Emerging Contaminants (ECs) in Water

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Quality and Contamination".

Deadline for manuscript submissions: closed (15 October 2022) | Viewed by 24097

Special Issue Editor


E-Mail Website
Guest Editor
Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
Interests: environmental analytical chemistry; priority and emerging organic contaminants (polar pesticides, drugs of abuse, pharmaceuticals, cytostatics, estrogens, endocrine disrupting compounds, Watch List); advanced analytical techniques (online solid phase extraction, liquid chromatography–tandem mass spectrometry, Orbitrap MS); water quality, reuse, and management; environmental monitoring; risk assessment; sewage epidemiology

Special Issue Information

Dear Colleagues,

Emerging contaminants—or contaminants of emerging concern as some researchers prefer to say—include a wide variety of chemicals of different origin (agricultural, industrial, urban) that have been found in the aquatic environment and have raised concerns among scientists, regulators, and the society in general, due to the potential negative effects that their presence in the water cycle can have on the environment and human health. Chemical substances falling under this category include pesticides, flame retardants, detergents, plasticizers, anticorrosives, microplastics, nanomaterials, pharmaceuticals (antibiotics, psychiatric drugs, chemotherapy agents, analgesics, lipid regulators, etc.), illicit drugs, personal care products, artificial sweeteners, estrogens, endocrine disrupting compounds in general, disinfection byproducts, and transformation products of the above, among others. The aim of this Special Issue is to bring together recent research and reviews into the occurrence of these kinds of contaminants in the water cycle (including waste, regenerated, rain, surface, ground, drinking water, etc.) and the associated risks, as well as possible ways/treatments to counteract them. Submissions addressing their analysis, available certified/standard reference materials, environmental modeling and prediction, prioritization, and sewage epidemiology are also welcome.

Dr. Miren Lopez De Alda
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • emerging contaminants
  • endocrine disruptors
  • water quality
  • environmental monitoring
  • environmental modeling
  • environmental risk assessment
  • water analysis
  • water treatment
  • sewage epidemiology

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 8740 KiB  
Article
A Localized Assessment of Groundwater Quality Status Using GIS-Based Water Quality Index in Industrial Zone of Faisalabad, Pakistan
by Ahsan Saif Ullah, Haroon Rashid, Shahbaz Nasir Khan, Muhammad Umar Akbar, Arfan Arshad, Md. Masudur Rahman and Shumaila Mustafa
Water 2022, 14(20), 3342; https://0-doi-org.brum.beds.ac.uk/10.3390/w14203342 - 21 Oct 2022
Cited by 8 | Viewed by 3749
Abstract
Groundwater risks driven by population growth and industrialization in metropolitan cities have become a worldwide problem. Faisalabad is Pakistan’s third largest city with a population of more than 2 million and is renowned for its diverse industries. Many factories in the area dump [...] Read more.
Groundwater risks driven by population growth and industrialization in metropolitan cities have become a worldwide problem. Faisalabad is Pakistan’s third largest city with a population of more than 2 million and is renowned for its diverse industries. Many factories in the area dump their untreated effluent into nearby drainage systems, having a direct negative effect on the marine ecosystem. This research focuses on the Madhuana drain and Khurrianwala industrial region of Faisalabad to investigate groundwater quality status. Sixty water samples from groundwater bore wells and open wells were obtained, and all these samples were subjected to lab experiments for physical and chemical analysis. Sixteen physiochemical parameters, namely, electrical conductivity (EC), pH, total dissolved solids (TDS), total suspended solids (TSS), turbidity, carbonate, Ca2+, Fe, HCO3, Cl, Mg2+, SO24−, As, Cr, Cu, and Mn, were examined. To provide a comprehensive picture of water quality from a human perspective, we calculated the water quality index (WQI) by integrating 16 physiochemical criteria. The results revealed that a larger proportion had poor drinking quality due to direct releases of toxins by industries. It was observed that 87% of the water samples showed an unsuitable status of groundwater for drinking purposes in terms of pH, EC, Fe, Mn, Cu, and Cr. The results of this study could be used to build and construct wastewater treatment plant facilities for the Madhuana drain, reducing pollution loads on the drain and river, as well as contaminant seepage rates into groundwater. The research’s resulting maps will help policymakers to manage groundwater supplies more efficiently for sustainable development. Full article
(This article belongs to the Special Issue Emerging Contaminants (ECs) in Water)
Show Figures

Figure 1

28 pages, 5274 KiB  
Article
Mapping the Complex Journey of Swimming Pool Contaminants: A Multi-Method Systems Approach
by Simone Heilgeist, Oz Sahin, Ryo Sekine and Rodney A. Stewart
Water 2022, 14(13), 2062; https://0-doi-org.brum.beds.ac.uk/10.3390/w14132062 - 28 Jun 2022
Cited by 5 | Viewed by 3283
Abstract
Swimming pool owners worldwide face the challenging task of keeping their pool water balanced and free from contaminants. However, swimming pool water (SPW) quality management is complex with the countless processes and interactions of interlinked system variables. For example, contamination with sunscreen residues [...] Read more.
Swimming pool owners worldwide face the challenging task of keeping their pool water balanced and free from contaminants. However, swimming pool water (SPW) quality management is complex with the countless processes and interactions of interlinked system variables. For example, contamination with sunscreen residues is inevitable as users apply sunscreen to protect their skin from damaging ultraviolet (UV) radiation. Nanoparticulate titanium dioxide (nano-TiO2) is one such residues that have received criticism due to potential human health and environmental risks. Despite ongoing research studies, management strategies of nano-TiO2 in swimming pools are still limited. Therefore, this paper focuses on developing a multi-method approach for identifying and understanding interdependencies between TiO2 particles and an aquatic environment such as a swimming pool. Given the complexity of the system to be assessed, the authors utilise a systems approach by integrating cross-matrix multiplication (MICMAC) and Systems Thinking techniques. The developed conceptual model visually depicts the complex system, which provides users with a basic understanding of swimming pool chemistry, displaying the numerous cause-and-effect relationships and enabling users to identify leverage points that can effectively change the dynamics of the system. Such systems-level understanding, and actions will help to manage nano-TiO2 levels in an efficient manner. The novelty of this paper is the proposed methodology, which uses a systems approach to conceptualise the complex interactions of contaminants in swimming pools and important pathways to elevated contaminant levels. Full article
(This article belongs to the Special Issue Emerging Contaminants (ECs) in Water)
Show Figures

Figure 1

20 pages, 38758 KiB  
Article
Insights into the Simultaneous Sorption of Ciprofloxacin and Heavy Metals Using Functionalized Biochar
by Agnieszka Cuprys, Zakhar Maletskyi, Tarek Rouissi, Harsha Ratnaweera, Satinder Kaur Brar, Emile Knystautas and Patrick Drogui
Water 2021, 13(19), 2768; https://0-doi-org.brum.beds.ac.uk/10.3390/w13192768 - 06 Oct 2021
Cited by 5 | Viewed by 2942
Abstract
Biochar and chitosan are considered as green and cost-effective adsorbents for water purification; the combination of these two materials may lead to an improved adsorption capacity of the generated adsorbents. Most sorption studies have been focused on the ability to adsorb one contaminant [...] Read more.
Biochar and chitosan are considered as green and cost-effective adsorbents for water purification; the combination of these two materials may lead to an improved adsorption capacity of the generated adsorbents. Most sorption studies have been focused on the ability to adsorb one contaminant or the same type of contaminants. Thus, this study aimed to produce chitosan-biochar beads (CH-BB) and test their efficiency in the simultaneous removal of a metal-complexing antibiotic, ciprofloxacin (CIP), and three metal(loid)s (As, Cd and Pb). Modification of raw pig manure biochar resulted in an increase in its adsorption capacity, except for Pb. The highest increment was observed for As (almost 6-fold) and the lowest was observed for CIP (1.1-fold). The adsorbent was able to simultaneously remove all targeted contaminants, individually and in the mixture. The adsorption capacity of CH-BB followed the order: Pb > Cd > >As > CIP. When Pb and As were present in the same mixture, their removal efficiency increased from 0.13 ± 0.01 to 0.26 ± 0.05 mg/g for As and from 0.75 ± 0.08 to 0.85 ± 0.02 mg/g for Pb due to their co-precipitation. The CIP–metal complexation probably resulted in a reduced adsorption ability for inorganics due to the decreased concentration of free ions. The presence of metals and metalloids led to alterations in CIP’s mobility. Full article
(This article belongs to the Special Issue Emerging Contaminants (ECs) in Water)
Show Figures

Graphical abstract

14 pages, 1519 KiB  
Article
Occurrence and Sources of Synthetic Musk Fragrances in the Sewage Treatment Plants and the Han River, Korea
by Ju-Hee Hong, Jun-Yeon Lee, Hyun-Ju Ha, Jin-Hyo Lee, Seok-Ryul Oh, Young-Min Lee, Mok-Young Lee and Kyung-Duk Zoh
Water 2021, 13(4), 392; https://0-doi-org.brum.beds.ac.uk/10.3390/w13040392 - 03 Feb 2021
Cited by 20 | Viewed by 3853
Abstract
Levels of synthetic musk fragrances (SMFs) and various personal care products (PCPs) were measured in the Han River and its tributaries in Seoul, Korea. The most abundant SMF in all river and PCP samples was 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta(g)sochromene (HHCB), followed by 1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone (AHTN), musk ketone [...] Read more.
Levels of synthetic musk fragrances (SMFs) and various personal care products (PCPs) were measured in the Han River and its tributaries in Seoul, Korea. The most abundant SMF in all river and PCP samples was 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta(g)sochromene (HHCB), followed by 1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone (AHTN), musk ketone (MK), and 1,1,2,3,3-pentamethyl-2,5,6,7-tetrahydroinden-4-one (DPMI). The most abundant SMF in both PCPs and the Han River samples was HHCB, followed by AHTN. Moving from upstream to downstream in the Han River, the median SMF concentration was 6.756, 2.945, 0.304, and 0.141 μg/L in the sewage treatment plant (STP) influents, effluents, tributaries, and mainstream, respectively, implying that effective SMF removal was achieved during the sewage treatment process, followed by dilution in the receiving water. Four STPs using advanced biological treatment processes had removal efficiencies of 58.5%, 56.8%, and 38.1% for HHCB, AHTN, and MK, respectively. The highest SMF concentrations in the tributaries were observed at locations close to the STPs. Our study confirmed that the main source of SMFs in the receiving water were sewage effluents containing untreated SMFs, which largely originate from household PCPs, especially hair care products (e.g., shampoo) and perfumes. Full article
(This article belongs to the Special Issue Emerging Contaminants (ECs) in Water)
Show Figures

Figure 1

15 pages, 1781 KiB  
Article
A Novel Method for Determination of the Natural Toxin Ptaquiloside in Ground and Drinking Water
by Natasa Skrbic, Ann-Katrin Pedersen, Sarah C. B. Christensen, Hans Christian Bruun Hansen and Lars Holm Rasmussen
Water 2020, 12(10), 2852; https://0-doi-org.brum.beds.ac.uk/10.3390/w12102852 - 13 Oct 2020
Cited by 10 | Viewed by 3623
Abstract
Ptaquiloside (PTA) is a carcinogenic compound naturally occurring in bracken ferns (Pteridium aquilinum). It is highly water soluble and prone to leaching from topsoil to surface and groundwaters. Due to possible human exposure via drinking water, PTA is considered as an [...] Read more.
Ptaquiloside (PTA) is a carcinogenic compound naturally occurring in bracken ferns (Pteridium aquilinum). It is highly water soluble and prone to leaching from topsoil to surface and groundwaters. Due to possible human exposure via drinking water, PTA is considered as an emerging contaminant. We present a sensitive and robust method for analysis of PTA and its degradation product pterosin B (PtB) in groundwater. The method comprises two steps: sample preservation at the field site followed by sample pre-concentration in the laboratory. The preservation step was developed by applying a Plackett–Burman experimental design testing the following variables: water type, pH, filtering, bottle type, storage temperature, transportation conditions and test time. The best sample preservation was obtained by using amber glass bottles, unfiltered solutions buffered at pH 6, transported without ice, stored at 4 °C and analysed within 48 h. The recovery was 94% to 100%. The sample purification step had a pre-concentration factor of 250, and the recovery percentages of the entire method were 85 ± 2 (PTA) and 91 ± 3 (PtB). The limits of detection (LOD) of the full method were 0.001 µg L−1 and 0.0001 µg L−1 for PTA and PtB, respectively. The method enables sensitive monitoring of PTA and PtB in groundwater. Carcinogenic PTA was detected in one groundwater well (0.35 µg L−1). Full article
(This article belongs to the Special Issue Emerging Contaminants (ECs) in Water)
Show Figures

Graphical abstract

Review

Jump to: Research

27 pages, 2423 KiB  
Review
Finding Nano: Challenges Involved in Monitoring the Presence and Fate of Engineered Titanium Dioxide Nanoparticles in Aquatic Environments
by Simone Heilgeist, Ryo Sekine, Oz Sahin and Rodney A. Stewart
Water 2021, 13(5), 734; https://0-doi-org.brum.beds.ac.uk/10.3390/w13050734 - 08 Mar 2021
Cited by 20 | Viewed by 5216
Abstract
In recent years, titanium dioxide (TiO2) has increasingly been used as an inorganic ultraviolet (UV) filter for sun protection. However, nano-TiO2 may also pose risks to the health of humans and the environment. Thus, to adequately assess its potential adverse [...] Read more.
In recent years, titanium dioxide (TiO2) has increasingly been used as an inorganic ultraviolet (UV) filter for sun protection. However, nano-TiO2 may also pose risks to the health of humans and the environment. Thus, to adequately assess its potential adverse effects, a comprehensive understanding of the behaviour and fate of TiO2 in different environments is crucial. Advances in analytical and modelling methods continue to improve researchers’ ability to quantify and determine the state of nano-TiO2 in various environments. However, due to the complexity of environmental and nanoparticle factors and their interplay, this remains a challenging and poorly resolved feat. This paper aims to provide a focused summary of key particle and environmental characteristics that influence the behaviour and fate of sunscreen-derived TiO2 in swimming pool water and natural aquatic environments and to review the current state-of-the-art of single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) approaches to detect and characterise TiO2 nanoparticles in aqueous media. Furthermore, it critically analyses the capability of existing fate and transport models to predict environmental TiO2 levels. Four particle and environmental key factors that govern the fate and behaviour of TiO2 in aqueous environments are identified. A comparison of SP-ICP-MS studies reveals that it remains challenging to detect and characterise engineered TiO2 nanoparticles in various matrices and highlights the need for the development of new SP-ICP-MS pre-treatment and analysis approaches. This review shows that modelling studies are an essential addition to experimental studies, but they still lack in spatial and temporal resolution and mostly exclude surface transformation processes. Finally, this study identifies the use of Bayesian Network-based models as an underexplored but promising modelling tool to overcome data uncertainties and incorporates interconnected variables. Full article
(This article belongs to the Special Issue Emerging Contaminants (ECs) in Water)
Show Figures

Figure 1

Back to TopTop