ~1700 tons (in 3 h on 18 May, 2016). Comparison between our data and prior (2014–2015) results revealed systematic SO2 emission patterns prior to, during, and after an Etna’s paroxysmal phases, which allows us to tentatively identify thresholds between pre-eruptive, syn-eruptive, and post-eruptive degassing regimes. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

20 pages, 4188 KiB  
Article
Space- and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano
by Marco Laiolo, Maurizio Ripepe, Corrado Cigolini, Diego Coppola, Massimo Della Schiava, Riccardo Genco, Lorenzo Innocenti, Giorgio Lacanna, Emanuele Marchetti, Francesco Massimetti and Maria Cristina Silengo
Remote Sens. 2019, 11(10), 1182; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11101182 - 18 May 2019
Cited by 38 | Viewed by 5108
Abstract
After a month-long increase in activity at the summit craters, on 24 December 2018, the Etna volcano experienced a short-lived lateral effusive event followed by a rapid resumption of low-level explosive and degassing activity at the summit vents. By combining space (Moderate Resolution [...] Read more.
After a month-long increase in activity at the summit craters, on 24 December 2018, the Etna volcano experienced a short-lived lateral effusive event followed by a rapid resumption of low-level explosive and degassing activity at the summit vents. By combining space (Moderate Resolution Imaging Spectroradiometer; MODIS and SENTINEL-2 images) and ground-based geophysical data, we track, in near real-time, the thermal, seismic and infrasonic changes associated with Etna’s activity during the September–December 2018 period. Satellite thermal data reveal that the fissural eruption was preceded by a persistent increase of summit activity, as reflected by overflow episodes in New SouthEast Crater (NSE) sector. This behavior is supported by infrasonic data, which recorded a constant increase both in the occurrence and in the energy of the strombolian activity at the same crater sectors mapped by satellite. The explosive activity trend is poorly constrained by the seismic tremor, which shows instead a sudden increase only since the 08:24 GMT on the 24 December 2018, almost concurrently with the end of the infrasonic detections occurred at 06:00 GMT. The arrays detected the resumption of infrasonic activity at 11:13 GMT of 24 December, when tremors almost reached the maximum amplitude. Infrasound indicates that the explosive activity was shifting from the summit crater along the flank of the Etna volcano, reflecting, with the seismic tremor, the intrusion of a gas-rich magma batch along a ~2.0 km long dyke, which reached the surface generating an intense explosive phase. The dyke propagation lasted for almost 3 h, during which magma migrated from the central conduit system to the lateral vent, at a mean speed of 0.15–0.20 m s−1. Based on MODIS and SENTINEL 2 images, we estimated that the summit outflows erupted a volume of lava of 1.4 Mm3 (±0.5 Mm3), and that the lateral effusive episode erupted a minimum volume of 0.85 Mm3 (±0.3 Mm3). The results presented here outline the support of satellite data on tracking the evolution of volcanic activity and the importance to integrate satellite with ground-based geophysical data in improving assessments of volcanic hazard during eruptive crises. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

20 pages, 15094 KiB  
Article
Chronology of the 2014–2016 Eruptive Phase of Volcán de Colima and Volume Estimation of Associated Lava Flows and Pyroclastic Flows Based on Optical Multi-Sensors
by Norma Dávila, Lucia Capra, Dolors Ferrés, Juan Carlos Gavilanes-Ruiz and Pablo Flores
Remote Sens. 2019, 11(10), 1167; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11101167 - 16 May 2019
Cited by 8 | Viewed by 3653
Abstract
The eruption at Volcán de Colima (México) on 10–11 July 2015 represents the most violent eruption that has occurred at this volcano since the 1913 Plinian eruption. The extraordinary runout of the associated pyroclastic flows was never observed during the past dome collapse [...] Read more.
The eruption at Volcán de Colima (México) on 10–11 July 2015 represents the most violent eruption that has occurred at this volcano since the 1913 Plinian eruption. The extraordinary runout of the associated pyroclastic flows was never observed during the past dome collapse events in 1991 or 2004–2005. Based on Satellite Pour l’Observation de la Terre (SPOT) and Earth Observing-1 (EO-1) ALI (Advanced Land Imager), the chronology of the different eruptive phases from September 2014 to September 2016 is reconstructed here. A digital image segmentation procedure allowed for the mapping of the trajectory of the lava flows emplaced on the main cone as well as the pyroclastic flow deposits that inundated the Montegrande ravine on the southern flank of the volcano. Digital surface models (DSMs) obtained from SPOT/6 dual-stereoscopic and tri-stereopair images were used to estimate the volumes of some lava flows and the main pyroclastic flow deposits. We estimated that the total volume of the magma that erupted during the 2014–2016 event was approximately 40 × 107 m3, which is one order of magnitude lower than that of the 1913 Plinian eruption. These data are fundamental for improving hazard assessment because the July 2015 eruption represents a unique scenario that has never before been observed at Volcán de Colima. Volume estimation provides complementary data to better understand eruptive processes, and detailed maps of the distributions of lava flows and pyroclastic flows represent fundamental tools for calibrating numerical modeling for hazard assessment. The stereo capabilities of the SPOT6/7 satellites for the detection of topographic changes and the and the availability of EO-1 ALI imagery are useful tools for reconstructing multitemporal eruptive events, even in areas that are not accessible due to ongoing eruptive activity. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

20 pages, 11161 KiB  
Article
Determination of Primary and Secondary Lahar Flow Paths of the Fuego Volcano (Guatemala) Using Morphometric Parameters
by Marcelo Cando-Jácome and Antonio Martínez-Graña
Remote Sens. 2019, 11(6), 727; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11060727 - 26 Mar 2019
Cited by 15 | Viewed by 6573
Abstract
On 3 June 2018, a strong eruption of the Fuego volcano in Guatemala produced a dense cloud of 10-km-high volcanic ash and destructive pyroclastic flows that caused nearly 200 deaths and huge economic losses in the region. Subsequently, due to heavy rains, destructive [...] Read more.
On 3 June 2018, a strong eruption of the Fuego volcano in Guatemala produced a dense cloud of 10-km-high volcanic ash and destructive pyroclastic flows that caused nearly 200 deaths and huge economic losses in the region. Subsequently, due to heavy rains, destructive secondary lahars were produced, which were not plotted on the hazard maps using the LAHAR Z software. In this work we propose to complement the mapping of this type of lahars using remote-sensing (Differential Interferometry, DINSAR) in Sentinel images 1A and 2A, to locate areas of deformation of the relief on the flanks of the volcano, areas that are possibly origin of these lahars. To determine the trajectory of the lahars, parameters and morphological indices were analyzed with the software System for Automated Geoscientific Analysis (SAGA). The parameters and morphological indices used were the accumulation of flow (FCC), the topographic wetness index (TWI), the length-magnitude factor of the slope (LS). Finally, a slope stability analysis was performed using the Shallow Landslide Susceptibility software (SHALSTAB) based on the Mohr–Coulomb theory and its parameters: internal soil saturation degree and effective precipitation, parameters required to destabilize a hillside. In this case, the application of this complementary methodology provided a more accurate response of the areas destroyed by primary and secondary lahars in the vicinity of the volcano. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Figure 1

23 pages, 7835 KiB  
Article
Imaging Thermal Anomalies in Hot Dry Rock Geothermal Systems from Near-Surface Geophysical Modelling
by David Gomez-Ortiz, Isabel Blanco-Montenegro, Jose Arnoso, Tomas Martin-Crespo, Mercedes Solla, Fuensanta G. Montesinos, Emilio Vélez and Nieves Sánchez
Remote Sens. 2019, 11(6), 675; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11060675 - 21 Mar 2019
Cited by 4 | Viewed by 4610
Abstract
Convective hydrothermal systems have been extensively studied using electrical and electromagnetic methods given the strong correlation between low conductivity anomalies associated with hydrothermal brines and high temperature areas. However, studies addressing the application of similar geophysical methods to hot dry rock geothermal systems [...] Read more.
Convective hydrothermal systems have been extensively studied using electrical and electromagnetic methods given the strong correlation between low conductivity anomalies associated with hydrothermal brines and high temperature areas. However, studies addressing the application of similar geophysical methods to hot dry rock geothermal systems are very limited in the literature. The Timanfaya volcanic area, located on Lanzarote Island (Canary Islands), comprises one of these hot dry rock systems, where ground temperatures ranging from 250 to 605 °C have been recorded in pyroclastic deposits at shallow (<70 m) depths. With the aim of characterizing the geophysical signature of the high ground temperature areas, three different geophysical techniques (ground penetrating radar, electromagnetic induction and magnetic prospecting) were applied in a well-known geothermal area located inside Timanfaya National Park. The area with the highest ground temperatures was correlated with the location that exhibited strong ground penetrating radar reflections, high resistivity values and low magnetic anomalies. Moreover, the high ground temperature imaging results depicted a shallow, bowl-shaped body that narrowed and deepened vertically to a depth greater than 45 m. The ground penetrating radar survey was repeated three years later and exhibited subtle variations of the signal reflection patterns, or signatures, suggesting a certain temporal variation of the ground temperature. By identifying similar areas with the same geophysical signature, up to four additional geothermal areas were revealed. We conclude that the combined use of ground penetrating radar, electromagnetic induction and magnetic methods constitutes a valuable tool to locate and study both the geometry at depth and seasonal variability of geothermal areas associated with hot dry rock systems. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

13 pages, 1900 KiB  
Article
Eruptive Styles Recognition Using High Temporal Resolution Geostationary Infrared Satellite Data
by Valerio Lombardo, Stefano Corradini, Massimo Musacchio, Malvina Silvestri and Jacopo Taddeucci
Remote Sens. 2019, 11(6), 669; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11060669 - 19 Mar 2019
Cited by 5 | Viewed by 2563
Abstract
The high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument aboard Meteosat Second Generation (MSG) provides the opportunity to investigate eruptive processes and discriminate different styles of volcanic activity. To this goal, a new detection method based on the [...] Read more.
The high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument aboard Meteosat Second Generation (MSG) provides the opportunity to investigate eruptive processes and discriminate different styles of volcanic activity. To this goal, a new detection method based on the wavelet transform of SEVIRI infrared data is proposed. A statistical analysis is performed on wavelet smoothed data derived from SEVIRI Mid-Infrared( MIR) radiances collected from 2011 to 2017 on Mt Etna (Italy) volcano. Time-series analysis of the kurtosis of the radiance distribution allows for reliable hot-spot detection and precise timing of the start and end of eruptive events. Combined kurtosis and gradient trends allow for discrimination of the different activity styles of the volcano, from effusive lava flow, through Strombolian explosions, to paroxysmal fountaining. The same data also allow for the prediction, at the onset of an eruption, of what will be its dominant eruptive style at later stages. The results obtained have been validated against ground-based and literature data. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

16 pages, 2785 KiB  
Article
Role of Emissivity in Lava Flow ‘Distance-to-Run’ Estimates from Satellite-Based Volcano Monitoring
by Nikola Rogic, Annalisa Cappello and Fabrizio Ferrucci
Remote Sens. 2019, 11(6), 662; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11060662 - 19 Mar 2019
Cited by 16 | Viewed by 4111
Abstract
Remote sensing is an established technological solution for bridging critical gaps in volcanic hazard assessment and risk mitigation. The enormous amount of remote sensing data available today at a range of temporal and spatial resolutions can aid emergency management in volcanic crises by [...] Read more.
Remote sensing is an established technological solution for bridging critical gaps in volcanic hazard assessment and risk mitigation. The enormous amount of remote sensing data available today at a range of temporal and spatial resolutions can aid emergency management in volcanic crises by detecting and measuring high-temperature thermal anomalies and providing lava flow propagation forecasts. In such thermal estimates, an important role is played by emissivity—the efficiency with which a surface radiates its thermal energy at various wavelengths. Emissivity has a close relationship with land surface temperatures and radiant fluxes, and it impacts directly on the prediction of lava flow behavior, as mass flux estimates depend on measured radiant fluxes. Since emissivity is seldom measured and mostly assumed, we aimed to fill this gap in knowledge by carrying out a multi-stage experiment, combining laboratory-based Fourier transform infrared (FTIR) analyses, remote sensing data, and numerical modeling. We tested the capacity for reproducing emissivity from spaceborne observations using ASTER Global Emissivity Database (GED) while assessing the spatial heterogeneity of emissivity. Our laboratory-satellite emissivity values were used to establish a realistic land surface temperature from a high-resolution spaceborne payload (ETM+) to obtain an instant temperature–radiant flux and eruption rate results for the 2001 Mount Etna (Italy) eruption. Forward-modeling tests conducted on the 2001 ‘aa’ lava flow by means of the MAGFLOW Cellular Automata code produced differences of up to ~600 m in the simulated lava flow ‘distance-to-run’ for a range of emissivity values. Given the density and proximity of urban settlements on and around Mount Etna, these results may have significant implications for civil protection and urban planning applications. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

19 pages, 11642 KiB  
Article
The 2014–2015 Lava Flow Field at Holuhraun, Iceland: Using Airborne Hyperspectral Remote Sensing for Discriminating the Lava Surface
by Muhammad Aufaristama, Armann Hoskuldsson, Magnus Orn Ulfarsson, Ingibjorg Jonsdottir and Thorvaldur Thordarson
Remote Sens. 2019, 11(5), 476; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11050476 - 26 Feb 2019
Cited by 13 | Viewed by 6044
Abstract
The Holuhraun lava flow was the largest effusive eruption in Iceland for 230 years, with an estimated lava bulk volume of ~1.44 km3 and covering an area of ~84 km2. The six month long eruption at Holuhraun 2014–2015 generated a [...] Read more.
The Holuhraun lava flow was the largest effusive eruption in Iceland for 230 years, with an estimated lava bulk volume of ~1.44 km3 and covering an area of ~84 km2. The six month long eruption at Holuhraun 2014–2015 generated a diverse surface environment. Therefore, the abundant data of airborne hyperspectral imagery above the lava field, calls for the use of time-efficient and accurate methods to unravel them. The hyperspectral data acquisition was acquired five months after the eruption finished, using an airborne FENIX-Hyperspectral sensor that was operated by the Natural Environment Research Council Airborne Research Facility (NERC-ARF). The data were atmospherically corrected using the Quick Atmospheric Correction (QUAC) algorithm. Here we used the Sequential Maximum Angle Convex Cone (SMACC) method to find spectral endmembers and their abundances throughout the airborne hyperspectral image. In total we estimated 15 endmembers, and we grouped these endmembers into six groups; (1) basalt; (2) hot material; (3) oxidized surface; (4) sulfate mineral; (5) water; and (6) noise. These groups were based on the similar shape of the endmembers; however, the amplitude varies due to illumination conditions, spectral variability, and topography. We, thus, obtained the respective abundances from each endmember group using fully constrained linear spectral mixture analysis (LSMA). The methods offer an optimum and a fast selection for volcanic products segregation. However, ground truth spectra are needed for further analysis. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

18 pages, 6243 KiB  
Article
Multi-Sensor SAR Geodetic Imaging and Modelling of Santorini Volcano Post-Unrest Response
by Elena Papageorgiou, Michael Foumelis, Elisa Trasatti, Guido Ventura, Daniel Raucoules and Antonios Mouratidis
Remote Sens. 2019, 11(3), 259; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11030259 - 28 Jan 2019
Cited by 20 | Viewed by 4546
Abstract
Volcanic history of Santorini over recent years records a seismo-volcanic unrest in 2011–12 with a non-eruptive behavior. The volcano deformation state following the unrest was investigated through multi-sensor Synthetic Aperture Radar Interferometry (InSAR) time series. We focused on the analysis of Copernicus Sentinel-1, [...] Read more.
Volcanic history of Santorini over recent years records a seismo-volcanic unrest in 2011–12 with a non-eruptive behavior. The volcano deformation state following the unrest was investigated through multi-sensor Synthetic Aperture Radar Interferometry (InSAR) time series. We focused on the analysis of Copernicus Sentinel-1, Radarsat-2 and TerraSAR-X Multi-temporal SAR Interferometric (MT-InSAR) results, for the post-unrest period 2012–17. Data from multiple Sentinel-1 tracks and acquisition geometries were used to constrain the E-W and vertical components of the deformation field along with their evolution in time. The interpretation of the InSAR observations and modelling provided insights on the post-unrest deformation pattern of the volcano, allowing the further re-evaluation of the unrest event. The increase of subsidence rates on Nea Kameni, in accordance with the observed change of the spatial deformation pattern, compared to the pre-unrest period, suggests the superimposition of various deformation sources. Best-fitting inversion results indicate two deflation sources located at southwestern Nea Kameni at 1 km depth, and in the northern intra-caldera area at 2 km depth. A northern sill-like source interprets the post-unrest deflation attributed to the passive degassing of the magma intruded at 4 km during the unrest, while an isotropic source at Nea Kameni simulates a prevailing subsidence occurring since the pre-unrest period (1992–2010). Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Figure 1

21 pages, 21817 KiB  
Article
The 2014 Effusive Eruption at Stromboli: New Insights from In Situ and Remote-Sensing Measurements
by Federico Di Traglia, Sonia Calvari, Luca D'Auria, Teresa Nolesini, Alessandro Bonaccorso, Alessandro Fornaciai, Antonietta Esposito, Antonio Cristaldi, Massimiliano Favalli and Nicola Casagli
Remote Sens. 2018, 10(12), 2035; https://0-doi-org.brum.beds.ac.uk/10.3390/rs10122035 - 14 Dec 2018
Cited by 39 | Viewed by 5863
Abstract
In situ and remote-sensing measurements have been used to characterize the run-up phase and the phenomena that occurred during the August–November 2014 flank eruption at Stromboli. Data comprise videos recorded by the visible and infrared camera network, ground displacement recorded by the permanent-sited [...] Read more.
In situ and remote-sensing measurements have been used to characterize the run-up phase and the phenomena that occurred during the August–November 2014 flank eruption at Stromboli. Data comprise videos recorded by the visible and infrared camera network, ground displacement recorded by the permanent-sited Ku-band, Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) device, seismic signals (band 0.02–10 Hz), and high-resolution Digital Elevation Models (DEMs) reconstructed based on Light Detection and Ranging (LiDAR) data and tri-stereo PLEIADES-1 imagery. This work highlights the importance of considering data from in situ sensors and remote-sensing platforms in monitoring active volcanoes. Comparison of data from live-cams, tremor amplitude, localization of Very-Long-Period (VLP) source and amplitude of explosion quakes, and ground displacements recorded by GBInSAR in the crater terrace provide information about the eruptive activity, nowcasting the shift in eruptive style of explosive to effusive. At the same time, the landslide activity during the run-up and onset phases could be forecasted and tracked using the integration of data from the GBInSAR and the seismic landslide index. Finally, the use of airborne and space-borne DEMs permitted the detection of topographic changes induced by the eruptive activity, allowing for the estimation of a total volume of 3.07 ± 0.37 × 106 m3 of the 2014 lava flow field emplaced on the steep Sciara del Fuoco slope. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

14 pages, 11815 KiB  
Article
The Contribution of Multi-Sensor Infrared Satellite Observations to Monitor Mt. Etna (Italy) Activity during May to August 2016
by Francesco Marchese, Marco Neri, Alfredo Falconieri, Teodosio Lacava, Giuseppe Mazzeo, Nicola Pergola and Valerio Tramutoli
Remote Sens. 2018, 10(12), 1948; https://0-doi-org.brum.beds.ac.uk/10.3390/rs10121948 - 04 Dec 2018
Cited by 27 | Viewed by 4133
Abstract
In May 2016, three powerful paroxysmal events, mild Strombolian activity, and lava emissions took place at the summit crater area of Mt. Etna (Sicily, Italy). During, and immediately after the eruption, part of the North-East crater (NEC) collapsed, while extensive subsidence affected the [...] Read more.
In May 2016, three powerful paroxysmal events, mild Strombolian activity, and lava emissions took place at the summit crater area of Mt. Etna (Sicily, Italy). During, and immediately after the eruption, part of the North-East crater (NEC) collapsed, while extensive subsidence affected the Voragine crater (VOR). Since the end of the May eruptions, a diffuse fumarolic activity occurred from a fracture system that cuts the entire summit area. Starting from 7 August, a small vent (of ~20–30 m in diameter) opened up within the VOR crater, emitting high-temperature gases and producing volcanic glow which was visible at night. We investigated those volcanic phenomena from space, exploiting the information provided by the satellite-based system developed at the Institute of Methodologies for Environmental Analysis (IMAA), which monitors Italian volcanoes in near-real time by means of the RSTVOLC (Robust Satellite Techniques–volcanoes) algorithm. Results, achieved integrating Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) observations, showed that, despite some issues (e.g., in some cases, clouds masking the underlying hot surfaces), RSTVOLC provided additional information regarding Mt. Etna activity. In particular, results indicated that the Strombolian eruption of 21 May lasted longer than reported by field observations or that a short-lived event occurred in the late afternoon of the same day. Moreover, the outcomes of this study showed that the intensity of fumarolic emissions changed before 7 August, as a possible preparatory phase of the hot degassing activity occurring at VOR. In particular, the radiant flux retrieved from MODIS data decreased from 30 MW on 4 July to an average value of about 7.5 MW in the following weeks, increasing up to 18 MW a few days before the opening of a new degassing vent. These outcomes, in accordance with information provided by Sentinel-2 MSI (Multispectral Instrument) and Landsat 8-OLI (Operational Land Imager) data, confirm that satellite observations may also contribute greatly to the monitoring of active volcanoes in areas where efficient traditional surveillance systems exist. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

44 pages, 11672 KiB  
Article
Radar Path Delay Effects in Volcanic Gas Plumes: The Case of Láscar Volcano, Northern Chile
by Stefan Bredemeyer, Franz-Georg Ulmer, Thor H. Hansteen and Thomas R. Walter
Remote Sens. 2018, 10(10), 1514; https://0-doi-org.brum.beds.ac.uk/10.3390/rs10101514 - 21 Sep 2018
Cited by 12 | Viewed by 3990
Abstract
Modern volcano monitoring commonly involves Interferometric Synthetic Aperture Radar (InSAR) measurements to identify ground motions caused by volcanic activity. However, InSAR is largely affected by changes in atmospheric refractivity, in particular by changes which can be attributed to the distribution of water (H [...] Read more.
Modern volcano monitoring commonly involves Interferometric Synthetic Aperture Radar (InSAR) measurements to identify ground motions caused by volcanic activity. However, InSAR is largely affected by changes in atmospheric refractivity, in particular by changes which can be attributed to the distribution of water (H2O) vapor in the atmospheric column. Gas emissions from continuously degassing volcanoes contain abundant water vapor and thus produce variations in the atmospheric water vapor content above and downwind of the volcano, which are notably well captured by short-wavelength X-band SAR systems. These variations may in turn cause differential phase errors in volcano deformation estimates due to excess radar path delay effects within the volcanic gas plume. Inversely, if these radar path delay effects are better understood, they may be even used for monitoring degassing activity, by means of the precipitable water vapor (PWV) content in the plume at the time of SAR acquisitions, which may provide essential information on gas plume dispersion and the state of volcanic and hydrothermal activity. In this work we investigate the radar path delays that were generated by water vapor contained in the volcanic gas plume of the persistently degassing Láscar volcano, which is located in the dry Atacama Desert of Northern Chile. We estimate water vapor contents based on sulfur dioxide (SO2) emission measurements from a scanning UV spectrometer (Mini-DOAS) station installed at Láscar volcano, which were scaled by H2O/SO2 molar mixing ratios obtained during a multi-component Gas Analyzer System (Multi-GAS) survey on the crater rim of the volcano. To calculate the water vapor content in the downwind portion of the plume, where an increase of water vapor is expected, we further applied a correction involving estimation of potential evaporation rates of water droplets governed by turbulent mixing of the condensed volcanic plume with the dry atmosphere. Based on these estimates we obtain daily average PWV contents inside the volcanic gas plume of 0.2–2.5 mm equivalent water column, which translates to a slant wet delay (SWD) in DInSAR data of 1.6–20 mm. We used these estimates in combination with our high resolution TerraSAR-X DInSAR observations at Láscar volcano, in order to demonstrate the occurrence of repeated atmospheric delay patterns that were generated by volcanic gas emissions. We show that gas plume related refractivity changes are significant and detectable in DInSAR measurements. Implications are two-fold: X-band satellite radar observations also contain information on the degassing state of a volcano, while deformation signals need to be interpreted with care, which has relevance for volcano observations at Láscar and for other sites worldwide. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

17 pages, 6428 KiB  
Article
Monitoring of the 2015 Villarrica Volcano Eruption by Means of DLR’s Experimental TET-1 Satellite
by Simon Plank, Michael Nolde, Rudolf Richter, Christian Fischer, Sandro Martinis, Torsten Riedlinger, Elisabeth Schoepfer and Doris Klein
Remote Sens. 2018, 10(9), 1379; https://0-doi-org.brum.beds.ac.uk/10.3390/rs10091379 - 30 Aug 2018
Cited by 6 | Viewed by 4582
Abstract
Villarrica Volcano is one of the most active volcanoes in the South Andes Volcanic Zone. This article presents the results of a monitoring of the time before and after the 3 March 2015 eruption by analyzing nine satellite images acquired by the Technology [...] Read more.
Villarrica Volcano is one of the most active volcanoes in the South Andes Volcanic Zone. This article presents the results of a monitoring of the time before and after the 3 March 2015 eruption by analyzing nine satellite images acquired by the Technology Experiment Carrier-1 (TET-1), a small experimental German Aerospace Center (DLR) satellite. An atmospheric correction of the TET-1 data is presented, based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GDEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor data with the shortest temporal baseline to the TET-1 acquisitions. Next, the temperature, area coverage, and radiant power of the detected thermal hotspots were derived at subpixel level and compared with observations derived from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data. Thermal anomalies were detected nine days before the eruption. After the decrease of the radiant power following the 3 March 2015 eruption, a stronger increase of the radiant power was observed on 25 April 2015. In addition, we show that the eruption-related ash coverage of the glacier at Villarrica Volcano could clearly be detected in TET-1 imagery. Landsat-8 imagery was analyzed for comparison. The information extracted from the TET-1 thermal data is thought be used in future to support and complement ground-based observations of active volcanoes. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

Other

Jump to: Editorial, Research

12 pages, 2851 KiB  
Letter
Volcanic Cloud Top Height Estimation Using the Plume Elevation Model Procedure Applied to Orthorectified Landsat 8 Data. Test Case: 26 October 2013 Mt. Etna Eruption
by Marcello de Michele, Daniel Raucoules, Stefano Corradini, Luca Merucci, Giuseppe Salerno, Pasquale Sellitto and Elisa Carboni
Remote Sens. 2019, 11(7), 785; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11070785 - 02 Apr 2019
Cited by 8 | Viewed by 3030
Abstract
In this study, we present a method for extracting the volcanic cloud top height (VCTH) as a plume elevation model (PEM) from orthorectified Landsat 8 data (Level 1). A similar methodology was previously applied to raw Landsat-8 data (Level 0). But level 0 [...] Read more.
In this study, we present a method for extracting the volcanic cloud top height (VCTH) as a plume elevation model (PEM) from orthorectified Landsat 8 data (Level 1). A similar methodology was previously applied to raw Landsat-8 data (Level 0). But level 0 data are not the standard product provided by the National Aeronautics and Space Administration (NASA)/United States Geological Survey (USGS). Level 0 data are available only on demand and consist on 14 data stripes multiplied by the number of multispectral bands. The standard product for Landsat 8 is the ortho image, available free of charge for end-users. Therefore, there is the need to adapt our previous methodology to Level 1 Landsat data. The advantages of using the standard Landsat products instead of raw data mainly include the fast -ready to use- availability of the data and free access to registered users, which is of major importance during volcanic crises. In this study, we adapt the PEM methodology to the standard Landsat-8 products, with the aim of simplifying the procedure for routine monitoring, offering an opportunity to produce PEM maps. In this study, we present the method. Our approach is applied to the 26 October 2013 Mt. Etna episodes comparing results independent VCTH measures from the spinning enhanced visible and infrared imager (SEVIRI) and the moderate resolution imaging spectroradiometer (MODIS). Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

22 pages, 6574 KiB  
Technical Note
Processing Thermal Infrared Imagery Time-Series from Volcano Permanent Ground-Based Monitoring Network. Latest Methodological Improvements to Characterize Surface Temperatures Behavior of Thermal Anomaly Areas
by Fabio Sansivero and Giuseppe Vilardo
Remote Sens. 2019, 11(5), 553; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11050553 - 06 Mar 2019
Cited by 14 | Viewed by 4979
Abstract
In this technical paper, the state-of-art of automated procedures to process thermal infrared (TIR) scenes acquired by a permanent ground-based surveillance system, is discussed. TIR scenes regard diffuse degassing areas at Campi Flegrei and Vesuvio in the Neapolitan volcanic district (Italy). The processing [...] Read more.
In this technical paper, the state-of-art of automated procedures to process thermal infrared (TIR) scenes acquired by a permanent ground-based surveillance system, is discussed. TIR scenes regard diffuse degassing areas at Campi Flegrei and Vesuvio in the Neapolitan volcanic district (Italy). The processing system was developed in-house by using the flexible and fast processing Matlab© environment. The multi-step procedure, starting from raw infrared (IR) frames, generates a final product consisting mainly of de-seasoned temperatures and heat fluxes time-series as well as maps of yearly rates of temperature change of the IR frames. Accurate descriptions of all operational phases and of the procedures of analysis are illustrated; a Matlab© code (Natick, MA, USA) is provided as supplementary material. This product is ordinarily addressed to study volcanic dynamics and improve the forecasting of the volcanic activity. Nevertheless, it can be a useful tool to investigate the surface temperature field of any areas subjected to thermal anomalies, both of natural and anthropic origin. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

Back to TopTop