Special Issue "Satellite Soil Moisture Validation and Applications"

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing in Geology, Geomorphology and Hydrology".

Deadline for manuscript submissions: 31 October 2021.

Special Issue Editors

Dr. John J. Qu
E-Mail Website1 Website2
Guest Editor
Professor and Director, GENRI & ESTC, Department of Geography and GeoInformation Science (GGS), Global Environment and Natural Resources Institute (GENRI), College of Science, George Mason University, Fairfax, VA 22030, USA
Interests: remote sensing; Earth system and climate science; soil moisture and drought monitoring; water-energy-food nexus; environment and fire science
Special Issues and Collections in MDPI journals
Dr. Luca Brocca
grade E-Mail Website
Guest Editor
Research Institute for Geo-Hydrological Protection, National Research Council, Via della Madonna Alta, 126, 06128 Perugia, Italy
Interests: soil moisture; rainfall; river discharge; flood; landslide; drought; water resources management; agriculture
Special Issues and Collections in MDPI journals
Dr. Michael H. Cosh
E-Mail
Guest Editor
Research Hydrologist, Hydrology and Remote Sensing Laboratory, Rm 104 Bldg 007 BARC-West,10300 Baltimore Ave, Beltsville, MD 20705, USA
Interests: in-situ soil moisture network validation; scaling of land surface parameters to satellite scale; validation of satellite soil moisture products
Dr. Andreas Colliander
E-Mail Website
Guest Editor
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Interests: microwave remote sensing techniques and algorithms; global water cycle; cryosphere
Special Issues and Collections in MDPI journals
Dr. Xianjun Hao
E-Mail Website1 Website2
Guest Editor
Department of Geography and GeoInformation Science (GGS) & Environmental Science and Technology Center (ESTC)/ Global Environment and Natural Resources Institute (GENRI), College of Science, George Mason University, Fairfax, VA 22030, USA
Interests: satellite remote sensing applications; earth sciences and climate change; soil moisture and drought monitoring; data science and high performance computing

Special Issue Information

Dear Colleagues,

Soil moisture is a key element of our Earth’s system and an important indicator of climate change. Soil is the medium for plant growth and the substrate for all biogeochemical and biogeophysical processes. Its unique natural organization forms the foundation of any food–water–energy nexus system. In addition, soil is a very large reservoir for water and carbon with strong influences on local, regional, and global climate. The purpose of the 6th Satellite Soil Moisture and Application Workshop (15-17 Sept. 2020 in Perugia, Italy) is to discuss and reconcile recent methodological advances in the development, validation and application of satellite soil moisture observations. The workshop series is unique as it brings together users and developers of satellite soil moisture measurements with the aim of deriving and exploiting soil moisture from passive and active microwave satellite missions\sensors as well as optical instruments. The topics of the Special Issue include:

 

1) Soil Moisture Data Product Validation;
2) Space and in situ soil moisture measurements;
3) Soil Moisture Applications in Natural Hazards Monitoring;
4) Weather and Climate Modeling;
5) The Role of Soil Moisture in Carbon Cycle and Ecology;
6) Hydrology and Water Resources;
7) Agriculture and Food Security.
8) Soil-Ecosystem-Carbon-Climate (SECC) Nexus
9) Water-Energy-Food Nexus
10) WMO Soil Moisture Demonstration Project (SMDP)
11) International Soil Moisture Standard and Guidelines

Dr. John J. Qu
Dr. Eng. Luca Brocca
Dr. Michael H. Cosh
Dr. Andreas Colliander
Dr. Xianjun Hao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • satellite
  • soil moisture
  • validation
  • applications
  • standard
  • guideline
  • demonstration

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Cereal Crops Soil Parameters Retrieval Using L-Band ALOS-2 and C-Band Sentinel-1 Sensors
Remote Sens. 2021, 13(7), 1393; https://0-doi-org.brum.beds.ac.uk/10.3390/rs13071393 - 04 Apr 2021
Viewed by 885
Abstract
This paper discusses the potential of L-band Advanced Land Observing Satellite-2 (ALOS-2) and C-band Sentinel-1 radar data for retrieving soil parameters over cereal fields. For this purpose, multi-incidence, multi-polarization and dual-frequency satellite data were acquired simultaneously with in situ measurements collected over a [...] Read more.
This paper discusses the potential of L-band Advanced Land Observing Satellite-2 (ALOS-2) and C-band Sentinel-1 radar data for retrieving soil parameters over cereal fields. For this purpose, multi-incidence, multi-polarization and dual-frequency satellite data were acquired simultaneously with in situ measurements collected over a semiarid area, the Merguellil Plain (central Tunisia). The L- and C-band signal sensitivity to soil roughness, moisture and vegetation was investigated. High correlation coefficients were observed between the radar signals and soil roughness values for all processed multi-configurations of ALOS-2 and Sentinel-1 data. The sensitivity of SAR (Synthetic Aperture Radar) data to soil moisture was investigated for three classes of the normalized difference vegetation index (NDVI) (low vegetation cover, medium cover and dense cover), illustrating a decreasing sensitivity with increasing NDVI values. The highest sensitivity to soil moisture under the dense cover class is observed in L-band data. For various vegetation properties (leaf area index (LAI), height of vegetation cover (H) and vegetation water content (VWC)), a strong correlation is observed with the ALOS-2 radar signals (in HH(Horizontal-Horizontal) and HV(Horizontal-Vertical) polarizations). Different empirical models that link radar signals (in the L- and C-bands) to soil moisture and roughness parameters, as well as the semi-empirical Dubois modified model (Dubois-B) and the modified integral equation model (IEM-B), over bare soils are proposed for all polarizations. The results reveal that IEM-B performed a better accuracy comparing to Dubois-B. This analysis is also proposed for covered surfaces using different options provided by the water cloud model (WCM) (with and without the soil–vegetation interaction scattering term) coupled with the best accuracy bare soil backscattering models: IEM-B for co-polarization and empirical models for the entire dataset. Based on the validated backscattering models, different options of coupled models are tested for soil moisture inversion. The integration of a soil–vegetation interaction component in the WCM illustrates a considerable contribution to soil moisture precision in the HV polarization mode in the L-band frequency and a neglected effect on C-band data inversion. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Figure 1

Article
A Novel Scheme for Merging Active and Passive Satellite Soil Moisture Retrievals Based on Maximizing the Signal to Noise Ratio
Remote Sens. 2020, 12(22), 3804; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12223804 - 20 Nov 2020
Cited by 2 | Viewed by 1099
Abstract
In this research, we developed and evaluated a new scheme for merging soil moisture (SM) retrievals from both passive and active microwave satellite estimates, based on maximized signal-to-noise ratios, in order to produce improved SM products using least-squares theory. The fractional mean-squared-error (fMSE) [...] Read more.
In this research, we developed and evaluated a new scheme for merging soil moisture (SM) retrievals from both passive and active microwave satellite estimates, based on maximized signal-to-noise ratios, in order to produce improved SM products using least-squares theory. The fractional mean-squared-error (fMSE) derived from the triple collocation method (TCM) was used for this purpose. The proposed scheme was applied by using a threshold between signal and noise at fMSE equal to 0.5 to maintain the high-quality SM observations. In the regions where TCM is unreliable, we propose four scenarios based on the determinations of correlations between all three SM products of TCM at significance levels (i.e., p-values). The proposed scheme was applied to combine SM retrievals from Soil Moisture Active Passive (SMAP), Advanced Scatterometer (ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2) to produce SMAP+ASCAT and AMSR2+ASCAT SM datasets at a global scale for the period from June 2015 to December 2017. The merged SM dataset performance was assessed against SM data from ground measurements of international soil moisture network (ISMN), Global Land Data Assimilation System-Noah (GLDAS-Noah) and ERA5. The results show that the two merged SM datasets showed significant improvement over their parent products in the high average temporal correlation coefficients (R) and the lowest root mean squared difference (RMSE), compared with in-situ measurements over different networks of ISMN. Moreover, these datasets outperformed their parent products over different land cover types in most regions of the world, with a high overall average temporal R and the lowest overall average RMSE value with GLDAS and ERA5. In addition, the suggested scenarios improved SM performance in the regions with unreliable TCMs. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Graphical abstract

Article
Triple Collocation-Based Assessment of Satellite Soil Moisture Products with In Situ Measurements in China: Understanding the Error Sources
Remote Sens. 2020, 12(14), 2275; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12142275 - 15 Jul 2020
Cited by 3 | Viewed by 827
Abstract
With the increasing utilization of satellite-based soil moisture products, a primary challenge is knowing their accuracy and robustness. This study presents a comprehensive assessment over China of three widely used global satellite soil moisture products, i.e., Soil Moisture Active Passive (SMAP), European Space [...] Read more.
With the increasing utilization of satellite-based soil moisture products, a primary challenge is knowing their accuracy and robustness. This study presents a comprehensive assessment over China of three widely used global satellite soil moisture products, i.e., Soil Moisture Active Passive (SMAP), European Space Agency (ESA) Climate Change Initiative (CCI) Soil Moisture, Soil Moisture and Ocean Salinity (SMOS). In situ soil moisture from 1682 stations and Variable Infiltration Capacity (VIC) model are used to evaluate the performance of SMAP_L3, ESA_CCI_SM_COMBINED, SMOS_CATDS_L3 from 31 March 2015 to 3 June 2018. The Triple Collocation (TC) approach is used to minimize the uncertainty (e.g., scale issue) during the validation process. The TC analysis is conducted using three triplets, i.e., [SMAP-Insitu-VIC], [CCI-Insitu-VIC], [SMOS-Insitu-VIC]. In general, SMAP is the most reliable product, reflecting the main spatiotemporal characteristics of soil moisture, while SMOS has the lowest accuracy. The results demonstrate that the overall root mean square error of SMAP, CCI, SMOS is 0.040, 0.028, 0.107 m3m−3, respectively. The overall temporal correlation coefficient of SMAP, CCI, SMOS is 0.68, 0.65, 0.38, respectively. The overall fractional root mean square error of SMAP, CCI, SMOS is 0.707, 0.750, 0.897, respectively. In irrigated areas, the accuracy of CCI is reduced due to the land surface model (which does not consider irrigation) used for the rescaling of the CCI_COMBINED soil moisture product during the merging process, while SMAP and SMOS preserve the irrigation signal. The quality of SMOS is most strongly impacted by land surface temperature, vegetation, and soil texture, while the quality of CCI is the least affected by these factors. With the increase of Radio Frequency Interference, the accuracy of SMOS decreases dramatically, followed by SMAP and CCI. Higher representativeness error of in situ stations is noted in regions with higher topographic complexity. This study helps to provide a guideline for the application of satellite soil moisture products in scientific research and gives some references (e.g., modify data algorithm according to the main error sources) for improving the data quality. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Figure 1

Article
Assessment of Remotely Sensed and Modelled Soil Moisture Data Products in the U.S. Southern Great Plains
Remote Sens. 2020, 12(12), 2030; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12122030 - 24 Jun 2020
Viewed by 967
Abstract
Soil moisture (SM) plays a crucial role in the water and energy flux exchange between the atmosphere and the land surface. Remote sensing and modeling are two main approaches to obtain SM over a large-scale area. However, there is a big difference between [...] Read more.
Soil moisture (SM) plays a crucial role in the water and energy flux exchange between the atmosphere and the land surface. Remote sensing and modeling are two main approaches to obtain SM over a large-scale area. However, there is a big difference between them due to algorithm, spatial-temporal resolution, observation depth and measurement uncertainties. In this study, an assessment of the comparison of two state-of-the-art remotely sensed SM products, Soil Moisture Active Passive (SMAP) and European Space Agency Climate Change Initiative (ESACCI), and one land surface modeled dataset from the North American Land Data Assimilation System project phase 2 (NLDAS-2), were conducted using 17 permanent SM observation sites located in the Southern Great Plains (SGP) in the U.S. We first compared the daily mean SM of three products with in-situ measurements; then, we decompose the raw time series into a short-term seasonal part and anomaly by using a moving smooth window (35 days). In addition, we calculate the daily spatial difference between three products based on in-situ data and assess their temporal evolution. The results demonstrate that (1) in terms of temporal correlation R, the SMAP (R = 0.78) outperforms ESACCI (R = 0.62) and NLDAS-2 (R = 0.72) overall; (2) for the seasonal component, the correlation R of SMAP still outperforms the other two products, and the correlation R of ESACCI and NLDAS-2 have not improved like the SMAP; as for anomaly, there is no difference between the remotely sensed and modeling data, which implies the potential for the satellite products to capture the variations of short-term rainfall events; (3) the distribution pattern of spatial bias is different between the three products. For NLDAS-2, it is strongly dependent on precipitation; meanwhile, the spatial distribution of bias represents less correlation with the precipitation for two remotely sensed products, especially for the SMAP. Overall, the SMAP was superior to the other two products, especially when the SM was of low value. The difference between the remotely sensed and modeling products with respect to the vegetation type might be an important reason for the errors. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Graphical abstract

Article
Evaluation of Satellite-Derived Surface Soil Moisture Products over Agricultural Regions of Canada
Remote Sens. 2020, 12(9), 1455; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12091455 - 04 May 2020
Cited by 3 | Viewed by 1328
Abstract
Soil moisture is a critical indicator for climate change and agricultural drought, but its measurement is challenging due to large variability with land cover, soil type, time, space and depth. Satellite estimates of soil moisture are highly desirable and have become more widely [...] Read more.
Soil moisture is a critical indicator for climate change and agricultural drought, but its measurement is challenging due to large variability with land cover, soil type, time, space and depth. Satellite estimates of soil moisture are highly desirable and have become more widely available over the past decade. This study investigates and compares the performance of four surface soil moisture satellite datasets over Canada, namely, Soil Moisture and Ocean Salinity Level 3 (SMOS L3), versions 3.3 and 4.2 of European Space Agency Climate Change Initiative (ESA CCI) soil moisture product and a recent product called SMOS-INRA-CESBIO (SMOS-IC) that contains corrections designed to reduce several known sources of uncertainty in SMOS L3. These datasets were evaluated against in situ networks located in mostly agricultural regions of Canada for the period 2012 to 2014. Two statistical comparison methods were used, namely, metrics for mean soil moisture and median of metrics. The results suggest that, while both methods show similar comparisons for regional networks, over large networks, the median of metrics method is more representative of the overall correlation and variability and is therefore a more appropriate method for evaluating the performance of satellite products. Overall, the SMOS products have higher daily temporal correlations, but larger biases, against in situ soil moisture than the ESA CCI products, with SMOS-IC having higher correlations and smaller variability than SMOS L3. The SMOS products capture daily wetting and drying events better than the ESA CCI products, with the SMOS products capturing at least 75% of observed drying as compared to 55% for the ESA CCI products. Overall, for periods during which there are sufficient observations, both SMOS products are more suitable for agricultural applications over Canada than the ESA CCI products, even though SMOS-IC is able to capture soil moisture variability more accurately than SMOS L3. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Graphical abstract

Article
Monitoring Surface Soil Moisture Content over the Vegetated Area by Integrating Optical and SAR Satellite Observations in the Permafrost Region of Tibetan Plateau
Remote Sens. 2020, 12(1), 183; https://0-doi-org.brum.beds.ac.uk/10.3390/rs12010183 - 03 Jan 2020
Cited by 3 | Viewed by 1536
Abstract
Surface soil moisture (SSM), the average water content of surface soil (up to 5 cm depth), plays a key role in the energy exchange within the ecosystem. We estimated SSM in areas with vegetation cover (grassland) by combining microwave and optical satellite measurements [...] Read more.
Surface soil moisture (SSM), the average water content of surface soil (up to 5 cm depth), plays a key role in the energy exchange within the ecosystem. We estimated SSM in areas with vegetation cover (grassland) by combining microwave and optical satellite measurements in the central Tibetan Plateau (TP) in 2015. We exploited TERRA moderate resolution imaging spectroradiometer (MODIS) and Sentinel-1A synthetic aperture radar (SAR) observations to estimate SSM through a simplified water-cloud model (sWCM). This model considers the impact of vegetation water content (VWC) to SSM retrieval by integrating the vegetation index (VI), the normalized difference water index (NDWI), or the normalized difference infrared index (NDII). Sentinel-1 SAR C-band backscattering coefficients, incidence angle, and NDWI/NDII were assimilated in the sWCM to monitor SSM. The soil moisture and temperature monitoring network on the central TP (CTP-SMTMN) measures SSM within the study area, and ground measurements were applied to train and validate the model. Via the proposed methods, we estimated the SSM in vegetated area with an R2 of 0.43 and a ubRMSE of 0.06 m3/m3 when integrating the NDWI and with an R2 of 0.45 and a ubRMSE of 0.06 m3/m3 when integrating the NDII. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Graphical abstract

Article
Evaluation of Two SMAP Soil Moisture Retrievals Using Modeled- and Ground-Based Measurements
Remote Sens. 2019, 11(24), 2891; https://0-doi-org.brum.beds.ac.uk/10.3390/rs11242891 - 04 Dec 2019
Cited by 3 | Viewed by 1115
Abstract
A comprehensive evaluation of the performance of satellite-based soil moisture (SM) retrievals is undoubtedly very important to improve its quality and evaluate its potential application in hydrology, climate, and natural disasters (drought, flood, etc.). Since the release of the SMAP (Soil Moisture Active [...] Read more.
A comprehensive evaluation of the performance of satellite-based soil moisture (SM) retrievals is undoubtedly very important to improve its quality and evaluate its potential application in hydrology, climate, and natural disasters (drought, flood, etc.). Since the release of the SMAP (Soil Moisture Active Passive) mission data in April 2015, the associated SM retrieval algorithms have developed rapidly, and their improvement work is still in progress. However, some newly developed SM retrievals have not been fully assessed and inter-compared. One such product is the new multi-temporal dual-channel retrieval algorithm (MT-DCA) SM retrievals, which was recently retrieved using the so-called MT-DCA algorithm. To solve this, we aim to assess the MT-DCA SM retrievals along with the SMAP-enhanced level three SM products (SPL3SMP_E, version 2). More specifically, in this paper we evaluated and inter-compared the two SMAP SM retrievals with the ECMWF (European Centre for Medium-Range Weather Forecasts) modeled SM and ISMN (International Soil Moisture Network) in situ observations by applying four statistical scores: Pearson correlation coefficient (R), root mean square difference (RMSD), bias, and unbiased RMSD (ubRMSD). It was found that both SMAP SM retrievals can better capture the seasonal variations of ECMWF-modeled SM and ground-based measurements according to correlations, and MT-DCA SM was drier than SPL3SMP_E SM by ~0.018 m3/m3 on average on a global scale. With respect to the ISMN ground-based measurements, the performance of SPL3SMP_E SM compared better than the MT-DCA SM. The median ubRMSD of SPL3SMP_E SM and MT-DCA SM with ground measurements computed over all selected ISMN sites were 0.058 m3/m3 and 0.070 m3/m3, respectively. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Graphical abstract

Back to TopTop