Special Issue "Evolution, Genomics and Proteomics of Venom"

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Animal Venoms".

Deadline for manuscript submissions: 20 February 2022.

Special Issue Editors

Dr. Eivind A.B. Undheim
E-Mail
Co-Guest Editor
1. Centre for Biodiversity Dynamics, Department of Biology, NTNU, N-7491 Trondheim, Norway
2. Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
Interests: animal venoms and toxins; structure-function relationships; phylogenetics; molecular evolution of venoms; venom proteomics; venom transcriptomics; venoms-based drug discovery

Special Issue Information

Dear Colleagues,

Venoms are highly complex mixtures of biological compounds (“toxins”) which have evolved to serve a range of ecological roles, including the capture of prey and defense against aggressors. In most venoms, proteins and peptides comprise the majority of toxins, and proteomic approaches are therefore central to deciphering the biochemical complexity that underlies the functional diversity of venoms. However, understanding how this diversity has emerged requires a multifaceted methodology that also includes comparative evolutionary, transcriptomic, and genomic approaches. Together, these methods have facilitated the identification and characterization of venom-derived pharmacological tools and lead molecules for development as therapeutics, cosmetics, or agrochemicals. This Special Issue focuses on developments and utilization of transcriptomic, genomic, and/or proteomic and mass spectrometry approaches that lead to new knowledge on the biology, evolution, or potential application of venoms and toxins.

Dr. Sebastien Dutertre
Dr. Eivind A.B. Undheim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • venom
  • toxin
  • proteomics
  • proteotranscriptomics
  • transcriptomics
  • genomics
  • top-down
  • bottom-up
  • mass spectrometry
  • mass spectrometry imaging

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Proteo-Transcriptomic Characterization of Sirex nitobei (Hymenoptera: Siricidae) Venom
Toxins 2021, 13(8), 562; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13080562 - 11 Aug 2021
Viewed by 700
Abstract
The wood-boring woodwasp Sirex nitobei is a native pest in Asia, infecting and weakening the host trees in numerous ecological and commercial coniferous forest plantations. In China, hosts of S. nitobei are diverse, so the pest has spread to several provinces of China, [...] Read more.
The wood-boring woodwasp Sirex nitobei is a native pest in Asia, infecting and weakening the host trees in numerous ecological and commercial coniferous forest plantations. In China, hosts of S. nitobei are diverse, so the pest has spread to several provinces of China, resulting in considerable economic and ecological damage. During female oviposition, S. nitobei venom along with arthrospores of the symbiotic fungus Amylostereum areolatum or A. chaetica is injected into host trees, and the combination of these two biological factors causes the death of xylem host trees. The presence of venom alone causes only the yellowing and wilting of needles. In this study, we constructed the venom gland transcriptome of S. nitobei for the first time and a total of 15,036 unigenes were acquired. From the unigenes, 11,560 ORFs were identified and 537 encoding protein sequences with signal peptides at the N-terminus. Then, we used the venomics approach to characterize the venom composition of female S. nitobei and predicted 1095 proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We focused on seven proteins that were both highly expressed in the venom gland transcriptome and predicted in the crude venom proteome. These seven proteins are laccase-2, laccase-3, a protein belonging to the Kazal family, chitooligosaccharidolytic β-N-acetylglucosaminidase, beta-galactosidase, icarapin-like protein, and waprin-Thr1-like protein. Using quantitative real-time PCR (qRT-PCR), we also proved that the genes related to these seven proteins are specifically expressed in the venom glands. Finally, we revealed the functional role of S. nitobei venom in the physiological response of host trees. It can not only promote the colonization of symbiotic fungus but contribute to the development of eggs and larvae. This study provides a deeper understanding of the molecular mechanism of the woodwasp–pine interaction. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

Article
Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae)
Toxins 2021, 13(7), 502; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13070502 - 19 Jul 2021
Viewed by 833
Abstract
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. [...] Read more.
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be “metalloproteinase bombs” that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

Article
Tentacle Morphological Variation Coincides with Differential Expression of Toxins in Sea Anemones
Toxins 2021, 13(7), 452; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13070452 - 29 Jun 2021
Viewed by 895
Abstract
Phylum Cnidaria is an ancient venomous group defined by the presence of cnidae, specialised organelles that serve as venom delivery systems. The distribution of cnidae across the body plan is linked to regionalisation of venom production, with tissue-specific venom composition observed in multiple [...] Read more.
Phylum Cnidaria is an ancient venomous group defined by the presence of cnidae, specialised organelles that serve as venom delivery systems. The distribution of cnidae across the body plan is linked to regionalisation of venom production, with tissue-specific venom composition observed in multiple actiniarian species. In this study, we assess whether morphological variants of tentacles are associated with distinct toxin expression profiles and investigate the functional significance of specialised tentacular structures. Using five sea anemone species, we analysed differential expression of toxin-like transcripts and found that expression levels differ significantly across tentacular structures when substantial morphological variation is present. Therefore, the differential expression of toxin genes is associated with morphological variation of tentacular structures in a tissue-specific manner. Furthermore, the unique toxin profile of spherical tentacular structures in families Aliciidae and Thalassianthidae indicate that vesicles and nematospheres may function to protect branched structures that host a large number of photosynthetic symbionts. Thus, hosting zooxanthellae may account for the tentacle-specific toxin expression profiles observed in the current study. Overall, specialised tentacular structures serve unique ecological roles and, in order to fulfil their functions, they possess distinct venom cocktails. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

Review

Jump to: Research

Review
Old World Vipers—A Review about Snake Venom Proteomics of Viperinae and Their Variations
Toxins 2021, 13(6), 427; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13060427 - 17 Jun 2021
Viewed by 1272
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to [...] Read more.
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

Back to TopTop