Special Issue "Evaluation of Cytotoxicity and Cytoprotection Effects of Natural Toxins"

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Mycotoxins".

Deadline for manuscript submissions: 30 November 2021.

Special Issue Editor

Prof. Dr. Ana Juan-García
E-Mail Website
Guest Editor
Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, E-46100 Valencia, Spain
Interests: toxicological effects of food contaminants, specifically mycotoxins; risk assessment of food contaminants with a focus on human´s health; factors that influence intestinal bioavailability and investigation of methods to decrease mycotoxins’ effects; new advanced techniques in elucidating mycotoxins’ toxicological effects implementing the 3R's principle
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The lifestyle associated with good quality of food is well known for its widely recognized health benefits, especially when rich in bioactive compounds.  Reduced risks of some types of cancer and other diseases have been associated with the adoption of such a diet, as have increased antioxidants, inhibitors of lipid peroxidation, decrease of pro-inflammatory cytokine production, etc. Their classification is very wide, including lycopenes, carotenoids, and polyphenols (flavonoids and non-flavonoids). Nevertheless, the presence of natural toxins in food usually happens due to a lack in harvesting, storage or packaging, or climate changes and atmospheric conditions. Such toxins can have different origins, as from plants, fungi, algae, bacteria, marine biotoxins including mycotoxins, lectins, furocoumarins, shiga toxin, ciguatoxins, etc. Studies at the cellular level attributed to natural toxins precede those toxins detected in organs and systems. Evaluation of the effects of natural toxins and biologically active compounds of extracts from the plant kingdom constitute a potential to combat various diseases thanks to its rich content. The focus of this Special Issue of Toxins is to gather the most recent advances related to the cytotoxicity of natural toxins and the potential for the cytoprotection of natural compounds present in food, thus, papers dealing with cellular systems are welcome. In this context, omics data are also encouraged. Both research papers and review articles proposing novelties or overviews, respectively, are welcome.

Prof. Dr. Ana Juan-García
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mycotoxins
  • cells
  • in vitro
  • alternative methods
  • cytometry
  • mass cytometry
  • metabolomics
  • cytotoxicity
  • cytoprotection
  • biological systems

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
N-Acetylcysteine Inhibits Patulin-Induced Apoptosis by Affecting ROS-Mediated Oxidative Damage Pathway
Toxins 2021, 13(9), 595; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13090595 - 26 Aug 2021
Viewed by 611
Abstract
Patulin (PAT) belongs to the family of food-borne mycotoxins. Our previous studies revealed that PAT caused cytotoxicity in human embryonic kidney cells (HEK293). In the present research, we systematically explored the detailed mechanism of ROS production and ROS clearance in PAT-induced HEK293 cell [...] Read more.
Patulin (PAT) belongs to the family of food-borne mycotoxins. Our previous studies revealed that PAT caused cytotoxicity in human embryonic kidney cells (HEK293). In the present research, we systematically explored the detailed mechanism of ROS production and ROS clearance in PAT-induced HEK293 cell apoptosis. Results showed that PAT treatment (2.5, 5, 7.5, 10 μM) for 10 h could regulate the expression of genes and proteins involved in the mitochondrial respiratory chain complex, resulting in dysfunction of mitochondrial oxidative phosphorylation and induction of ROS overproduction. We further investigated the role of N-acetylcysteine (NAC), an ROS scavenger, in promoting the survival of PAT-treated HEK293 cells. NAC improves PAT-induced apoptosis of HEK293 cells by clearing excess ROS, modulating the expression of mitochondrial respiratory chain complex genes and proteins, and maintaining normal mitochondrial function. In addition, NAC protects the activity of antioxidant enzymes, maintains normal GSH content, and relieves oxidative damage. Additionally, 4 mM NAC alleviated 7.5 μM PAT-mediated apoptosis through the caspase pathway in HEK293 cells. In summary, our study demonstrated that ROS is significant in PAT-mediated cytotoxicity, which provides valuable insight into the management of PAT-associated health issues. Full article
Show Figures

Graphical abstract

Article
Zearalenone Induces Apoptosis and Cytoprotective Autophagy in Chicken Granulosa Cells by PI3K-AKT-mTOR and MAPK Signaling Pathways
Toxins 2021, 13(3), 199; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13030199 - 10 Mar 2021
Viewed by 653
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin found in several food commodities worldwide. ZEA causes reproductive disorders, genotoxicity, and testicular toxicity in animals. However, little is known about the functions of apoptosis and autophagy after exposure to ZEA in granulosa cells. This study [...] Read more.
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin found in several food commodities worldwide. ZEA causes reproductive disorders, genotoxicity, and testicular toxicity in animals. However, little is known about the functions of apoptosis and autophagy after exposure to ZEA in granulosa cells. This study investigated the effects of ZEA on chicken granulosa cells. The results show that ZEA at different doses significantly inhibited the growth of chicken granulosa cells by inducing apoptosis. ZEA treatment up-regulated Bax and downregulated Bcl-2 expression, promoted cytochrome c release into the cytosol, and triggered mitochondria-mediated apoptosis. Consequently, caspase-9 and downstream effector caspase-3 were activated, resulting in chicken granulosa cells apoptosis. ZEA treatment also upregulated LC3-II and Beclin-1 expression, suggesting that ZEA induced a high level of autophagy. Pretreatment with chloroquine (an autophagy inhibitor) and rapamycin (an autophagy inducer) increased and decreased the rate of apoptosis, respectively, in contrast with other ZEA-treated groups. Autophagy delayed apoptosis in the ZEA-treated cells. Therefore, autophagy may prevent cells from undergoing apoptosis by reducing ZEA-induced cytotoxicity. In addition, our results further show that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in chicken granulosa cells. Full article
Show Figures

Figure 1

Article
Zearalenone Induces Endothelial Cell Apoptosis through Activation of a Cytosolic Ca2+/ERK1/2/p53/Caspase 3 Signaling Pathway
Toxins 2021, 13(3), 187; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13030187 - 04 Mar 2021
Cited by 1 | Viewed by 638
Abstract
Zearalenone (ZEN) is a mycotoxin that has been reported to damage various types of cells/tissues, yet its effects on endothelial cells (ECs) have never been investigated. Therefore, this study investigates the potential effects of ZEN using bovine aortic ECs (BAECs). In this study, [...] Read more.
Zearalenone (ZEN) is a mycotoxin that has been reported to damage various types of cells/tissues, yet its effects on endothelial cells (ECs) have never been investigated. Therefore, this study investigates the potential effects of ZEN using bovine aortic ECs (BAECs). In this study, we found that ZEN induced apoptosis of BAECs through increased cleavage of caspase 3 and poly ADP-ribose polymerase (PARP). ZEN also increased phosphorylation of ERK1/2 and p53, and treatment with the ERK1/2 or p53 inhibitor reversed ZEN-induced EC apoptosis. Transfection of BAECs with small interfering RNA against ERK1/2 or p53 revealed ERK1/2 as an upstream target of p53 in ZEN-stimulated apoptosis. ZEN increased the production of reactive oxygen species (ROS), yet treatment with the antioxidant did not prevent EC apoptosis. Similarly, blocking of estrogen receptors by specific inhibitors also did not prevent ZEN-induced apoptosis. Finally, chelation of cytosolic calcium (Ca2+) using BAPTA-AM or inhibition of endoplasmic reticulum (ER) Ca2+ channel using 2-APB reversed ZEN-induced EC apoptosis, but not by inhibiting ER stress using 4-PBA. Together, our findings demonstrate that ZEN induces EC apoptosis through an ERK1/2/p53/caspase 3 signaling pathway activated by Ca2+ release from the ER, and this pathway is independent of ROS production and estrogen receptor activation. Full article
Show Figures

Figure 1

Article
Coffee Silverskin and Spent Coffee Suitable as Neuroprotectors against Cell Death by Beauvericin and α-Zearalenol: Evaluating Strategies of Treatment
Toxins 2021, 13(2), 132; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13020132 - 10 Feb 2021
Viewed by 513
Abstract
Coffee silverskin and spent coffee have been evaluated in a neuroblastoma cell line (SH-SY5Y cells) against beauvericin (BEA) and α-zearalenol (α-ZEL)-induced cytotoxicity with different strategies of treatment. First, the direct treatment of mycotoxins and coffee by-products extracts in SH-SY5Y cells was assayed. IC [...] Read more.
Coffee silverskin and spent coffee have been evaluated in a neuroblastoma cell line (SH-SY5Y cells) against beauvericin (BEA) and α-zearalenol (α-ZEL)-induced cytotoxicity with different strategies of treatment. First, the direct treatment of mycotoxins and coffee by-products extracts in SH-SY5Y cells was assayed. IC50 values for α-ZEL were 20.8 and 14.0 µM for 48 h and 72 h, respectively and, for BEA only at 72 h, it was 2.5 µM. Afterwards, the pre-treatment with spent coffee obtained by boiling water increased cell viability for α-ZEL at 24 h and 48 h from 10% to 16% and from 25% to 30%, respectively; while with silverskin coffee, a decrease was observed. Opposite effects were observed for BEA where an increase for silverskin coffee was observed at 24 h and 48 h, from 14% to 23% and from 25% to 44%, respectively; however, a decrease below 50% was observed for spent coffee. Finally, the simultaneous treatment strategy for the highest concentration assayed in SH-SY5Y cells provided higher cytoprotection for α-ZEL (from 44% to 56% for 24 h and 48 h, respectively) than BEA (30% for 24 h and 48 h). Considering the high viability of coffee silverskin extracts for SH-SY5Y cells, there is a forthcoming promising use of these unexploited residues in the near future against mycotoxins effects. Full article
Show Figures

Figure 1

Article
Polydatin Protects Bovine Mammary Epithelial Cells against Zearalenone-Induced Apoptosis by Inhibiting Oxidative Responses and Endoplasmic Reticulum Stress
Toxins 2021, 13(2), 121; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13020121 - 05 Feb 2021
Viewed by 548
Abstract
Zearalenone (ZEA) is a mycotoxin of the Fusarium genus that can cause endoplasmic reticulum (ER) stress and Apoptosis in bovine mammary epithelial cells (MAC-T). Polydatin (PD), a glycoside purified from Polygonum cuspidatum, has antioxidant properties. This study aimed to explore whether PD [...] Read more.
Zearalenone (ZEA) is a mycotoxin of the Fusarium genus that can cause endoplasmic reticulum (ER) stress and Apoptosis in bovine mammary epithelial cells (MAC-T). Polydatin (PD), a glycoside purified from Polygonum cuspidatum, has antioxidant properties. This study aimed to explore whether PD can alleviate ZEA-induced damage on bovine mammary epithelial cells (MAC-T). We found that incasing the concentration of ZEA (0, 7.5, 15, 30, 60, 90, 120, and 240 μM) gradually decreased the cell viability. PD treatment alone at 5, 10, and 20 μM did not affect cell viability. Follow-up studies then applied 30 μM of ZEA and 5 μM of PD to treat cells; the results showed that the ZEA + PD treatment group effectively reduced cell oxidative damage compared with the ZEA treatment group. The qPCR analysis showed that ZEA treatment significantly up-regulated the expression of ER stress-related genes, relative to the control. However, adding PD significantly down-regulated the expression of ER stress-related genes. The cell apoptosis detection results showed that, compared with the ZEA treatment group, the ZEA + PD treatment group down-regulated the Bax gene and up-regulated the Bcl-2 gene expressions, which reduced the cell apoptosis rate and Caspase-3 activity. Taken together, these results indicate that PD reduces ZEA-induced apoptosis by inhibiting oxidative damage and ER stress. Full article
Show Figures

Figure 1

Article
Cytotoxicity Produced by Silicate Nanoplatelets: Study of Cell Death Mechanisms
Toxins 2020, 12(10), 623; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins12100623 - 29 Sep 2020
Viewed by 763
Abstract
Nano-silicate platelets (NSP), an exfoliated product from natural clays, have been validated for biosafety and as an effective supplement to alleviate mycotoxicosis. Since NSP induced noticeable cell death, we therefore investigated further the mechanism of cytotoxicity caused by NSP. Exposure to NSP impaired [...] Read more.
Nano-silicate platelets (NSP), an exfoliated product from natural clays, have been validated for biosafety and as an effective supplement to alleviate mycotoxicosis. Since NSP induced noticeable cell death, we therefore investigated further the mechanism of cytotoxicity caused by NSP. Exposure to NSP impaired membrane integrity and caused cell death in a dose-dependent manner. Reactive oxygen species (ROS) generation other than of NADH oxidase origin, and subcellular interactions by internalized NSP also contributed to NSP-induced cell death. NSP persistently provoked receptor-interacting protein 1 Ser/Thr (RIP1) kinase and caspase 6 and 3/7 activation without altering caspase 8 activity and induced evident chromatolysis of necrosis in the later stage. These events proceeded along with increased ER stress and mitochondrial permeability, to final Cyt-C (Cytochrome C) release and AIF (apoptosis inducing factor) translocation, a hallmark of cell necroptosis. Fluorescent probing further manifested NSP traffic, mostly adherence on the cell surfaces, or via internalization, being compartmentalized in the nuclei, cytosols, and mitochondria. Pharmacological approaches with specific inhibitors suggested that endocytosis and particularly RIP1 kinase provocation mediate NSP-induced cell death independent of caspase activation. In conclusion, the necroptotic process contributes to most of the cell death induced by NSP due to membrane interactions/impaired integrity, ROS generation, and subcellular interactions by internalized NSP. Full article
Show Figures

Figure 1

Back to TopTop