Journal Description
Surfaces
Surfaces
is a peer-reviewed, open access journal covering all aspects of surface and interface science, and it is published online quarterly by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Inspec, CAPlus / SciFinder, and many other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 14.8 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
The Effects of Substrate Temperature on the Growth, Microstructural and Magnetic Properties of Gadolinium-Containing Films on Aluminum Nitride
Surfaces 2022, 5(2), 321-333; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020024 - 09 Jun 2022
Abstract
To facilitate future novel devices incorporating rare earth metal films and III-V semiconductors on Si substrates, this study investigates the mechanisms of growth via molecular beam epitaxy of gadolinium (Gd) on aluminum nitride (AlN) by determining the impact of substrate temperature on microstructure.
[...] Read more.
To facilitate future novel devices incorporating rare earth metal films and III-V semiconductors on Si substrates, this study investigates the mechanisms of growth via molecular beam epitaxy of gadolinium (Gd) on aluminum nitride (AlN) by determining the impact of substrate temperature on microstructure. The Gd films underwent extensive surface analysis via in situ reflective high energy electron diffraction (RHEED) and ex-situ SEM and AFM. Characterization of the surface features of rare earth metal films is important, as surface geometry has been shown to strongly impact magnetic properties. SEM and AFM imaging determined that Gd films grown on AlN (0001) from 80 °C to 400 °C transition from wetting, nodular films to island–trench growth mode to reduce in-plane lattice strain. XRD and Raman spectroscopy of the films revealed that they were primarily comprised of GdN, Gd and Gd2O3. The samples were also analyzed by a vibrating sample magnetometer (VSM) at room temperature. From the room temperature magnetic studies, the thick films showed superparamagnetic behavior, with samples grown between 240 °C and 270 °C showing high magnetic susceptibility. Increasing GdN (111) 2θ peak position and single-crystal growth modes correlated with increasing peak magnetization of the thin films, suggesting that lattice strain in single-crystal films was the primary driver of enhanced magnetic susceptibility.
Full article
(This article belongs to the Collection Featured Articles for Surfaces)
►
Show Figures
Open AccessEditorial
Emerging Chemical Sensing Technologies: Recent Advances and Future Trends
Surfaces 2022, 5(2), 318-320; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020023 - 31 May 2022
Abstract
Contemporary chemical sensing research is rapidly growing, leading to the development of new technologies for applications in almost all areas, including environmental monitoring, disease diagnostics and food quality control, among others [...]
Full article
(This article belongs to the Special Issue Surfaces on Emerging Chemical Sensing Applications)
Open AccessArticle
Surfactants for Electrophoretic Deposition of Polyvinylidene Fluoride–Silica Composites
by
and
Surfaces 2022, 5(2), 308-317; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020022 - 18 May 2022
Abstract
This investigation is motivated by the numerous advantages of electrophoretic deposition (EPD) for the fabrication of polyvinylidene fluoride (PVDF) and composite coatings and the various applications of such coatings. It is demonstrated that gallic acid (GA), caffeic acid (CFA), cholic acid (CA) and
[...] Read more.
This investigation is motivated by the numerous advantages of electrophoretic deposition (EPD) for the fabrication of polyvinylidene fluoride (PVDF) and composite coatings and the various applications of such coatings. It is demonstrated that gallic acid (GA), caffeic acid (CFA), cholic acid (CA) and 2,3,4 trihydroxybenzoic acid (THB) can be used as charging and dispersing agents for the EPD of PVDF. The deposition yield of PVDF increases in the following order: THB < CFA < CA < GA. Test results indicate that the chemical structure of the dispersants exerts influence on the deposition efficiency. Potentiodynamic and impedance spectroscopy studies show the corrosion protection properties of PVDF coatings. GA is used for the co-EPD of PVDF with nanosilica and micron-size silica. The silica content in the composite coatings is varied by the variation of silica content in the suspensions. The ability to use GA as a charging and dispersing agent for the co-EPD of materials of different types paves the way for the fabrication of advanced organic–inorganic composites using EPD.
Full article
(This article belongs to the Collection Featured Articles for Surfaces)
►▼
Show Figures

Graphical abstract
Open AccessArticle
SWOT Analysis of Electrical Discharge Coatings: A Case Study of Copper Coating on Titanium Alloy
by
, , and
Surfaces 2022, 5(2), 290-307; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020021 - 16 May 2022
Abstract
The electrical discharge machine (EDM) has been one of the most widely used non-traditional machines in recent decades, primarily used for machining hard materials into various complex shapes and different sizes and, nowadays, used for surface modifications/hard coatings. In this study, the SWOT
[...] Read more.
The electrical discharge machine (EDM) has been one of the most widely used non-traditional machines in recent decades, primarily used for machining hard materials into various complex shapes and different sizes and, nowadays, used for surface modifications/hard coatings. In this study, the SWOT (strengths, weaknesses, opportunities and threats) of electrical discharge coating was analyzed by conducting a case study. For the purpose of the case study, copper was deposited on the titanium alloy surface (Ti6Al4V). Three electrodes of different copper alloy materials, viz., brass, bronze and copper, were selected for coating the Ti6Al4V surface. Input parameters such as current, pulse-on, pulse-off, flushing pressure and the electrode material were optimized to develop a uniform coating. Experiments were designed according to the L18 orthogonal array, and among them, the samples that showed proper coating, as seen with the naked eye, were selected for morphological and elemental analyses by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX. Further, the output responses, viz., the material deposition rate (MDR), electrode wear rate (EWR), surface roughness (SR), elemental data (copper (Cu) and zinc (Zn)) and coating thickness (CT), were considered for the optimization of coatings. Implementing the Technique for Order Performance by Similarity to Ideal Solution, copper coating with a thickness of 20.43 µm, developed with an MDR with input parameters of 20 A current, 600 µs pulse-on, 120 µs pulse-off, 0.5 bar flushing pressure and the brass electrode, was selected as the optimum coating. The most influential parameters in this coating process were the current and pulse-on time. In this study, a SWOT table was developed to depict the strengths, weaknesses, opportunities and threats of electrical discharge coating.
Full article
(This article belongs to the Special Issue Surface Engineering and Phase Transformations in Metals and Alloys)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Density Functional Theory Calculations of the Effect of Oxygenated Functionals on Activated Carbon towards Cresol Adsorption
Surfaces 2022, 5(2), 280-289; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020020 - 02 May 2022
Abstract
►▼
Show Figures
The mechanism of adsorption of p-cresol over activated carbon adsorbent and the specific role of oxygen functional groups on cresol adsorption were studied using density functional theory (DFT) calculations. All the energy calculations and geometry optimization pertaining to DFT calculations were done
[...] Read more.
The mechanism of adsorption of p-cresol over activated carbon adsorbent and the specific role of oxygen functional groups on cresol adsorption were studied using density functional theory (DFT) calculations. All the energy calculations and geometry optimization pertaining to DFT calculations were done using the B3LYP hybrid functional at basis set 6-31g level of theory in a dielectric medium of ε = 80 (corresponding to water). The interaction of cresol with different activated carbon models, namely pristine activated carbon, hydroxyl functionalized activated carbon, carbonyl functionalized activated carbon, and carboxyl functionalized activated carbon, were considered, and their adsorption energies corresponded to −416.47 kJ/mol, −54.73 kJ/mol, −49.99 kJ/mol, and −63.62 kJ/mol, respectively. The high adsorption energies suggested the chemisorptive nature of the cresol-activated carbon adsorption process. Among the oxygen functional groups, the carboxyl group tended to influence the adsorption process more than the hydroxyl and carbonyl groups, attributing to the formation of two types of hydrogen bonds between the carboxyl activated carbon and the cresol simultaneously. The outcomes of this study may provide valuable insights for future directions to design activated carbon with improved performance towards cresol adsorption.
Full article

Figure 1
Open AccessArticle
Synthesis and Electrochemical Properties of Lignin-Derived High Surface Area Carbons
by
, , , , , and
Surfaces 2022, 5(2), 265-279; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020019 - 06 Apr 2022
Abstract
Activated carbons play an essential role in developing new electrodes for renewable energy devices due to their electrochemical and physical properties. They have been the subject of much research due to their prominent surface areas, porosity, light weight, and excellent conductivity. The performance
[...] Read more.
Activated carbons play an essential role in developing new electrodes for renewable energy devices due to their electrochemical and physical properties. They have been the subject of much research due to their prominent surface areas, porosity, light weight, and excellent conductivity. The performance of electric double-layer capacitors (EDLCs) is highly related to the morphology of porous carbon electrodes, where high surface area and pore size distribution are proportional to capacitance to a significant extent. In this work, we designed and synthesized several activated carbons based on lignin for both supercapacitors and Li-S batteries. Our most favorable synthesized carbon material had a very high specific surface area (1832 m2·g−1) and excellent pore diameter (3.6 nm), delivering a specific capacitance of 131 F·g−1 in our EDLC for the initial cycle. This translates to an energy density of the supercapacitor cell at 55.6 Wh·kg−1. Using this material for Li-S cells, composited with a nickel-rich phosphide and sulfur, showed good retention of soluble lithium polysulfide intermediates by maintaining a specific capacity of 545 mA·h·g−1 for more than 180 cycles at 0.2 C.
Full article
(This article belongs to the Collection Featured Articles for Surfaces)
►▼
Show Figures

Figure 1
Open AccessArticle
Temperature Effects in the Initial Stages of Heteroepitaxial Film Growth
Surfaces 2022, 5(2), 251-264; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020018 - 05 Apr 2022
Abstract
Kinetic Monte Carlo simulations of a model of thin film heteroepitaxy are performed to investigate the effects of the deposition temperature in the initial growth stages. Broad ranges of the rates of surface processes are used to model materials with several activation energies
[...] Read more.
Kinetic Monte Carlo simulations of a model of thin film heteroepitaxy are performed to investigate the effects of the deposition temperature in the initial growth stages. Broad ranges of the rates of surface processes are used to model materials with several activation energies and several temperature changes, in conditions of larger diffusivity on the substrate in comparison with other film layers. When films with the same coverage are compared, the roughness increases with the deposition temperature in the regimes of island growth, coalescence, and initial formation of the continuous films. Concomitantly, the position of the minimum of the autocorrelation function is displaced to larger sizes. These apparently universal trends are consequences of the formation of wider and taller islands, and are observed with or without Ehrlich-Schwöebel barriers for adatom diffusion at step edges. The roughness increase with temperature qualitatively matches the observations of recent works on the deposition of inorganic and organic materials. In thicker films, simulations with some parameter sets show the decrease of roughness with temperature. In these cases, a re-entrance of roughness may be observed in the initial formation of the continuous films.
Full article
(This article belongs to the Collection Featured Articles for Surfaces)
►▼
Show Figures

Figure 1
Open AccessArticle
4-Mercaptobenzoic Acid Adsorption on TiO2 Anatase (101) and TiO2 Rutile (110) Surfaces
by
, , , and
Surfaces 2022, 5(2), 238-250; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020017 - 05 Apr 2022
Abstract
The adsorption of 4-mercaptobenzoic acid (4-MBA) on anatase (101) and rutile (110) TiO2 surfaces has been studied using synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy techniques. Photoelectron spectroscopy results suggest that the 4-MBA molecule bonds to both
[...] Read more.
The adsorption of 4-mercaptobenzoic acid (4-MBA) on anatase (101) and rutile (110) TiO2 surfaces has been studied using synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy techniques. Photoelectron spectroscopy results suggest that the 4-MBA molecule bonds to both TiO2 surfaces through the carboxyl group, following deprotonation in a bidentate geometry. Carbon K-edge NEXAFS spectra show that the phenyl ring of the 4-MBA molecule is oriented at 70° ± 5° from the surface on both the rutile (110) and anatase (101) surfaces, although there are subtle differences in the electronic structure of the molecule following adsorption between the two surfaces.
Full article
(This article belongs to the Collection Featured Articles for Surfaces)
►▼
Show Figures

Figure 1
Open AccessCommunication
Chalcogen Atom-Doped Graphene and Its Performance in N2 Activation
Surfaces 2022, 5(2), 228-237; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5020016 - 01 Apr 2022
Abstract
►▼
Show Figures
In this work, we studied dispersion correction, adsorption and substitution of chalcogen dopants (O, S, Se and Te) on the surface of graphene using density functional theory. The results reveal that a single oxygen atom is more preferred for adsorption onto the graphene
[...] Read more.
In this work, we studied dispersion correction, adsorption and substitution of chalcogen dopants (O, S, Se and Te) on the surface of graphene using density functional theory. The results reveal that a single oxygen atom is more preferred for adsorption onto the graphene surface than the other dopants, with an adsorption energy of −0.84 eV. The preference of this dopant is evidenced by a greater charge transfer of 0.34 electrons from the graphene surface to the oxygen. The substitutional doping of oxygen is energetically more favourable than the doping of other atoms. While nitrogen activation is enhanced by the adsorption, the activation is not significant with the doping of chalcogen atoms.
Full article

Figure 1
Open AccessArticle
Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors
Surfaces 2022, 5(1), 218-227; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010015 - 04 Mar 2022
Cited by 1
Abstract
Detection of explosives is vital for protection and criminal investigations, and developing novel explosives’ sensors stands at the forefront of the analytical and forensic chemistry endeavors. Due to the presence of terminal nitro groups that can be electrochemically reduced, nitroaromatic compounds (NACs) have
[...] Read more.
Detection of explosives is vital for protection and criminal investigations, and developing novel explosives’ sensors stands at the forefront of the analytical and forensic chemistry endeavors. Due to the presence of terminal nitro groups that can be electrochemically reduced, nitroaromatic compounds (NACs) have been an analytical target for explosives’ electrochemical sensors. Various electrode materials have been used to detect NACs in solution, including glassy carbon electrodes (GCE), platinum (Pt), and gold (Au) electrodes, by tracking the reversible oxidation/reduction properties of the NACs on these electrodes. Here, we show that the reduction of dinitrobenzene (DNB) on oxide-free silicon (Si–H) electrodes is irreversible with two reduction peaks that disappear within the successive voltammetric scanning. AFM imaging showed the formation of a polymeric film whose thickness scales up with the DNB concentration. This suggest that Si–H surfaces can serve as DNB sensors and possibly other explosive substances. Cyclic voltammetry (CV) measurements showed that the limit of detection (LoD) on Si–H is one order of magnitude lower than that obtained on GCE. In addition, EIS measurements showed that the LoD of DNB on Si–H is two orders of magnitude lower than the CV method. The fact that a Si–H surface can be used to track the presence of DNB makes it a suitable surface to be implemented as a sensing platform. To translate this concept into a sensor, however, it would require engineering and fabrication prospect to be compatible with the current semiconductor technologies.
Full article
(This article belongs to the Special Issue Surfaces on Emerging Chemical Sensing Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
The Negative Photoconductivity of Ag/AgO Grown by Spray-Pyrolysis
by
, , , , , and
Surfaces 2022, 5(1), 209-217; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010014 - 02 Mar 2022
Abstract
►▼
Show Figures
The main goal of this work is to provide a general description of the negative photoconductivity effect observed in Ag/AgO films grown by the spray-pyrolysis technique. X-ray diffractograms display hybrid films with high texturized AgO and metallic Ag phases. Scanning electron microscopy images
[...] Read more.
The main goal of this work is to provide a general description of the negative photoconductivity effect observed in Ag/AgO films grown by the spray-pyrolysis technique. X-ray diffractograms display hybrid films with high texturized AgO and metallic Ag phases. Scanning electron microscopy images show small Ag particles on the surface. Due to its surface nature, X-ray photoelectron spectroscopy revealed the predominance of the metallic character of Ag 3d spectra as compared to Ag2+. Negative photoconductivity with photoresponse in the order of seconds is observed under several wavelengths of excitation. We found that the amplitude of the negative photoresponse is strongly dependent on the optical absorbance and enhanced by surface plasmon resonance. The low-cost technique employed and the special features regarding negative photoconductivity provide an exciting platform for developing optical-electronic devices with low power consumption.
Full article

Figure 1
Open AccessArticle
Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid: Effect of Surfactants
by
, , , , , and
Surfaces 2022, 5(1), 202-208; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010013 - 02 Mar 2022
Abstract
Silver (Ag) nanoparticles were successfully prepared by using the in-liquid pulsed plasma technique. This method is based on a low voltage, pulsed spark discharge in a dielectric liquid. We explore the effect of the protecting ligands, specifically Cetyl Trimethylammonium Bromide (CTAB), Polyvinylpyrrolidone (PVP),
[...] Read more.
Silver (Ag) nanoparticles were successfully prepared by using the in-liquid pulsed plasma technique. This method is based on a low voltage, pulsed spark discharge in a dielectric liquid. We explore the effect of the protecting ligands, specifically Cetyl Trimethylammonium Bromide (CTAB), Polyvinylpyrrolidone (PVP), and Sodium n-Dodecyl Sulphate (SDS), used as surfactant materials to prevent nanoparticle aggregation. The X-Ray Diffraction (XRD) patterns of the samples confirm the face-centered cubic crystalline structure of Ag nanoparticles with the presence of Ag2O skin. Scanning Transmission Electron Microscopy (STEM) reveals that spherically shaped Ag nanoparticles with a diameter of 2.2 ± 0.8 nm were synthesised in aqueous solution with PVP surfactant. Similarly, silver nanoparticles with a peak diameter of 1.9 ± 0.4 nm were obtained with SDS surfactant. A broad size distribution was found in the case of CTAB surfactant.
Full article
(This article belongs to the Special Issue Surface Modification of Nanoparticles for Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies
by
, , , , , , , , , , , , , and
Surfaces 2022, 5(1), 187-201; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010012 - 01 Mar 2022
Cited by 2
Abstract
The severe acute respiratory syndrome originated by the new coronavirus (SARS-CoV-2) that emerged in late 2019, known to be a highly transmissible and pathogenic disease, has caused the COVID-19 global pandemic outbreak. Thus, diagnostic devices that help epidemiological public safety measures to reduce
[...] Read more.
The severe acute respiratory syndrome originated by the new coronavirus (SARS-CoV-2) that emerged in late 2019, known to be a highly transmissible and pathogenic disease, has caused the COVID-19 global pandemic outbreak. Thus, diagnostic devices that help epidemiological public safety measures to reduce undetected cases and isolation of infected patients, in addition to significantly help to control the population’s immune response to vaccine, are required. To address the negative issues of clinical research, we developed a Diagnostic on a Chip platform based on a disposable electrochemical biosensor containing laser-induced graphene and a protein (SARS-CoV-2 specific antigen) for the detection of SARS-CoV-2 antibodies. The biosensors were produced via direct laser writing using a CO2 infrared laser cutting machine on commercial polyimide sheets. The presence of specific antibodies reacting with the protein and the K3[Fe(CN)6] redox indicator produced characteristic and concentration-dependent electrochemical signals, with mean current values of 9.6757 and 8.1812 µA for reactive and non-reactive samples, respectively, proving the effectiveness of testing in clinical samples of serum from patients. Thus, the platform is being expanded to be measured in a portable microcontrolled potentiostat to be applied as a fast and reliable monitoring and mapping tool, aiming to assess the vaccinal immune response of the population.
Full article
(This article belongs to the Special Issue Surfaces on Emerging Chemical Sensing Applications)
►▼
Show Figures

Graphical abstract
Open AccessEditorial
Acknowledgment to Reviewers of Surfaces in 2021
Surfaces 2022, 5(1), 186; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010011 - 18 Feb 2022
Abstract
Peer review is the driving force of journal development, and reviewers are gatekeepers who ensure that Surfaces maintains its standards for the high quality of its published papers [...]
Full article
Open AccessArticle
An Atomistic Investigation of Adsorption of Bone Morphogenetic Protein-2 on Gold with Nanoscale Topographies
by
and
Surfaces 2022, 5(1), 176-185; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010010 - 15 Feb 2022
Cited by 1
Abstract
►▼
Show Figures
Nanoscale surface topographies mediated with biochemical cues influence the differentiation of stem cells into different lineages. This research focuses on the adsorption behavior of bone morphogenetic protein (BMP-2) on nanopatterned gold substrates, which can aid in the differentiation of bone and cartilage tissue
[...] Read more.
Nanoscale surface topographies mediated with biochemical cues influence the differentiation of stem cells into different lineages. This research focuses on the adsorption behavior of bone morphogenetic protein (BMP-2) on nanopatterned gold substrates, which can aid in the differentiation of bone and cartilage tissue constructs. The gold substrates were patterned as flat, pillar, linear grating, and linear-grating deep based, and the BMP-2 conformation in end-on configuration was studied over 20 ns. The linear grating deep substrate pattern had the highest adsorption energy of around 125 kJ/mol and maintained its radius of gyration of 18.5 Å, indicating a stable adsorption behavior. Secondary structures including α-helix and β-sheet displayed no denaturation, and thus, the bioavailability of the BMP-2, for the deep linear-grating pattern. Ramachandran plots for the wrist and knuckle epitopes indicated no steric hindrances and provided binding sites to type I and type II receptors. The deep linear-grating substrate had the highest number of contacts (88 atoms) within 5 Å of the gold substrate, indicating its preferred nanoscale pattern choice among the substrates considered. This research provides new insights into the atomistic adsorption of BMP-2 on nanoscale topographies of a gold substrate, with applications in biomedical implants and regenerative medicine.
Full article

Figure 1
Open AccessArticle
Ultra-Sensitive Immuno-Sensing Platform Based on Gold-Coated Interdigitated Electrodes for the Detection of Parathion
by
, , , , and
Surfaces 2022, 5(1), 165-175; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010009 - 12 Feb 2022
Abstract
Pesticides are unavoidable in agriculture to protect crops from pests and insects. Organophosphates (OPs) are a class of pesticides that are more harmful because of the irreversible inhibition reaction with acetylcholinesterase enzyme, thereby posing serious health hazards in human beings. In the present
[...] Read more.
Pesticides are unavoidable in agriculture to protect crops from pests and insects. Organophosphates (OPs) are a class of pesticides that are more harmful because of the irreversible inhibition reaction with acetylcholinesterase enzyme, thereby posing serious health hazards in human beings. In the present work, a sensitive and selective immuno-sensing platform is developed using gold inter-digitized electrodes (Au-IDEs) as substrates, integrated with a microfluidic platform having the microfluidic well capacity of 10 µL. Au-IDE having digit width of 10 µm and gap length of 5 µm was used in this study. The surface morphological analysis by field-effect scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) revealed the direct information regarding the modification of Au-IDEs with anti-parathion (Anti-PT) antibodies. In SEM analysis, it was seen that the Au-IDE surface was smooth in contrast to the Anti-PT modified surface, which is supported by the AFM studies showing the surface roughness of ~2.02 nm for Au-IDE surface and ~15.86 nm for Anti-PT modified surface. Further, Fourier transform infra-red (FTIR) spectroscopic analysis confirms the immobilization of Anti-PT by the bond vibrations upon the successive modification of Au-IDE with -OH groups, amine groups after modifying with APTES, and the amide bond formation after incubation in Anti-PT antibody. Electrochemical impedance spectroscopy (EIS) was carried out for the electrochemical characterization and for testing the sensing performances of the fabricated electrode. The developed immuno-sensor provided a linear range of detection from 0.5 pg/L–1 µg/L, with a limit of detection (LoD) of 0.66 ng/L and sensitivity of 4.1 MΩ/ngL−1/cm2. The sensor response was also examined with real samples (pomegranate juice) with good accuracy, exhibiting a shelf life of 25 days. The miniaturized sensing platform, along with its better sensing performance, has huge potential to be integrated into portable electronics, leading to suitable field applications of pesticide screening devices.
Full article
(This article belongs to the Special Issue Surface Modification of Nanoparticles for Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Wafer-Scale Polishing of Polycrystalline MPACVD-Diamond
Surfaces 2022, 5(1), 155-164; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010008 - 03 Feb 2022
Abstract
►▼
Show Figures
Diamond offers great potential for use as a thermal spreader in various applications, including power electronics and radio-frequency (RF) applications. However, to be used as an efficient thermal spreader, the atomically smooth surface of the diamond is critical to be bonded with chips.
[...] Read more.
Diamond offers great potential for use as a thermal spreader in various applications, including power electronics and radio-frequency (RF) applications. However, to be used as an efficient thermal spreader, the atomically smooth surface of the diamond is critical to be bonded with chips. Herein, a polishing technique for a 2-inch diameter wafer-scale bulk polycrystalline diamond substrate is proposed. In this work, 350 m thick polycrystalline diamond is grown by the microwave plasma-assisted chemical vapor deposition (MPACVD) technique on a Si substrate at a growth rate of 8 µm/h. Thereafter, a three-step polishing process was applied to achieve an atomically smooth surface, consisting of grinding using a diamond slurry with an iron plate, ICP etching using the SF6 gas, and final mechanical polishing using a resin-bonded diamond wheel. Surface roughness of diamond characterized by atomic force microscopy showed the significantly reduced from 900 nm to 0.3 nm. Hence, this study provide the practical methods for obtaining atomically smooth diamond films suitable for thermal management in various areas including power electronics and RF devices.
Full article

Figure 1
Open AccessArticle
Characterization of Mechanochemical Modification of Porous Silicon with Arginine
Surfaces 2022, 5(1), 143-154; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010007 - 01 Feb 2022
Abstract
►▼
Show Figures
Mechanochemistry initiated the reaction of hydrogen-terminated porous silicon (H/por-Si) powder with arginine. Samples were analyzed using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. Arginine, which was physisorbed onto the surface of por-Si,
[...] Read more.
Mechanochemistry initiated the reaction of hydrogen-terminated porous silicon (H/por-Si) powder with arginine. Samples were analyzed using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. Arginine, which was physisorbed onto the surface of por-Si, blue-shifted the peak PL intensity from ~630 nm for the H/por-Si to ~565 nm for arginine-coated por-Si. Grinding for 4 h reduced >80% of the initially 2–45 µm particles to <500 nm, but was observed to quench the PL. With appropriate rinsing and centrifugation, particles in the 100 nm range were isolated. Rinsing ground powder with water was required to remove the unreacted arginine. Without rinsing, excess arginine induced the aggregation of passivated particles. However, water reacted with the freshly ground por-Si powder producing H2. A zeta potential of +42 mV was measured for arginine-terminated por-Si particles dispersed in deionized water. This positive value was consistent with termination such that NH2 groups extended away from the surface. Furthermore, this result was confirmed by FTIR spectra, which suggested that arginine was bound to silicon through the formation of a covalent Si–O bond.
Full article

Graphical abstract
Open AccessArticle
Tunning the Gas Sensing Properties of rGO with In2O3 Nanoparticles
by
, , , , and
Surfaces 2022, 5(1), 127-142; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010006 - 21 Jan 2022
Abstract
Here, we discuss the effect of In2O3 nanoparticles on the reduced graphene oxide (rGO) gas-sensing potentialities. In2O3 nanoparticles were prepared with the polymer precursors method, while the nanocomposites were prepared by mixing an In2O3
[...] Read more.
Here, we discuss the effect of In2O3 nanoparticles on the reduced graphene oxide (rGO) gas-sensing potentialities. In2O3 nanoparticles were prepared with the polymer precursors method, while the nanocomposites were prepared by mixing an In2O3 nanoparticle suspension with an rGO suspension in different proportions. The gas-sensing performance of our materials was tested by exposing our materials to known concentrations of a target toxic gas in a dry airflow. Our results demonstrate that In2O3 nanoparticles enhance the rGO sensitivity for strong oxidizing species such as O3 and NO2, while a negative effect on its sensitivity for NH3 sensing is observed. Furthermore, our measurements towards H2S suggest that the concentration of In2O3 nanoparticles can induce an uncommon transition from p-type to n-type semiconductor nature when rGO–In2O3 nanocomposites operate at temperatures close to 160 °C.
Full article
(This article belongs to the Special Issue Surfaces on Emerging Chemical Sensing Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effect of Corrosion Products and Deposits on the Damage Tolerance of TSA-Coated Steel in Artificial Seawater
Surfaces 2022, 5(1), 113-126; https://0-doi-org.brum.beds.ac.uk/10.3390/surfaces5010005 - 20 Jan 2022
Abstract
►▼
Show Figures
The corrosion module of COMSOL Multiphysics 5.6® software was employed to simulate the influence of the corrosion products and calcareous deposits on the damage tolerance of a Thermally Sprayed Aluminium coating (TSA) in a simulated marine immersion environment. The capacity of TSA to
[...] Read more.
The corrosion module of COMSOL Multiphysics 5.6® software was employed to simulate the influence of the corrosion products and calcareous deposits on the damage tolerance of a Thermally Sprayed Aluminium coating (TSA) in a simulated marine immersion environment. The capacity of TSA to polarise the steel was evaluated by modelling 5%, 50%, and 90% of the sample uncoated’s area (i.e., substrate exposed). Additionally, the consumption of the sacrificial coating was simulated by Arbitrary Lagrangian-Eulerian (ALE) for the geometry of the experimental system. The parameters used in the model were obtained from polarisation curves and Electrochemical Impedance Spectroscopy (EIS) available in the literature. The results are in good agreement with measurements of Open Circuit Potential (OCP) and Corrosion Rate (CR) from experiments reported in previous studies. The model predicted the sacrificial protection offered by TSA as a function of the exposed steel surfaces, indicating the ability of TSA coating to polarise steel even with up to 90% damage. Furthermore, a 90–70% reduction in the corrosion rate of TSA was calculated with the simultaneous influence of corrosion products and deposits formed after 20 days of exposure to artificial seawater at room temperature.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Coatings, Materials, Membranes, Nanomaterials, Surfaces
Advanced Self-Cleaning Surfaces
Topic Editors: Maria Vittoria Diamanti, Massimiliano D'Arienzo, Carlo Antonini, Michele FerrariDeadline: 30 November 2022
Topic in
Polymers, Materials, Coatings, Surfaces
Surface Engineered Materials
Topic Editors: Stefano Caporali, Emanuele GalvanettoDeadline: 31 December 2022

Conferences
Special Issues
Special Issue in
Surfaces
Surface Modification of Nanoparticles for Biomedical Applications
Guest Editor: Mukhtar AhmedDeadline: 25 July 2022
Special Issue in
Surfaces
Surface Engineering and Phase Transformations in Metals and Alloys
Guest Editors: Sydney F. Santos, Renato Altobelli Antunes, Anibal Mendes FilhoDeadline: 25 August 2022
Special Issue in
Surfaces
Molecular Surface Modification for Applications in Surface Protection
Guest Editor: Marcos I. FloresDeadline: 31 August 2022
Special Issue in
Surfaces
Gas and Liquid Flows at Surfaces
Guest Editor: Jianfei XieDeadline: 20 October 2022