Universe doi: 10.3390/universe7080286

Authors: Carla R. Almeida Olesya Galkina Julio César Fabris

In this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical model in a canonical way, establishing the corresponding Wheeler–DeWitt equation in the minisuperspace, and analyze the quantum solutions. When the energy conditions are violated, corresponding to the case ω&lt;−32, the energy is bounded from below and singularity-free solutions are found. However, in the case ω&gt;−32, we cannot compute the evolution of the scale factor by evaluating the expectation values because the wave function is not finite (energy spectrum is not bounded from below). However, we can analyze this case using Bohmian mechanics and the de Broglie–Bohm interpretation of quantum mechanics. Using this approach, the classical and quantum results can be compared for any value of ω.

]]>Universe doi: 10.3390/universe7080285

Authors: Julio Marny Hoff da Silva Gabriel Marcondes Caires da Rocha

We revisit the fundamental notion of continuity in representation theory, with special attention to the study of quantum physics. After studying the main theorem in the context of representation theory, we draw attention to the significant aspect of continuity in the analytic foundations of Wigner’s work. We conclude the paper by reviewing the connection between continuity, the possibility of defining certain local groups, and their relation to projective representations.

]]>Universe doi: 10.3390/universe7080284

Authors: L. L. Williams Nader Inan

There is a drag force on objects moving in the background cosmological metric, known from galaxy cluster dynamics. The force is quite small over laboratory timescales, yet it applies in principle to all moving bodies in the universe. The drag force can be understood as inductive rectilinear frame dragging because it also exists in the rest frame of a moving object, and it arises in that frame from the off-diagonal components induced in the boosted-frame metric. Unlike the Kerr metric or other typical frame-dragging geometries, cosmological inductive dragging occurs at uniform velocity, along the direction of motion, and dissipates energy. Proposed gravito-magnetic invariants formed from contractions of the Riemann tensor do not capture inductive dragging effects, and this might be the first identification of inductive rectilinear dragging. The existence of this drag force proves it is possible for matter in motion through a finite region to exchange momentum and energy with the gravitational field of the universe. The cosmological metric can in principle be determined through this force from local measurements on moving bodies, at resolutions similar to that of the Pound–Rebka experiment.

]]>Universe doi: 10.3390/universe7080283

Authors: Gabriel de Lima e Silva Thalis José Girardi Sebastião Alves Dias

Gauge invariance of the measure associated with the gauge field is usually taken for granted, in a general gauge theory. We furnish a proof of this invariance, within Fujikawa’s approach. To stress the importance of this fact, we briefly review gauge anomaly cancellation as a consequence of gauge invariance of the bosonic measure and compare this cancellation to usual results from algebraic renormalization, showing that there are no potential inconsistencies. Then, using a path integral argument, we show that a possible Jacobian for the gauge transformation has to be the identity operator, in the physical Hilbert space. We extend the argument to the complete Hilbert space by a direct calculation.

]]>Universe doi: 10.3390/universe7080282

Authors: František Němec Marie Kotková

Magnetic fields in the inner magnetosphere can be obtained as vector sums of the Earth’s own internal magnetic field and magnetic fields stemming from currents flowing in the space plasma. While the Earth’s internal magnetic field is accurately described by the International Geomagnetic Reference Field (IGRF) model, the characterization of the external magnetic fields is significantly more complicated, as they are highly variable and dependent on the actual level of the geomagnetic activity. Tsyganenko family magnetic field models (T89, T96, T01, TA15B, TA15N), parameterized by the geomagnetic activity level and solar wind parameters, are often used by the involved community to describe these fields. In the present paper, we use a large dataset (2001–2018) of magnetospheric magnetic field measurements obtained by the four Cluster spacecraft to assess the accuracy of these models. We show that, while the newer models (T01, TA15B, TA15N) perform significantly better than the old ones (T89, T96), there remain some systematic deviations, in particular at larger latitudes. Moreover, we compare the locations of the min-B equator determined using the four-point Cluster spacecraft measurements with the locations determined using the magnetic field models. We demonstrate that, despite the newer models being comparatively slightly more accurate, an uncertainty of about one degree in the latitude of the min-B equator remains.

]]>Universe doi: 10.3390/universe7080281

Authors: Julio Arrechea Carlos Barceló Valentin Boyanov Luis J. Garay

General relativity predicts its own demise at singularities but also appears to conveniently shield itself from the catastrophic consequences of such singularities, making them safe. For instance, if strong cosmic censorship were ultimately satisfied, spacetime singularities, although present, would not pose any practical problems to predictability. Here, we argue that under semiclassical effects, the situation should be rather different: the potential singularities which could appear in the theory will generically affect predictability, and so one will be forced to analyse whether there is a way to regularise them. For these possible regularisations, the presence and behaviour of matter during gravitational collapse and stabilisation into new structures will play a key role. First, we show that the static semiclassical counterparts to the Schwarzschild and Reissner–Nordström geometries have singularities which are no longer hidden behind horizons. Then, we argue that in dynamical scenarios of formation and evaporation of black holes, we are left with only three possible outcomes which could avoid singularities and eventual predictability issues. We briefly analyse the viability of each one of them within semiclassical gravity and discuss the expected characteristic timescales of their evolution.

]]>Universe doi: 10.3390/universe7080280

Authors: Loriano Bonora Rudra Prakash Malik

This article, which is a review with substantial original material, is meant to offer a comprehensive description of the superfield representations of BRST and anti-BRST algebras and their applications to some field-theoretic topics. After a review of the superfield formalism for gauge theories, we present the same formalism for gerbes and diffeomorphism invariant theories. The application to diffeomorphisms leads, in particular, to a horizontal Riemannian geometry in the superspace. We then illustrate the application to the description of consistent gauge anomalies and Wess–Zumino terms for which the formalism seems to be particularly tailor-made. The next subject covered is the higher spin YM-like theories and their anomalies. Finally, we show that the BRST superfield formalism applies as well to the N=1 super-YM theories formulated in the supersymmetric superspace, for the two formalisms go along with each other very well.

]]>Universe doi: 10.3390/universe7080279

Authors: Zdeněk Stuchlík Jaroslav Vrba

We study epicyclic oscillatory motion along circular geodesics of the Simpson–Visser meta-geometry describing in a unique way regular black-bounce black holes and reflection-symmetric wormholes by using a length parameter l. We give the frequencies of the orbital and epicyclic motion in a Keplerian disc with inner edge at the innermost circular geodesic located above the black hole outer horizon or on the our side of the wormhole. We use these frequencies in the epicyclic resonance version of the so-called geodesic models of high-frequency quasi-periodic oscillations (HF QPOs) observed in microquasars and around supermassive black holes in active galactic nuclei to test the ability of this meta-geometry to improve the fitting of HF QPOs observational data from the surrounding of supermassive black holes. We demonstrate that this is really possible for wormholes with sufficiently high length parameter l.

]]>Universe doi: 10.3390/universe7080278

Authors: Ángel Rincón Grigoris Panotopoulos Ilídio Lopes Norman Cruz

We study the impact of a non-vanishing (positive) cosmological constant on the innermost and outermost stable circular orbits (ISCOs and OSCOs, respectively) within massive gravity in four dimensions. The gravitational field generated by a point-like object within this theory is known, generalizing the usual Schwarzschild–de Sitter geometry of General Relativity. In the non-relativistic limit, the gravitational potential differs by the one corresponding to the Schwarzschild–de Sitter geometry by a term that is linear in the radial coordinate with some prefactor γ, which is the only free parameter. Starting from the geodesic equations for massive test particles and the corresponding effective potential, we obtain a polynomial of fifth order that allows us to compute the innermost and outermost stable circular orbits. Next, we numerically compute the real and positive roots of the polynomial for several different structures (from the hydrogen atom to stars and globular clusters to galaxies and galaxy clusters) considering three distinct values of the parameter γ, determined using physical considerations, such as galaxy rotation curves and orbital precession. Similarly to the Kottler spacetime, both ISCOs and OSCOs appear. Their astrophysical relevance as well as the comparison with the Kottler spacetime are briefly discussed.

]]>Universe doi: 10.3390/universe7080277

Authors: Maxim V. Barkov Valenti Bosch-Ramon

Binary systems that host a massive star and a non-accreting pulsar can be powerful non-thermal emitters. The relativistic pulsar wind and the non-relativistic stellar outflows interact along the orbit, producing ultrarelativistic particles that radiate from radio to gamma rays. To properly characterize the physics of these sources, and better understand their emission and impact on the environment, careful modeling of the outflow interactions, spanning a broad range of spatial and temporal scales, is needed. Full three-dimensional approaches are very computationally expensive, but simpler approximate approaches, while still realistic at the semi-quantitative level, are available. We present here the results of calculations done with a quasi three-dimensional scheme to compute the evolution of the interacting flows in a region spanning in size up to a thousand times the size of the binary. In particular, we analyze for the first time the role of different eccentricities in the large scale evolution of the shocked flows. We find that the higher the eccentricity, the closer the flows behave like a one-side outflow, which becomes rather collimated for eccentricity values ≳0.75. The simulations also unveil that the pulsar and the stellar winds become fully mixed within the grid for low eccentricity systems, presenting a more stochastic behavior at large scales than in the highly eccentric systems.

]]>Universe doi: 10.3390/universe7080275

Authors: Arnab Chaudhuri Maxim Yu. Khlopov

In this paper, we study the effect of electroweak sphaleron transition and electroweak phase transition (EWPT) in balancing the baryon excess and the excess stable quarks of the 4th generation. Sphaleron transitions between baryons, leptons and the 4th family of leptons and quarks establish a definite relationship between the value and sign of the 4th family excess and baryon asymmetry. This relationship provides an excess of stable U¯ antiquarks, forming dark atoms—the bound state of (U¯U¯U¯) the anti-quark cluster and primordial helium nucleus. If EWPT is of the second order and the mass of U quark is about 3.5 TeV, then dark atoms can explain the observed dark matter density. In passing by, we show the small, yet negligible dilution in the pre-existing dark matter density, due to the sphaleron transition.

]]>Universe doi: 10.3390/universe7080276

Authors: Muhammad Zahid Mughal Iftikhar Ahmad Juan Luis García Guirao

In this review article, the study of the development of relativistic cosmology and the introduction of inflation in it as an exponentially expanding early phase of the universe is carried out. We study the properties of the standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. The geometric properties of space and spacetime ingrained into the standard model of cosmology are investigated in addition. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. The cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe. Further inflation and dark energy in fR modified gravity are also reviewed.

]]>Universe doi: 10.3390/universe7080273

Authors: Mariana Graña Alvaro Herráez

The swampland is the set of seemingly consistent low-energy effective field theories that cannot be consistently coupled to quantum gravity. In this review we cover some of the conjectural properties that effective theories should possess in order not to fall in the swampland, and we give an overview of their main applications to particle physics. The latter include predictions on neutrino masses, bounds on the cosmological constant, the electroweak and QCD scales, the photon mass, the Higgs potential and some insights about supersymmetry.

]]>Universe doi: 10.3390/universe7080274

Authors: Zeyun Li Qingfeng Li Hanxian Fang Hongwei Gong

We present the observations of the artificial ionospheric modification experiment of EISCAT on 18 October 2012 in Tromsø, Norway. When the pump of alternating O mode and X mode is switched on, the UHF radar observation shows some strong enhancements in electron density, ion lines and plasma lines. Based on some existing theories, we find the following: First, during the experiment, the frequency of plasma line (fL), ion line (fia) and pump (fh) matches fL = fh − 3fia and = fh − 5fia occasionally demonstrated that the cascade process occurred. Second, through quantitative calculation, we found that the O-mode component mixed in X-mode wave satisfies the thresholds of the parametric decay instability and the oscillation two-stream instability, from which we infer that the HF-induced plasma lines (HFPLs) and HF-enhanced ion lines (HFILs) observed in X-mode pulse could have been caused by the O-mode component mixed in X-mode wave. Third, the UHF radar observation shows some apparent enhancements over a wide altitude range (from approximately the reflection altitude to ~670 km) in electron density during X-mode pulse, which also does not, in fact, correspond to a true increase in electron density, but due to the enhancement in ion line or the enhancement in radar backscatter induced by some unknown mechanism.

]]>Universe doi: 10.3390/universe7080272

Authors: Jacob Oost Shinji Mukohyama Anzhong Wang

We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlevè-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and time-independent exact vacuum solutions. In particular, in the isotropic coordinates we find a class of exact static solutions characterized by a single parameter c14 in closed forms, which satisfies all the current observational constraints of the theory, and reduces to the Schwarzschild vacuum black hole solution in the decoupling limit (c14=0). However, as long as c14≠0, a marginally trapped throat with a finite non-zero radius always exists, and on one side of it the spacetime is asymptotically flat, while on the other side the spacetime becomes singular within a finite proper distance from the throat, although the geometric area is infinitely large at the singularity. Moreover, the singularity is a strong and spacetime curvature singularity, at which both of the Ricci and Kretschmann scalars become infinitely large.

]]>Universe doi: 10.3390/universe7080270

Authors: Caden LaFontaine Bailey Tallman Spencer Ellis Trevor Croteau Brandon Torres Sabrina Hernandez Diego Cristancho Guerrero Jessica Jaksik Drue Lubanski Roland Allen

A recently proposed dark matter WIMP (weakly interacting massive particle) has only second-order couplings to gauge bosons and itself. As a result, it has small annihilation, scattering, and creation cross-sections, and is consequently consistent with all current experiments and the observed abundance of dark matter. These cross-sections are, however, still sufficiently large to enable detection in experiments that are planned for the near future, and definitive identification in experiments proposed on a longer time scale. The (multi-channel) cross-section for annihilation is consistent with thermal production and freeze-out in the early universe, and with current evidence for dark matter annihilation in analyses of the observations of gamma rays by Fermi-LAT and antiprotons by AMS-02, as well as the constraints from Planck and Fermi-LAT. The cross-section for direct detection via collision with xenon nuclei is estimated to be slightly below 10−47 cm2, which should be attainable by LZ and Xenon nT and well within the reach of Darwin. The cross-section for collider detection via vector boson fusion is estimated to be ∼1 fb, and may be ultimately attainable by the high-luminosity LHC; definitive collider identification will probably require the more powerful facilities now being proposed.

]]>Universe doi: 10.3390/universe7080271

Authors: Jessica Santiago Sebastian Schuster Matt Visser

The metrics of general relativity generally fall into two categories: those which are solutions of the Einstein equations for a given source energy-momentum tensor and the “reverse engineered” metrics—metrics bespoke for a certain purpose. Their energy-momentum tensors are then calculated by inserting these into the Einstein equations. This latter approach has found frequent use when confronted with creative input from fiction, wormholes and warp drives being the most famous examples. In this paper, we again take inspiration from fiction and see what general relativity can tell us about the possibility of a gravitationally induced tractor beam. We base our construction on warp drives and show how versatile this ansatz alone proves to be. Not only can we easily find tractor beams (attracting objects), but repulsor/pressor beams are just as attainable, and a generalization to “stressor” beams is seen to present itself quite naturally. We show that all of these metrics would violate various energy conditions. This provides an opportunity to ruminate on the meaning of energy conditions as such and what we can learn about whether an arbitrarily advanced civilization might have access to such beams.

]]>Universe doi: 10.3390/universe7080269

Authors: Sebastian Bahamonde Jackson Levi Said

Einstein’s formulation of general relativity as a theory based on the geometry of curvature was a necessity due to Riemannian geometry being the only fully developed framework at the time [...]

]]>Universe doi: 10.3390/universe7080268

Authors: Shamaila Rani Nadeem Azhar

In the present manuscript, the evolution of the cosmic parameters and planes are being investigated in the framework of the DGP braneworld model. In this scenario, the interaction Γ between the Barrow holographic dark energy model (whose infrared cutoff scale is set by Hubble and event horizons) and pressureless dark matter are considered. We check the behavior of different cosmological parameters such as Hubble, equation of state, deceleration and squared speed of sound from the early matter-dominated era until the late-time acceleration. It is found that the range of Hubble parameter lies in the interval 95−35+35 (for Hubble horizon) and 97−23+23 (for event horizon). For both horizons, the equation of state parameter favors the phantom dominant era as well as the ΛCDM model while the deceleration parameter illustrates the accelerated expansion of the universe. Furthermore, stability of the underlying model is found through squared speed of sound. Furthermore, it is observed that ω−ωϑ′ plane corresponds to freezing and thawing region for Hubble and event horizons, respectively. Furthermore, statefinder plane shows the ΛCDM and Chaplygin gas behavior for both models. Finally, we investigate the thermodynamical nature of the underlying model through Barrow entropy as horizon entropy and found validity for both horizons.

]]>Universe doi: 10.3390/universe7080266

Authors: Galina L. Klimchitskaya

This Special Issue presents a comprehensive picture of the Casimir effect as a multidisciplinary subject that plays an important role in diversified areas of physics ranging from quantum field theory, atomic physics and condensed matter physics to elementary particle physics, gravitation and cosmology [...]

]]>Universe doi: 10.3390/universe7080267

Authors: Débora Peres Menezes

A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious compact objects in the universe, with a radius of the order of 10 km and masses that can reach two solar masses. In fact, neutron stars are star remnants, a kind of stellar zombie (they die, but do not disappear). In the last decades, astronomical observations yielded various contraints for neutron star masses, and finally, in 2017, a gravitational wave was detected (GW170817). Its source was identified as the merger of two neutron stars coming from NGC 4993, a galaxy 140 million light years away from us. The very same event was detected in γ-ray, X-ray, UV, IR, radio frequency and even in the optical region of the electromagnetic spectrum, starting the new era of multi-messenger astronomy. To understand and describe neutron stars, an appropriate equation of state that satisfies bulk nuclear matter properties is necessary. GW170817 detection contributed with extra constraints to determine it. On the other hand, magnetars are the same sort of compact object, but bearing much stronger magnetic fields that can reach up to 1015 G on the surface as compared with the usual 1012 G present in ordinary pulsars. While the description of ordinary pulsars is not completely established, describing magnetars poses extra challenges. In this paper, I give an overview on the history of neutron stars and on the development of nuclear models and show how the description of the tiny world of the nuclear physics can help the understanding of the cosmos, especially of the neutron stars.

]]>Universe doi: 10.3390/universe7080265

Authors: Masahiro Morikawa

Many supermassive black holes (SMBH) of mass 106∼9M⊙ are observed at the center of each galaxy even in the high redshift (z≈7) Universe. To explain the early formation and the common existence of SMBH, we previously proposed the SMBH formation scenario by the gravitational collapse of the coherent dark matter (DM) composed from the Bose-Einstein Condensed (BEC) objects. A difficult problem in this scenario is the inevitable angular momentum which prevents the collapse of BEC. To overcome this difficulty, in this paper, we consider the very early Universe when the BEC-DM acquires its proper angular momentum by the tidal torque mechanism. The balance of the density evolution and the acquisition of the angular momentum determines the mass of the SMBH as well as the mass ratio of BH and the surrounding dark halo (DH). This ratio is calculated as MBH/MDH≈10−3∼−5(Mtot/1012M⊙)−1/2 assuming simple density profiles of the initial DM cloud. This result turns out to be consistent with the observations at z≈0 and z≈6, although the data scatter is large. Thus, the angular momentum determines the separation of black and dark, i.e., SMBH and DH, in the original DM cloud.

]]>Universe doi: 10.3390/universe7080264

Authors: Daniel Boyanovsky

We study various production mechanisms of sterile neutrinos in the early universe beyond and within the standard model. We obtain the quantum kinetic equations for production and the distribution function of sterile-like neutrinos at freeze-out, from which we obtain free streaming lengths, equations of state and coarse grained phase space densities. In a simple extension beyond the standard model, in which neutrinos are Yukawa coupled to a Higgs-like scalar, we derive and solve the quantum kinetic equation for sterile production and analyze the freeze-out conditions and clustering properties of this dark matter constituent. We argue that in the mass basis, standard model processes that produce active neutrinos also yield sterile-like neutrinos, leading to various possible production channels. Hence, the final distribution function of sterile-like neutrinos is a result of the various kinematically allowed production processes in the early universe. As an explicit example, we consider production of light sterile neutrinos from pion decay after the QCD phase transition, obtaining the quantum kinetic equation and the distribution function at freeze-out. A sterile-like neutrino with a mass in the keV range produced by this process is a suitable warm dark matter candidate with a free-streaming length of the order of few kpc consistent with cores in dwarf galaxies.

]]>Universe doi: 10.3390/universe7080263

Authors: Ayan Mitra Vasilios Zarikas Alfio Bonanno Michael Good Ertan Güdekli

A recent work proposed that the recent cosmic passage to a cosmic acceleration era is the result of the existence of small anti-gravity sources in each galaxy and clusters of galaxies. In particular, a Swiss-cheese cosmology model, which relativistically integrates the contribution of all these anti-gravity sources on a galactic scale has been constructed assuming the presence of an infrared fixed point for a scale dependent cosmological constant. The derived cosmological expansion provides an explanation for both the fine tuning and the coincidence problem. The present work relaxes the previous assumption on the running of the cosmological constant and allows for a generic scaling around the infrared fixed point. Our analysis reveals that, in order to produce a cosmic evolution consistent with the best ΛCDM model, the IR-running of the cosmological constant is consistent with the presence of an IR-fixed point.

]]>Universe doi: 10.3390/universe7080262

Authors: Damianos Iosifidis Nurgissa Myrzakulov Ratbay Myrzakulov

We derive the full set of field equations for the metric-affine version of the Myrzakulov gravity model and also extend this family of theories to a broader one. More specifically, we consider theories whose gravitational Lagrangian is given by F(R,T,Q,T,D) where T, Q are the torsion and non-metricity scalars, T is the trace of the energy-momentum tensor and D the divergence of the dilation current. We then consider the linear case of the aforementioned theory and, assuming a cosmological setup, we obtain the modified Friedmann equations. In addition, focusing on the vanishing non-metricity sector and considering matter coupled to torsion, we obtain the complete set of equations describing the cosmological behavior of this model along with solutions.

]]>Universe doi: 10.3390/universe7080261

Authors: S. Komossa D. Grupe A. Kraus L. C. Gallo A. G. Gonzalez M. L. Parker M. J. Valtonen A. R. Hollett U. Bach J. L. Gómez I. Myserlis S. Ciprini

Our project MOMO (Multiwavelength observations and modeling of OJ 287) consists of dedicated, dense, long-term flux and spectroscopic monitoring, and deep follow-up observations of the blazar OJ 287 at &gt;13 frequencies from the radio to the X-ray band since late 2015. In particular, we are using Swift to obtain optical-UV-X-ray spectral energy distributions (SEDs) and the Effelsberg telescope to obtain radio measurements between 2 and 40 GHz. MOMO is the densest long-term monitoring of OJ 287 involving X-rays and broad-band SEDs. The theoretical part of the project aims at understanding jet and accretion physics of the blazar central engine in general and the supermassive binary black hole scenario in particular. Results are presented in a sequence of publications and so far included: detection and detailed analysis of the bright 2016/17 and 2020 outbursts and the long-term light curve; Swift, XMM, and NuSTAR spectroscopy of the 2020 outburst around maximum; and interpretation of selected events in the context of the binary black hole scenario of OJ 287 (papers I–IV). Here, we provide a description of the project MOMO, a summary of previous results, the latest results, and we discuss future prospects.

]]>Universe doi: 10.3390/universe7080260

Authors: Stefan Gohl František Němec Michel Parrot

A superposed epoch analysis is conducted for five geomagnetic storms in the years 2005 and 2006 with the aim to understand energetic particle flux variations as a function of L-shell, energy and time from the Dst minimum. Data measured by the low-altitude DEMETER spacecraft were used for this purpose. The storms were identified by a Dst index below −100 nT, as well as their being isolated events in a seven-day time window. It is shown that they can be categorized into two types. The first type shows significant variations in the energetic particle fluxes around the Dst minimum and increased fluxes at high energies (&gt;1.5 MeV), while the second type only shows increased fluxes around the Dst minimum without the increased fluxes at high energies. The first type of storm is related to more drastic but shorter-lasting changes in the solar wind parameters than the second type. One storm does not fit either category, exhibiting features from both storm types. Additionally, we investigate whether the impenetrable barrier for ultra-relativistic electrons also holds in extreme geomagnetic conditions. For the highest analyzed energies, the obtained barrier L-shells do not go below 2.6, consistent with previous findings.

]]>Universe doi: 10.3390/universe7080259

Authors: Niccolò Tomei Luca Del Zanna Matteo Bugli Niccolò Bucciantini

The remarkable results by the Event Horizon Telescope collaboration concerning the emission from M87* and, more recently, its polarization properties, require an increasingly accurate modeling of the plasma flows around the accreting black hole. Radiatively inefficient sources such as M87* and Sgr A* are typically modeled with the SANE (standard and normal evolution) paradigm, if the accretion dynamics is smooth, or with the MAD (magnetically arrested disk) paradigm, if the black hole’s magnetosphere reacts by halting the accretion sporadically, resulting in a highly dynamical process. While the recent polarization studies seem to favor MAD models, this may not be true for all sources, and SANE accretion surely still deserves attention. In this work, we investigate the possibility of reaching the typical degree of magnetization and other accretion properties expected for SANE disks by resorting to the mean-field dynamo process in axisymmetric GRMHD simulations, which are supposed to mimic the amplifying action of an unresolved magnetorotational instability-driven turbulence. We show that it is possible to reproduce the main diagnostics present in the literature by starting from very unfavorable initial configurations, such as a purely toroidal magnetic field with negligible magnetization.

]]>Universe doi: 10.3390/universe7080258

Authors: Yaser Tavakoli

Quantum theory of a test field on a quantum cosmological spacetime may be viewed as a theory of the test field on an emergent classical background. In such a case, the resulting dressed metric for the field propagation is a function of the quantum fluctuations of the original geometry. When the backreaction is negligible, massive modes can experience an anisotropic Bianchi type I background. The field modes propagating on such a quantum-gravity-induced spacetime can then unveil interesting phenomenological consequences of the super-Planckian scales, such as gravitational particle production. The aim of this paper is to address the issue of gravitational particle production associated with the massive modes in such an anisotropic dressed spacetime. By imposing a suitable adiabatic condition on the vacuum state and computing the energy density of the created particles, the significance of the particle production on the dynamics of the universe in Planck era is discussed.

]]>Universe doi: 10.3390/universe7080257

Authors: Jirina R. Stone

(1) This review has been written in memory of Steven Moszkowski who unexpectedly passed away in December 2020. It has been inspired by our many years of discussions. Steven’s enthusiasm, drive and determination to understand atomic nuclei in simple terms of basic laws of physics was infectious. He sought the fundamental origin of nuclear forces in free space, and their saturation and modification in nuclear medium. His untimely departure left our job unfinished but his legacy lives on. (2) Focusing on the nuclear force acting in nuclear matter of astrophysical interest and its equation of state (EoS), we take several typical snapshots of evolution of the theory of nuclear forces. We start from original ideas in the 1930s moving through to its overwhelming diversity today. The development is supported by modern observational and terrestrial data and their inference in the multimessenger era, as well as by novel mathematical techniques and computer power. (3) We find that, despite the admirable effort both in theory and measurement, we are facing multiple models dependent on a large number of variable correlated parameters which cannot be constrained by data, which are not yet accurate, nor sensitive enough, to identify the theory closest to reality. The role of microphysics in the theories is severely limited or neglected, mostly deemed to be too difficult to tackle. (4) Taking the EoS of high-density matter as an example, we propose to develop models, based, as much as currently possible, on the microphysics of the nuclear force, with a minimal set of parameters, chosen under clear physical guidance. Still somewhat phenomenological, such models could pave the way to realistic predictions, not tracing the measurement, but leading it.

]]>Universe doi: 10.3390/universe7080256

Authors: Mikhail O. Katanaev

Recently the ’t Hooft–Polyakov monopole solutions in Yang–Mills theory were given new physical interpretation in the geometric theory of defects describing the continuous distribution of dislocations and disclinations in elastic media. It means that the ’t Hooft–Polyakov monopole can be seen, probably, in solids. To this end we need to compute the corresponding spin distribution on lattice sites of crystals. The paper describes one of the possible spin distributions. The Bogomol’nyi–Prasad–Sommerfield solution is considered as an example.

]]>Universe doi: 10.3390/universe7080255

Authors: Haifa I. Alrebdi Thabit Barakat

Within the framework of the light-cone QCD sum rules method (LCSR’s), the radiative Δ(1600)→γN decay is studied. In particular, the magnetic dipole moment GM1(0) and the electric quadrupole moment GE1(0) are estimated. We also calculate the ratio REM=−GE1(0)GM1(0) and the decay rate. The predicted multipole moments and the decay rate strongly agree with the existing experimental results as well as with the other available phenomenological approaches.

]]>Universe doi: 10.3390/universe7080254

Authors: Lorenzo Lovisari Stefano Ettori

Galaxy groups consist of a few tens of galaxies bound in a common gravitational potential [...]

]]>Universe doi: 10.3390/universe7080253

Authors: David R. Junior Luis E. Oxman Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.

]]>Universe doi: 10.3390/universe7070252

Authors: Guido Zavattini Federico Della Valle

Sensitive magneto-optical polarimetry was proposed by E. Iacopini and E. Zavattini in 1979 to detect vacuum electrodynamic non-linearity, in particular Vacuum Magnetic Birefringence (VMB). This process is predicted in QED via the fluctuation of electron–positron virtual pairs but can also be due to hypothetical Axion-Like Particles (ALPs) and/or MilliCharged Particles (MCP). Today ALPs are considered a strong candidate for Dark Matter. Starting in 1992 the PVLAS collaboration, financed by INFN, Italy, attempted to measure VMB conceptually following the original 1979 scheme based on an optical cavity permeated by a time-dependent magnetic field and heterodyne detection. Two setups followed differing basically in the magnet: the first using a rotating superconducting 5.5 T dipole magnet at the Laboratori Nazionali di Legnaro, Legnaro, Italy and the second using two rotating permanent 2.5 T dipole magnets at the INFN section of Ferrara. At present PVLAS is the experiment which has set the best limit in VMB reaching a noise floor within a factor 7 of the predicted QED signal: Δn(QED)=2.5×10−23 @ 2.5 T. It was also shown that the noise floor was due to the optical cavity and a larger magnet is the only solution to increase the signal to noise ratio. The PVLAS experiment ended at the end of 2018. A new effort, VMB@CERN, which plans to use a spare LHC dipole magnet at CERN with a new modified optical scheme, is now being proposed. In this review, a detailed description of the PVLAS effort and the comprehension of its limits leading to a new proposal will be given.

]]>Universe doi: 10.3390/universe7070251

Authors: Martin Bojowald

Background independence is often emphasized as an important property of a quantum theory of gravity that takes seriously the geometrical nature of general relativity. In a background-independent formulation, quantum gravity should determine not only the dynamics of space–time but also its geometry, which may have equally important implications for claims of potential physical observations. One of the leading candidates for background-independent quantum gravity is loop quantum gravity. By combining and interpreting several recent results, it is shown here how the canonical nature of this theory makes it possible to perform a complete space–time analysis in various models that have been proposed in this setting. In spite of the background-independent starting point, all these models turned out to be non-geometrical and even inconsistent to varying degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome leads to several implications for potential observations as well as lessons for other background-independent approaches.

]]>Universe doi: 10.3390/universe7070250

Authors: Yolanda Lozano Anayeli Ramirez

We review recent developments in the study of the AdS/CFT correspondence in lower dimensions. We start by summarising the classification of AdS3×S2 solutions in massive type IIA supergravity with (0, 4) supersymmetries and the construction of their 2D dual quiver CFTs. These theories are the seed for further developments that we review next. First, we construct a new class of AdS3 solutions in M-theory that describe M-strings in M5-brane intersections. Second, we generate a new class of AdS2×S3 solutions in massive IIA with four supercharges that we interpret as describing backreacted baryon vertices within the 5D N=1 QFT living in D4-D8 branes. Third, we construct two classes of AdS2 solutions in Type IIB. The first are dual to discrete light-cone quantised quantum mechanics living in null cylinders. The second class is interpreted as dual to backreacted baryon vertices within 4D N=2 QFT living in D3-D7 branes. Explicit dual quiver field theories are given for all classes of solutions. These are used to compute the central charges of the CFTs that are shown to agree with the holographic expressions.

]]>Universe doi: 10.3390/universe7070249

Authors: Sergey Il’ich Kruglov

New spherically symmetric solution in 4D Einstein–Gauss–Bonnet gravity coupled with nonlinear electrodynamics is obtained. At infinity, this solution has the Reissner–Nordström behavior of the charged black hole. The black hole thermodynamics, entropy, shadow, energy emission rate, and quasinormal modes of black holes are investigated.

]]>Universe doi: 10.3390/universe7070248

Authors: Farhan Naufal Rifqi Nurul Shazana Abdul Hamid A. Babatunde Rabiu Akimasa Yoshikawa

The fractal properties of geomagnetic northward component data (H-component) in the equatorial region during various phases of solar activity over Southeast Asia were investigated and then quantified using the parameter of the Hurst exponent (H). This study began with the identification of existence of spectral peaks and scaling properties in international quiet day H-component data which were measured during three levels of solar activity: low, intermediate, and high. Then, various cases of quiet and disturbed days during different solar activity levels were analyzed using the method that performed the best in the preceding part. In all the years analyzed, multifractal scaling and spectral peaks exist, signifying that the data have fractal properties and that there are external factors driving the fluctuations of geomagnetic activity other than solar activity. The analysis of various cases of quiet and disturbed days generally showed that quiet days had anti-persistence tendencies (H &lt; 0.5) while disturbed days had persistence tendencies (H &gt; 0.5)—generally a higher level of Hurst exponent compared to quiet days. As for long-term quiet day H-component data, it had a Hurst exponent value that was near H ≃ 0.50, while the long-term disturbed day H-component data showed higher values than that of the quiet day.

]]>Universe doi: 10.3390/universe7070247

Authors: Agnese Bissi Parijat Dey Giulia Fardelli

We reviewed the recent developments in the study of conformal field theories in generic space time dimensions using the methods of the conformal bootstrap, in its analytic aspect. These techniques are solely based on symmetries, particularly on the analytic structure and in the associativity of the operator product expansion. We focused on two applications of the analytic conformal bootstrap: the study of the ϵ expansion of the Wilson–Fisher model via the introduction of a dispersion relation and the large N expansion of the maximally supersymmetric Super Yang–Mills theory in four dimensions.

]]>Universe doi: 10.3390/universe7070246

Authors: Vadim A. Naumov Dmitry S. Shkirmanov

We discuss a possibility that the so-called reactor antineutrino anomaly (RAA), which is a deficit of the ν¯e rates in the reactor experiments in comparison to the theoretical expectations, can at least in part be explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical inverse-square law at short (but still macroscopic) distances between the neutrino source and detector. An extensive statistical analysis of the current reactor data on the integrated ν¯e event rates vs. baseline is performed to examine this speculation. The obtained results are applied to study another long-standing puzzle—gallium neutrino anomaly (GNA), which is a missing νe flux from 37Ar and 51Cr electron-capture decays as measured by the gallium–germanium solar neutrino detectors GALLEX and SAGE.

]]>Universe doi: 10.3390/universe7070245

Authors: Frédéric Jaron

The high-mass X-ray binary LS I +61°303 is detected across the electromagnetic spectrum from radio until the very high energy γ-ray regime. The emission is not only highly variable on many time scales, but is also periodic at all observed wavelengths. Periodic modulation was observed on different time-scales, ranging from hours, over months to several years. The subject of this article is a super-orbital, long-term modulation of ∼4.6 years. We review the observation of this periodic modulation at multiple wavelengths and investigate systematic relationships between them. IN particular, radio observations reveal that the long-term modulation is a very stable feature of the source. Observations at other wavelengths result in a phase-shift of the modulationpattern that is a systematic function of energy. The stability of this period favors a scenario in which the long-term modulation is the result of a precessing jet giving rise to periodic changes in the Doppler factor, beating with the orbital modulation of the accretion rate. We explain the phase-shifts across energy bands in a scenario with shorter wavelengths originating closer to the base of the presessing jet. A significant deviation of the TeV emission from this trend possibly requires a different explanation related to magnetic reconnection events.

]]>Universe doi: 10.3390/universe7070244

Authors: Andronikos Paliathanasis

In a spatially flat Friedmann–Lemaître–Robertson–Walker background space, we consider a scalar-torsion gravitational model which has similar properties to the dilaton theory. This teleparallel model is invariant under a discrete transformation similar to the Gasperini–Veneziano duality transformation. Moreover, in the gravitational action integral, we introduce the Lagrangian function of a pressureless fluid source which is coupled to the teleparallel dilaton field. This specific gravitational theory with interaction in the dark sector of the universe was investigated by using methods of the dynamical system analysis. We calculate that the theory provides various areas of special interest for the evolution of the cosmological history. Inflationary scaling solutions and the de Sitter universe are recovered. Furthermore, we calculate that there exist an attractor which provides a stable solution where the two fluid components, the scalar field and the pressureless matter, contribute in the cosmological fluid. This solution is of special interest because it can describe the present epoch. Finally, the qualitative evolution of the cosmographic parameters is discussed.

]]>Universe doi: 10.3390/universe7070243

Authors: David Gobrecht Jan Philip Sindel Helena Lecoq-Molinos Leen Decin

Stellar dust grains are predominantly composed of mineralic, anorganic material forming in the circumstellar envelopes of oxygen-rich AGB stars. However, the initial stage of the dust synthesis, or its nucleation, is not well understood. In particular, the chemical nature of the nucleating species, represented by molecular clusters, is uncertain. We investigated the vertical and adiabatic ionization energies of four different metal-oxide clusters by means of density functional theory. They included clusters of magnesia (MgO)n, silicon monoxide (SiO)n, alumina (Al2O3)n, and titania (TiO2)n with stoichiometric sizes of n = 1–8. The magnesia, alumina, and titania clusters showed relatively little variation in their ionization energies with respect to the cluster size n: 7.1–8.2 eV for (MgO)n, from 8.9–10.0 eV for (Al2O3)n, and 9.3–10.5 eV for (TiO2)n. In contrast, the (SiO)n ionization energies decrease with size n, starting from 11.5 eV for n = 1, and decreasing to 6.6 eV for n = 8. Therefore, we set constraints on the stability limit for neutral metal-oxide clusters to persist ionization through radiation or high temperatures and for the nucleation to proceed via neutral–neutral reactions.

]]>Universe doi: 10.3390/universe7070242

Authors: Maria Chernyakova Denys Malyshev Brian van Soelen Shane O’Sullivan Charlotte Sobey Sergey Tsygankov Samuel Mc Keague Jacob Green Matthew Kirwan Andrea Santangelo Gerd Pühlhofer Itumeleng M. Monageng

PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around a O9.5Ve star, LS 2883, with a period of ∼3.4 years. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broadband emission in the radio, X-ray, GeV, and TeV domains. One of the most unusual features of the system is an outburst of GeV energies around the periastron, during which the energy release substantially exceeds the spin down luminosity under the assumption of the isotropic emission. In this paper, we present the first results of a recent multi-wavelength campaign (radio, optical, and X-ray bands) accompanied by the analysis of publicly available GeV Fermi/LAT data. The campaign covered a period of more than 100 days around the 2021 periastron and revealed substantial differences from previously observed passages. We report a major delay of the GeV flare, weaker X-ray flux during the peaks, which are typically attributed to the times when the pulsar crosses the disk, and the appearance of a third X-ray peak never observed before. We argue that these features are consistent with the emission cone model proposed by us previously, in the case of a sparser and clumpier disk of the Be star.

]]>Universe doi: 10.3390/universe7070241

Authors: Pei-Ming Ho Yuki Yokokura

For an effective field theory in the background of an evaporating black hole with spherical symmetry, we consider non-renormalizable interactions and their relevance to physical effects. The background geometry is determined by the semi-classical Einstein equation for an uneventful horizon where the vacuum energy–momentum tensor is small for freely falling observers. Surprisingly, after Hawking radiation appears, the transition amplitude from the Unruh vacuum to certain multi-particle states grows exponentially with time for a class of higher-derivative operators after the collapsing matter enters the near-horizon region, despite the absence of large curvature invariants. Within the scrambling time, the uneventful horizon transitions towards a firewall, and eventually the effective field theory breaks down.

]]>Universe doi: 10.3390/universe7070240

Authors: Alessio Giarnetti Davide Meloni

We check the capability of the DUNE neutrino experiment to detect new sources of leptonic CP violation beside the single phase expected in the Standard Model. We illustrate our strategy based on the measurement of CP asymmetries in the case that new physics will show up as nonstandard neutrino interactions and sterile neutrino states and show that the most promising one, once the experimental errors are taken into account in both scenarios, is the one related to the νμ→νe transition.

]]>Universe doi: 10.3390/universe7070239

Authors: Diego Vescovi René Reifarth

Current AGB stellar models provide an adequate description of the s-process nucleosynthesis that occurs. Nonetheless, they still suffer from many uncertainties related to the modeling of the 13C pocket formation and the adopted nuclear reaction rates. For many important s-process isotopes, a best set of neutron-capture cross sections was recently re-evaluated. Using stellar models prescribing that the 13C pocket is a by-product of magnetic-buoyancy-induced mixing phenomena, s-process calculations were carried out with this database. Significant effects are found for a few s-only and branching point isotopes, pointing out the need for improved neutron-capture cross section measurements at low energy.

]]>Universe doi: 10.3390/universe7070238

Authors: G. Alencar V. B. Bezerra C. R. Muniz H. S. Vieira

In this paper, we investigate the simplest wormhole solution—the Ellis–Bronnikov one—in the context of the asymptotically safe gravity (ASG) at the Planck scale. We work with three models, which employ the Ricci scalar, Kretschmann scalar, and squared Ricci tensor to improve the field equations by turning the Newton constant into a running coupling constant. For all the cases, we check the radial energy conditions of the wormhole solution and compare them with those that are valid in general relativity (GR). We verified that asymptotic safety guarantees that the Ellis–Bronnikov wormhole can satisfy the radial energy conditions at the throat radius, r0, within an interval of values of the latter, which is quite different from the result found in GR. Following this, we evaluate the effective radial state parameter, ω(r), at r0, showing that the quantum gravitational effects modify Einstein’s field equations in such a way that it is necessary to have a very exotic source of matter to generate the wormhole spacetime–phantom or quintessence-like matter. This occurs within some ranges of the throat radii, even though the energy conditions are or are not violated there. Finally, we find that, although at r0 we have a quintessence-like matter, upon growing r, we inevitably came across phantom-like regions. We speculate whether such a phantom fluid must always be present in wormholes in the ASG context or even in more general quantum gravity scenarios.

]]>Universe doi: 10.3390/universe7070235

Authors: Paritosh Verma

This paper comprises the theoretical background for the data analysis of gravitational waves (GWs) from spinning neutron stars in Brans–Dicke (BD) theory. Einstein’s general theory of relativity (GR) predicts only two tensor polarization states, but a generic metric theory of gravity can also possess scalar and vector polarization states. The BD theory attempts to modify the GR by varying gravitational constant G, and it has three polarization states. The first two states are the same as in GR, and the third one is scalar polarization. We derive the response of a laser interferometric detector to the GW signal from a spinning neutron star in BD theory. We obtain a statistic based on the maximum likelihood principle to identify the signal in BD theory in the detector’s noise. This statistic generalizes the well known F-statistic used in the case of GR. We perform Monte Carlo simulations in Gaussian noise to test the detectability of the signal and the accuracy of estimation of its parameters.

]]>Universe doi: 10.3390/universe7070237

Authors: Bing-Sui Lu

We give an overview of the work done during the past ten years on the Casimir interaction in electronic topological materials, our focus being solids, which possess surface or bulk electronic band structures with nontrivial topologies, which can be evinced through optical properties that are characterizable in terms of nonzero topological invariants. The examples we review are three-dimensional magnetic topological insulators, two-dimensional Chern insulators, graphene monolayers exhibiting the relativistic quantum Hall effect, and time reversal symmetry-broken Weyl semimetals, which are fascinating systems in the context of Casimir physics. Firstly, this is for the reason that they possess electromagnetic properties characterizable by axial vectors (because of time reversal symmetry breaking), and, depending on the mutual orientation of a pair of such axial vectors, two systems can experience a repulsive Casimir–Lifshitz force, even though they may be dielectrically identical. Secondly, the repulsion thus generated is potentially robust against weak disorder, as such repulsion is associated with the Hall conductivity that is topologically protected in the zero-frequency limit. Finally, the far-field low-temperature behavior of the Casimir force of such systems can provide signatures of topological quantization.

]]>Universe doi: 10.3390/universe7070236

Authors: Claudio Gatti Paola Gianotti Carlo Ligi Mauro Raggi Paolo Valente

In recent years, the absence of experimental evidence for searches dedicated to dark matter has triggered the development of new ideas on the nature of this entity, which manifests at the cosmological level. Some of these can be explored by small experiments with a short timescale and an investment that can be afforded by national laboratories, such as the Frascati one. This is the main reason why a laboratory that, traditionally, was focused in particle physics studies with accelerators has begun intense activity in this field of research.

]]>Universe doi: 10.3390/universe7070234

Authors: René I. P. Sedmik Mario Pitschmann

The Casimir And Non-Newtonian force EXperiment (Cannex) implements the unique geometry of macroscopic plane parallel plates that guarantees an optimum sensitivity with respect to interfacial forces and their gradients. Based on experience from the recently completed proof-of-principle phase, we have started a re-design of the setup aiming to reduce systematic effects and maximize the achievable sensitivity. Several propositions have been made to measure Casimir forces in and out of thermal equilibrium, hypothetical axion and axion-like dark matter interactions, and forces originating from chameleon or symmetron dark energy interactions. In the present article, we give details on the design for the next implementation stage of Cannex and discuss the experimental opportunities, as well as limitations expected for this new setup.

]]>Universe doi: 10.3390/universe7070233

Authors: Ambra Nanni Sergio Cristallo Jacco Th. van Loon Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.

]]>Universe doi: 10.3390/universe7070232

Authors: Valdir Barbosa Bezerra Herondy Francisco Santana Mota Celio Rodrigues Muniz Carlos Augusto Romero Filho

In this paper, we present a review of some recent results concerning the thermal corrections to the Casimir energy of massless scalar, electromagnetic, and massless spinor fields in the Einstein and closed Friedmann universes with a cosmic string. In the case of a massless scalar field, it is shown that the Casimir energy can be written as a simple sum of two terms; the first one corresponds to the Casimir energy for the massless scalar field in the Einstein and Friedmann universes without a cosmic string, whereas the second one is simply the Casimir energy of the electromagnetic field in these backgrounds, multiplied by a parameter λ=(1/α)−1, where α is a constant that codifies the presence of the cosmic string, and is related to its linear mass density, μ, by the expression α=1−Gμ. The Casimir free energy and the internal energy at a temperature different from zero, as well as the Casimir entropy, are given by similar sums. In the cases of the electromagnetic and massless spinor fields, the Casimir energy, free energy, internal energy, and Casimir entropy are also given by the sum of two terms, similarly to the previous cases, but now with both terms related to the same field. Using the results obtained concerning the mentioned thermodynamic quantities, their behavior at high and low temperatures limits are studied. All these results are particularized to the scenario in which the cosmic string is absent. Some discussions concerning the validity of the Nernst heat theorem are included as well.

]]>Universe doi: 10.3390/universe7070231

Authors: Sindhujha Kumaran Livia Ludhova Ömer Penek Giulio Settanta

Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso in Italy. Since the start of its data-taking in May 2007, it has provided several measurements of low-energy neutrinos from various sources. At the base of its success lie unprecedented levels of radio-purity and extensive thermal stabilization, both resulting from a years-long effort of the collaboration. Solar neutrinos, emitted in the Hydrogen-to-Helium fusion in the solar core, are important for the understanding of our star, as well as neutrino properties. Borexino is the only experiment that has performed a complete spectroscopy of the pp chain solar neutrinos (with the exception of the hep neutrinos contributing to the total flux at 10−5 level), through the detection of pp, 7Be, pep, and 8B solar neutrinos and has experimentally confirmed the existence of the CNO fusion cycle in the Sun. Borexino has also detected geoneutrinos, antineutrinos from the decays of long-lived radioactive elements inside the Earth, that can be exploited as a new and unique tool to study our planet. This paper reviews the most recent Borexino results on solar and geoneutrinos, from highlighting the key elements of the analyses up to the discussion and interpretation of the results for neutrino, solar, and geophysics.

]]>Universe doi: 10.3390/universe7070230

Authors: Celia Escamilla-Rivera Júlio C. Fabris

General Relativity resembles a very elegant crystal glass: If we touch its principles, that is, its Lagrangian, there is a risk of breaking everything. Or, if we will, it is like a short blanket: Curing some problems creates new problems. This paper is devoted to bring to light the reasons why we pursue the possibility of a non-Lagrangian theory of gravity under the hypothesis of an extension of the original general relativity with an ansatz inspired in the fundamental principles of classical and quantum physics.

]]>Universe doi: 10.3390/universe7070229

Authors: Walter Felipe Wreszinski

We dwell upon certain points concerning the meaning of quantum field theory: the problems with the perturbative approach, and the question raised by ’t Hooft of the existence of the theory in a well-defined (rigorous) mathematical sense, as well as some of the few existent mathematically precise results on fully quantized field theories. Emphasis is brought on how the mathematical contributions help to elucidate or illuminate certain conceptual aspects of the theory when applied to real physical phenomena, in particular, the singular nature of quantum fields. In a first part, we present a comprehensive review of divergent versus asymptotic series, with qed as background example, as well as a method due to Terence Tao which conveys mathematical sense to divergent series. In a second part, we apply Tao’s method to the Casimir effect in its simplest form, consisting of perfectly conducting parallel plates, arguing that the usual theory, which makes use of the Euler-MacLaurin formula, still contains a residual infinity, which is eliminated in our approach. In the third part, we revisit the general theory of nonperturbative quantum fields, in the form of newly proposed (with Christian Jaekel) Wightman axioms for interacting field theories, with applications to “dressed” electrons in a theory with massless particles (such as qed), as well as unstable particles. Various problems (mostly open) are finally discussed in connection with concrete models.

]]>Universe doi: 10.3390/universe7070228

Authors: Jörg Frauendiener Jonathan Hakata Chris Stevens

We numerically investigate the propagation of plane gravitational waves in the form of an initial boundary value problem with de Sitter initial data. The full non-linear Einstein equations with positive cosmological constant λ are written in the Friedrich–Nagy gauge which yields a wellposed system. The propagation of a single wave and the collision of two with colinear polarization are studied and contrasted with their Minkowskian analogues. Unlike with λ=0, critical behaviours are found with λ&gt;0 and are based on the relationship between the wave profile and λ. We find that choosing boundary data close to one of these bifurcations results in a “false” steady state which violates the constraints. Simulations containing (approximate) impulsive wave profiles are run and general features are discussed. Analytic results of Tsamis and Woodard, which describe how gravitational waves could affect an expansion rate at an initial instance of time, are explored and generalized to the entire space–time. Finally we put forward boundary conditions that, at least locally, slow down the expansion considerably for a time.

]]>Universe doi: 10.3390/universe7070227

Authors: Tiberiu Harko Francisco S. N. Lobo Emmanuel N. Saridakis

We investigate the possibility of gravitationally generated particle production via the mechanism of nonminimal torsion–matter coupling. An intriguing feature of this theory is that the divergence of the matter energy–momentum tensor does not vanish identically. We explore the physical and cosmological implications of the nonconservation of the energy–momentum tensor by using the formalism of irreversible thermodynamics of open systems in the presence of matter creation/annihilation. The particle creation rates, pressure, and the expression of the comoving entropy are obtained in a covariant formulation and discussed in detail. Applied together with the gravitational field equations, the thermodynamics of open systems lead to a generalization of the standard ΛCDM cosmological paradigm, in which the particle creation rates and pressures are effectively considered as components of the cosmological fluid energy–momentum tensor. We consider specific models, and we show that cosmology with a torsion–matter coupling can almost perfectly reproduce the ΛCDM scenario, while it additionally gives rise to particle creation rates, creation pressures, and entropy generation through gravitational matter production in both low and high redshift limits.

]]>Universe doi: 10.3390/universe7070226

Authors: Rishi Kumar Tiwari Aroonkumar Beesham Soma Mishra Vipin Dubey

Current observations indicate that, on a large enough scale, the universe is homogeneous and isotropic. However, this does not preclude the possibility of some anisotropy having occurred during the early stages of the evolution of the universe, which could then have been damped out later. This idea has aroused interest in the Bianchi models, which are homogeneous but anisotropic. Secondly, there is much interest in modified gravity these days due to the problems that the usual ΛCDM model faces in general relativity. Hence, in this paper, a study was conducted on the Bianchi type-I cosmological model in f(R,T)-modified gravity. Following some ideas from cosmography, a specific form of the deceleration parameter was assumed, leading to a model that exhibited a transition from early deceleration to late-time acceleration. The derived model approached isotropy at late times. The physical properties of the model were discussed, and expressions for the various parameters of the model were derived. It is also possible to make progress towards solving the cosmological constant problem, since in this model in f(R,T) gravity, a variable cosmological-type parameter arose, which was large early on but decreased to a constant value in later times.

]]>Universe doi: 10.3390/universe7070225

Authors: Giuseppe Bimonte Thorsten Emig

The principles of the electromagnetic fluctuation-induced phenomena such as Casimir forces are well understood. However, recent experimental advances require universal and efficient methods to compute these forces. While several approaches have been proposed in the literature, their connection is often not entirely clear, and some of them have been introduced as purely numerical techniques. Here we present a unifying approach for the Casimir force and free energy that builds on both the Maxwell stress tensor and path integral quantization. The result is presented in terms of either bulk or surface operators that describe corresponding current fluctuations. Our surface approach yields a novel formula for the Casimir free energy. The path integral is presented both within a Lagrange and Hamiltonian formulation yielding different surface operators and expressions for the free energy that are equivalent. We compare our approaches to previously developed numerical methods and the scattering approach. The practical application of our methods is exemplified by the derivation of the Lifshitz formula.

]]>Universe doi: 10.3390/universe7070224

Authors: Oliviero Cremonesi

In Italy, INFN coordinates the research in the field of astro-particle physics. The supported experimental activities include the study of the cosmic radiation, the search of gravitational waves, the study of dark universe, general and quantum physics, and the study of the neutrino properties. A rich program of experiments installed on the earth, in the space, and underground or underwater is being supported to provide a possible answer to some of the most relevant open questions of particle physics, astrophysics, and cosmology. A short overview of the ongoing effort is presented.

]]>Universe doi: 10.3390/universe7070223

Authors: Rafael Alves Batista Andrey Saveliev

One of the most promising ways to probe intergalactic magnetic fields (IGMFs) is through gamma rays produced in electromagnetic cascades initiated by high-energy gamma rays or cosmic rays in the intergalactic space. Because the charged component of the cascade is sensitive to magnetic fields, gamma-ray observations of distant objects such as blazars can be used to constrain IGMF properties. Ground-based and space-borne gamma-ray telescopes deliver spectral, temporal, and angular information of high-energy gamma-ray sources, which carries imprints of the intervening magnetic fields. This provides insights into the nature of the processes that led to the creation of the first magnetic fields and into the phenomena that impacted their evolution. Here we provide a detailed description of how gamma-ray observations can be used to probe cosmic magnetism. We review the current status of this topic and discuss the prospects for measuring IGMFs with the next generation of gamma-ray observatories.

]]>Universe doi: 10.3390/universe7070222

Authors: Maxim Khlopov

A.D. Sakharov’s legacy in now standard model of the Universe is not reduced to baryosynthesis but extends to the foundation of cosmoparticle physics, which studies the fundamental relationship of cosmology and particle physics. Development of cosmoparticle physics involves cross-disciplinary physical, astrophysical and cosmological studies of physics Beyond the Standard model (BSM) of elementary particles. To probe physical models for inflation, baryosynthesis and dark matter cosmoparticle physics pays special attention to model dependent messengers of the corresponding models, making their tests possible. Positive evidence for such exotic phenomena as nuclear interacting dark atoms, primordial black holes or antimatter globular cluster in our galaxy would provide the selection of viable BSM models determination of their parameters.

]]>Universe doi: 10.3390/universe7070221

Authors: Mikhail Zotov

We employ neural networks for classification of data of the TUS fluorescence telescope, the world’s first orbital detector of ultra-high energy cosmic rays. We focus on two particular types of signals in the TUS data: track-like flashes produced by cosmic ray hits of the photodetector and flashes that originated from distant lightnings. We demonstrate that even simple neural networks combined with certain conventional methods of data analysis can be highly effective in tasks of classification of data of fluorescence telescopes.

]]>Universe doi: 10.3390/universe7070220

Authors: Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.

]]>Universe doi: 10.3390/universe7070219

Authors: Alexander Yu Kamenshchik Jeinny Nallely Pérez Rodríguez Tereza Vardanyan

We analyze the issue of dynamical evolution and time in quantum cosmology. We emphasize the problem of choice of phase space variables that can play the role of a time parameter in such a way that for expectation values of quantum operators the classical evolution is reproduced. We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space. We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.

]]>Universe doi: 10.3390/universe7070217

Authors: Irina G. Pirozhenko

In this paper, we consider the vacuum energy of a scalar field in the spacetime of two non-parallel cosmic strings. To this end, we obtain metrics for orthogonal straight cosmic strings and for slightly nonparallel strings. In the first case, we derive the separation-dependent part of the vacuum energy in the leading order of string tension. The dependence of the vacuum energy on separation differs from that known for parallel strings. For two strings inclined at a small angle to each other, the approximation used simply reproduces the result for parallel strings, since the angle dependence enters the next to leading order. The results are compared with the Casimir interaction between two inclined cylinders.

]]>Universe doi: 10.3390/universe7070218

Authors: Iuri La Rosa Pia Astone Sabrina D’Antonio Sergio Frasca Paola Leaci Andrew Lawrence Miller Cristiano Palomba Ornella Juliana Piccinni Lorenzo Pierini Tania Regimbau

We present a new approach to searching for Continuous gravitational Waves (CWs) emitted by isolated rotating neutron stars, using the high parallel computing efficiency and computational power of modern Graphic Processing Units (GPUs). Specifically, in this paper the porting of one of the algorithms used to search for CW signals, the so-called FrequencyHough transform, on the TensorFlow framework, is described. The new code has been fully tested and its performance on GPUs has been compared to those in a CPU multicore system of the same class, showing a factor of 10 speed-up. This demonstrates that GPU programming with general purpose libraries (the those of the TensorFlow framework) of a high-level programming language can provide a significant improvement of the performance of data analysis, opening new perspectives on wide-parameter searches for CWs.

]]>Universe doi: 10.3390/universe7070216

Authors: Benjamin Knorr Marc Schiffer

We employ non-perturbative renormalisation group methods to compute the full momentum dependence of propagators in quantum gravity in general dimensions. We disentangle all different graviton and Faddeev–Popov ghost modes and find qualitative differences in the momentum dependence of their propagators. This allows us to reconstruct the form factors that are quadratic in curvature from first principles, which enter physical observables like scattering cross sections. The results are qualitatively stable under variations of the gauge fixing choice.

]]>Universe doi: 10.3390/universe7070215

Authors: Anna Anokhina Vasilisa Gulyaeva Emil Khalikov Evgeny Kurochkin Tatiana Roganova Eduard Ursov Ivan Vidulin

For the last 10 years, the search for dark matter (DM) was carried out taking into account the fact that the DM particles are WIMPs (Weakly Interacted Massive Particles) which were introduced in supersymmetric extensions of the Standard Model. Many experiments such as XENON1T, DarkSide, CRESST, etc. set the constraints on the WIMP-nucleon elastic interaction cross sections for different assumed WIMP masses. Methods for detecting WIMPs could play a special role, allowing one to determine the directions of the tracks of recoil nuclei and, therefore, to determine the preferred direction of the WIMP flux. In this work, we analyze the capabilities of such direct detection experiments through analyzing the lengths and directions of the tracks of recoil nuclei. Taking into account the existing experimental constraints, we conclude that the optimal target would be a lower density target containing nuclei of the CNO group, for example, liquid propane.

]]>Universe doi: 10.3390/universe7070214

Authors: Josep Martí Pedro L. Luque-Escamilla

The number of gamma-ray binaries currently known is still so small that even a new finding represents a significant expansion of its population. We present a possible hunting strategy based on screening different catalogs to filter potential peculiar stars consistent with gamma-ray sources whose association at lower energies is not yet certain. So far, two candidate systems have emerged from this process; we report about them here.

]]>Universe doi: 10.3390/universe7070213

Authors: Luis E. Padilla Luis O. Tellez Luis A. Escamilla Jose Alberto Vazquez

Bayesian statistics and Markov Chain Monte Carlo (MCMC) algorithms have found their place in the field of Cosmology. They have become important mathematical and numerical tools, especially in parameter estimation and model comparison. In this paper, we review some fundamental concepts to understand Bayesian statistics and then introduce MCMC algorithms and samplers that allow us to perform the parameter inference procedure. We also introduce a general description of the standard cosmological model, known as the ΛCDM model, along with several alternatives, and current datasets coming from astrophysical and cosmological observations. Finally, with the tools acquired, we use an MCMC algorithm implemented in python to test several cosmological models and find out the combination of parameters that best describes the Universe.

]]>Universe doi: 10.3390/universe7070212

Authors: Alice Campani Valentina Dompè Guido Fantini

Neutrinoless double beta decay (0νββ) is a posited lepton number violating decay whose search is an increasingly active field in modern astroparticle physics. A discovery would imply neutrinos are Majorana particles and inform neutrino physics, cosmology and beyond-standard-model theories. Among the few nuclei where double beta decay (ββ) is allowed, tellurium isotopes stand for their high natural abundance and are currently employed in multiple experiments. The search for 0νββ will provide large exposure data sets in the coming years, paving the way for unprecedented sensitivities. We review the latest rare decay searches in tellurium isotopes and compare past results with theories and prospects from running experiments.

]]>Universe doi: 10.3390/universe7070211

Authors: Xingzhu Wang Jiyu Wei Yang Liu Jinhao Li Zhen Zhang Jianyu Chen Bin Jiang

Recently, astronomy has witnessed great advancements in detectors and telescopes. Imaging data collected by these instruments are organized into very large datasets that form data-oriented astronomy. The imaging data contain many radio galaxies (RGs) that are interesting to astronomers. However, considering that the scale of astronomical databases in the information age is extremely large, a manual search of these galaxies is impractical given the need for manual labor. Therefore, the ability to detect specific types of galaxies largely depends on computer algorithms. Applying machine learning algorithms on large astronomical data sets can more effectively detect galaxies using photometric images. Astronomers are motivated to develop tools that can automatically analyze massive imaging data, including developing an automatic morphological detection of specified radio sources. Galaxy Zoo projects have generated great interest in visually classifying galaxy samples using CNNs. Banfield studied radio morphologies and host galaxies derived from visual inspection in the Radio Galaxy Zoo project. However, there are relatively more studies on galaxy classification, while there are fewer studies on galaxy detection. We develop a galaxy detection model, which realizes the location and classification of Fanaroff–Riley class I (FR I) and Fanaroff–Riley class II (FR II) galaxies. The field of target detection has also developed rapidly since the convolutional neural network was proposed. You Only Look Once: Unified, Real-Time Object Detection (YOLO) is a neural-network-based target detection model proposed by Redmon et al. We made several improvements to the detection effect of dense galaxies based on the original YOLOv5, mainly including the following. (1) We use Varifocal loss, whose function is to weigh positive and negative samples asymmetrically and highlight the main sample of positive samples in the training phase. (2) Our neural network model adds an attention mechanism for the convolution kernel so that the feature extraction network can adjust the size of the receptive field dynamically in deep convolutional neural networks. In this way, our model has good adaptability and effect for identifying galaxies of different sizes on the picture. (3) We use empirical practices suitable for small target detection, such as image segmentation and reducing the stride of the convolutional layers. Apart from the three major contributions and novel points of the model, the thesis also included different data sources, i.e., radio images and optical images, aiming at better classification performance and more accurate positioning. We used optical image data from SDSS, radio image data from FIRST, and label data from FR Is and FR IIs catalogs to create a data set of FR Is and FR IIs. Subsequently, we used the data set to train our improved YOLOv5 model and finally realize the automatic classification and detection of FR Is and FR IIs. Experimental results prove that our improved method achieves better performance. mAP@0.5 of our model reaches 82.3%, and the location (Ra and Dec) of the galaxies can be identified more accurately. Our model has great astronomical significance. For example, it can help astronomers find FR I and FR II galaxies to build a larger-scale galaxy catalog. Our detection method can also be extended to other types of RGs. Thus, astronomers can locate the specific type of galaxies in a considerably shorter time and with minimum human intervention, or it can be combined with other observation data (spectrum and redshift) to explore other properties of the galaxies.

]]>Universe doi: 10.3390/universe7070210

Authors: Georgii K. Sizykh Sergei P. Roshchupkin Victor V. Dubov

The process of resonant high-energy electron–positron pairs production by electrons in an X-ray pulsar electromagnetic field is studied theoretically. Under the resonance conditions, the second-order process under consideration effectively reduces into two sequential first-order processes: X-ray-stimulated Compton effect and X-ray–stimulated Breit–Wheeler process. The kinematics of the process is studied in detail: the dependencies of the energy of the scattered electron on its outgoing angle and the energies of the particles of the pair on the outgoing angle of the scattered electron and the opening angle of the pair are obtained. The analysis of the number of different possible particles energies values in the entire range of the angles is also carried out, according to which the energies of the particles of the pair can take up to eight different values at a fixed outgoing angle of the scattered electron and opening angle of the pair. The estimate of the resonant differential probability per unit time of the process, which reaches the maximum value of 24 orders of the value of the non-resonant differential probability per unit time, is obtained. The angular distribution of the differential probability per unit time of the process is analyzed, particularly for the case of high-energy positrons presenting in pulsar radiation.

]]>Universe doi: 10.3390/universe7070209

Authors: Benjamin D. Oppenheimer Arif Babul Yannick Bahé Iryna S. Butsky Ian G. McCarthy

Galaxy groups are more than an intermediate scale between clusters and halos hosting individual galaxies, they are crucial laboratories capable of testing a range of astrophysics from how galaxies form and evolve to large scale structure (LSS) statistics for cosmology. Cosmological hydrodynamic simulations of groups on various scales offer an unparalleled testing ground for astrophysical theories. Widely used cosmological simulations with ∼(100 Mpc)3 volumes contain statistical samples of groups that provide important tests of galaxy evolution influenced by environmental processes. Larger volumes capable of reproducing LSS while following the redistribution of baryons by cooling and feedback are the essential tools necessary to constrain cosmological parameters. Higher resolution simulations can currently model satellite interactions, the processing of cool (T≈104−5 K) multi-phase gas, and non-thermal physics including turbulence, magnetic fields and cosmic ray transport. We review simulation results regarding the gas and stellar contents of groups, cooling flows and the relation to the central galaxy, the formation and processing of multi-phase gas, satellite interactions with the intragroup medium, and the impact of groups for cosmological parameter estimation. Cosmological simulations provide evolutionarily consistent predictions of these observationally difficult-to-define objects, and have untapped potential to accurately model their gaseous, stellar and dark matter distributions.

]]>Universe doi: 10.3390/universe7070208

Authors: Fabio Gastaldello Aurora Simionescu Francois Mernier Veronica Biffi Massimo Gaspari Kosuke Sato Kyoko Matsushita

Galaxy groups host the majority of matter and more than half of all the galaxies in the Universe. Their hot (107 K), X-ray emitting intra-group medium (IGrM) reveals emission lines typical of many elements synthesized by stars and supernovae. Because their gravitational potentials are shallower than those of rich galaxy clusters, groups are ideal targets for studying, through X-ray observations , feedback effects, which leave important marks on their gas and metal contents. Here, we review the history and present status of the chemical abundances in the IGrM probed by X-ray spectroscopy. We discuss the limitations of our current knowledge, in particular due to uncertainties in the modeling of the Fe-L shell by plasma codes, and coverage of the volume beyond the central region. We further summarize the constraints on the abundance pattern at the group mass scale and the insight it provides to the history of chemical enrichment. Parallel to the observational efforts, we review the progress made by both cosmological hydrodynamical simulations and controlled high-resolution 3D simulations to reproduce the radial distribution of metals in the IGrM, the dependence on system mass from group to cluster scales, and the role of AGN and SN feedback in producing the observed phenomenology. Finally, we highlight future prospects in this field, where progress will be driven both by a much richer sample of X-ray emitting groups identified with eROSITA, and by a revolution in the study of X-ray spectra expected from micro-calorimeters onboard XRISM and ATHENA.

]]>Universe doi: 10.3390/universe7070207

Authors: Asher Yahalom

In a recent paper, we have a shown that the flattening of galactic rotation curves can be explained by retardation. However, this will rely on a temporal change of galactic mass. In our previous work, we kept only second order terms of the retardation time in our analysis, while higher terms in the Taylor expansion where not considered. Here we consider analysis to all orders and show that a second order analysis will indeed suffice, and higher order terms can be neglected.

]]>Universe doi: 10.3390/universe7070206

Authors: Pavel Spirin

We consider the scalar bremsstrahlung of the spinless relativistic particle, which interacts with infinitely thin cosmic string by linearized gravity. With the iterational scheme, based on the Perturbaion Theory with respect to the Newtonian constant, we compute the radiation amplitude and the emitted energy due to collision. The general phenomenon of mutual cancellation of the leading terms on the local and non-local amplitude, known in the ultrarelativistic regime for several types of collision, also takes place here. Remarkably, this cancellation (destructive interference) is complete, and takes place for any particle’s velocity. We compute the spectral and angular distributions of the emitted waves. Particular attention is paid to the ultrarelativistic case. Due to the radiation emission, a string may lose its energy and decrease the tension; it may affect all field effects, including the vacuum polarization and the Casimir effect, in terms of physical problems with the real cosmic strings.

]]>Universe doi: 10.3390/universe7070205

Authors: Sanjay Mandal Avik De Tee-How Loo Pradyumn Kumar Sahoo

The objective of the present paper is to investigate an almost-pseudo-Ricci symmetric FRW spacetime with a constant Ricci scalar in a dynamic cosmological term Λ(t) and equation of state (EoS) ω(t) scenario. Several cosmological parameters are calculated in this setting and thoroughly studied, which shows that the model satisfies the late-time accelerating expansion of the universe. We also examine all of the energy conditions to check our model’s self-stability.

]]>Universe doi: 10.3390/universe7070204

Authors: Ibragim Alikhanov Emmanuel Paschos

The extension of the standard model with a multiplicative U(1)R factor is consistent with a light vector boson. In its simplest realization, only right-handed particles carry charges of the new group. In this model, there is a residual τ3R symmetry and one new coupling constant which correlates neutrino interactions. We compute new contributions to antineutrino–electron scattering and coherent scattering on nuclei, and compare them with the XENON1T result.

]]>Universe doi: 10.3390/universe7060203

Authors: Peter Shternin Isaac Vidaña

We consider transport properties of the hypernuclear matter in neutron star cores. In particular, we calculate the thermal conductivity, the shear viscosity, and the momentum transfer rates for npΣ−Λeμ composition of dense matter in β–equilibrium for baryon number densities in the range 0.1–1 fm−3. The calculations are based on baryon interactions treated within the framework of the non-relativistic Brueckner-Hartree-Fock theory. Bare nucleon-nucleon (NN) interactions are described by the Argonne v18 phenomenological potential supplemented with the Urbana IX three-nucleon force. Nucleon-hyperon (NY) and hyperon-hyperon (YY) interactions are based on the NSC97e and NSC97a models of the Nijmegen group. We find that the baryon contribution to transport coefficients is dominated by the neutron one as in the case of neutron star cores containing only nucleons. In particular, we find that neutrons dominate the total thermal conductivity over the whole range of densities explored and that, due to the onset of Σ− which leads to the deleptonization of the neutron star core, they dominate also the shear viscosity in the high density region, in contrast with the pure nucleonic case where the lepton contribution is always the dominant one.

]]>Universe doi: 10.3390/universe7060202

Authors: Mikhail Piotrovich Stanislava Buliga Tinatin Natsvlishvili

Based on the spectropolarimetric data of 33 Seyfert type 1 galaxies observed with the BTA-6m telescope of the Special Astrophysical Observatory, we estimated the magnetic field values at the event horizon of the supermassive black hole BH and the exponents of the power-law dependence s of the magnetic field on the radius. We used the model of optically thick geometrically thin Shakura–Sunyaev accretion disk. The average value of logBH[G] was found to be ∼4, which is in good agreement with the results obtained by other methods. The average value of s is s≈1.7, and its distribution maximum span is in the range od 1.85&lt;s&lt;2.0. This is a rather interesting result, since s=5/4 is usually adopted in calculations for Shakura–Sunyaev accretion disks. In addition, for two objects PG 1545+210 and 2MASX J06021107+2828382, the measured degree of polarization is greater than the maximum possible value at the angle between the line of sight and the axis of the accretion disk i=45°. It was concluded that for these objects the angle should be closer to i=60°.

]]>Universe doi: 10.3390/universe7060201

Authors: Maria Cristina Diamantini Carlo A. Trugenberger

Superinsulators (SI) are a new topological state of matter, predicted by our collaboration and experimentally observed in the critical vicinity of the superconductor-insulator transition (SIT). SI are dual to superconductors and realise electric-magnetic (S)-duality. The effective field theory that describes this topological phase of matter is governed by a compact Chern-Simons in (2+1) dimensions and a compact BF term in (3+1) dimensions. While in a superconductor the condensate of Cooper pairs generates the Meissner effect, which constricts the magnetic field lines penetrating a type II superconductor into Abrikosov vortices, in superinsulators Cooper pairs are linearly bound by electric fields squeezed into strings (dual Meissner effect) by a monopole condensate. Magnetic monopoles, while elusive as elementary particles, exist in certain materials in the form of emergent quasiparticle excitations. We demonstrate that at low temperatures magnetic monopoles can form a quantum Bose condensate (plasma in (2+1) dimensions) dual to the charge condensate in superconductors. The monopole Bose condensate manifests as a superinsulating state with infinite resistance, dual to superconductivity. The monopole supercurrents result in the electric analogue of the Meissner effect and lead to linear confinement of the Cooper pairs by Polyakov electric strings in analogy to quarks in hadrons. Superinsulators realise thus one of the mechanism proposed to explain confinement in QCD. Moreover, the string mechanism of confinement implies asymptotic freedom at the IR fixed point. We predict thus for superinsulators a metallic-like low temperature behaviour when samples are smaller than the string scale. This has been experimentally confirmed. We predict that an oblique version of SI is realised as the pseudogap state of high-TC superconductors.

]]>Universe doi: 10.3390/universe7060200

Authors: Simone Amaducci Nicola Colonna Luigi Cosentino Sergio Cristallo Paolo Finocchiaro Milan Krtička Cristian Massimi Mario Mastromarco Annamaria Mazzone Alberto Mengoni Stanislav Valenta Oliver Aberle Victor Alcayne Józef Andrzejewski Laurent Audouin Victor Babiano-Suarez Michael Bacak Massimo Barbagallo Samuel Bennett Eric Berthoumieux Jon Billowes Damir Bosnar Adam Brown Maurizio Busso Manuel Caamaño Luis Caballero-Ontanaya Francisco Calviño Marco Calviani Daniel Cano-Ott Adria Casanovas Francesco Cerutti Enrico Chiaveri Guillem Cortés Miguel Cortés-Giraldo Lucia-Anna Damone Paul-John Davies Maria Diakaki Mirco Dietz Cesar Domingo-Pardo Rugard Dressler Quentin Ducasse Emmeric Dupont Ignacio Durán Zinovia Eleme Beatriz Fernández-Domínguez Alfredo Ferrari Valter Furman Kathrin Göbel Ruchi Garg Aleksandra Gawlik Simone Gilardoni Isabel Gonçalves Enrique González-Romero Carlos Guerrero Frank Gunsing Hideo Harada Stephan Heinitz Jan Heyse David Jenkins Arnd Junghans Franz Käppeler Yacine Kadi Atsushi Kimura Ingrid Knapova Michael Kokkoris Yuri Kopatch Deniz Kurtulgil Ion Ladarescu Claudia Lederer-Woods Helmut Leeb Jorge Lerendegui-Marco Sarah-Jane Lonsdale Daniela Macina Alice Manna Trinitario Martínez Alessandro Masi Pierfrancesco Mastinu Emilio-Andrea Maugeri Emilio Mendoza Veatriki Michalopoulou Paolo Milazzo Federica Mingrone Javier Moreno-Soto Agatino Musumarra Alexandru Negret Francisco Ogállar Andreea Oprea Nikolas Patronis Andreas Pavlik Jarosław Perkowski Luciano Piersanti Cristina Petrone Elisa Pirovano Ignacio Porras Javier Praena José-Manuel Quesada Diego Ramos-Doval Thomas Rauscher René Reifarth Dimitri Rochman Carlo Rubbia Marta Sabaté-Gilarte Alok Saxena Peter Schillebeeckx Dorothea Schumann Adhitya Sekhar Gavin Smith Nikolay Sosnin Peter Sprung Athanasios Stamatopoulos Giuseppe Tagliente José Tain Ariel Tarifeño-Saldivia Laurent Tassan-Got Benedikt Thomas Pablo Torres-Sánchez Andrea Tsinganis Jiri Ulrich Sebastian Urlass Gianni Vannini Vincenzo Variale Pedro Vaz Alberto Ventura Diego Vescovi Vasilis Vlachoudis Rosa Vlastou Anton Wallner PhilipJohn Woods Tobias Wright Petar Žugec

An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section.

]]>Universe doi: 10.3390/universe7060199

Authors: Werner Weiss Konstanze Zwintz Rainer Kuschnig Gerald Handler Anthony Moffat Dietrich Baade Dominic Bowman Thomas Granzer Thomas Kallinger Otto Koudelka Catherine Lovekin Coralie Neiner Herbert Pablo Andrzej Pigulski Adam Popowicz Tahina Ramiaramanantsoa Slavek Rucinski Klaus Strassmeier Gregg Wade

BRITE-Constellation is devoted to high-precision optical photometric monitoring of bright stars, distributed all over the Milky Way, in red and/or blue passbands. Photometry from space avoids the turbulent and absorbing terrestrial atmosphere and allows for very long and continuous observing runs with high time resolution and thus provides the data necessary for understanding various processes inside stars (e.g., asteroseismology) and in their immediate environment. While the first astronomical observations from space focused on the spectral regions not accessible from the ground it soon became obvious around 1970 that avoiding the turbulent terrestrial atmosphere significantly improved the accuracy of photometry and satellites explicitly dedicated to high-quality photometry were launched. A perfect example is BRITE-Constellation, which is the result of a very successful cooperation between Austria, Canada and Poland. Research highlights for targets distributed nearly over the entire HRD are presented, but focus primarily on massive and hot stars.

]]>Universe doi: 10.3390/universe7060198

Authors: Janning Meinert Ralf Hofmann

Motivated by the SU(2)CMB modification of the cosmological model ΛCDM, we consider isolated fuzzy-dark-matter lumps, made of ultralight axion particles whose masses arise due to distinct SU(2) Yang–Mills scales and the Planck mass MP. In contrast to SU(2)CMB, these Yang–Mills theories are in confining phases (zero temperature) throughout most of the Universe’s history and associate with the three lepton flavours of the Standard Model of particle physics. As the Universe expands, axionic fuzzy dark matter comprises a three-component fluid which undergoes certain depercolation transitions when dark energy (a global axion condensate) is converted into dark matter. We extract the lightest axion mass ma,e=0.675×10−23 eV from well motivated model fits to observed rotation curves in low-surface-brightness galaxies (SPARC catalogue). Since the virial mass of an isolated lump solely depends on MP and the associated Yang–Mills scale the properties of an e-lump predict those of μ- and τ-lumps. As a result, a typical e-lump virial mass ∼6.3×1010M⊙ suggests that massive compact objects in galactic centers such as Sagittarius A* in the Milky Way are (merged) μ- and τ-lumps. In addition, τ-lumps may constitute globular clusters. SU(2)CMB is always thermalised, and its axion condensate never has depercolated. If the axial anomaly indeed would link leptons with dark matter and the CMB with dark energy then this would demystify the dark Universe through a firmly established feature of particle physics.

]]>Universe doi: 10.3390/universe7060197

Authors: Igor P. Ivanov Semyon A. Obodenko

CP4 3HDM is a unique three-Higgs-doublet model equipped with a higher-order CP-symmetry in the scalar and Yukawa sector. Based on a single assumption (the minimal model with a CP-symmetry of order 4 and no accidental symmetry), it leads to a remarkable correlation between its scalar and Yukawa sectors, which echoes in its phenomenology. A recent scan of the parameter space of CP4 3HDM under the assumption of scalar alignment identified a few dozens of points which passed many flavor constraints. In the present work, however, we show that almost all of these points are now ruled out by the recent LHC searches of t→H+b with subsequent hadronic decays of H+. Apart from a few points with charged Higgses heavier than the top quark, only one point survives all the checks, the model with an exotic, non-2HDM-like generation pattern of H+ couplings with quarks. One can expect many more points with exotic H+ couplings to quarks if the scalar alignment assumption is relaxed.

]]>Universe doi: 10.3390/universe7060196

Authors: Frank E. Taylor

Invariant inclusive single-particle/jet cross sections in p–p collisions can be factorized in terms of two separable pT dependences, a [pT−s] sector and an [xR−pT−s] sector. Here, we extend our earlier work by analyzing more extensive data to explore various s-dependent attributes and other systematics of inclusive jet, photon and single particle reactions. Approximate power laws in s, pT and xR are found. Physical arguments are given which relate observations to the underlying physics of parton–parton hard scattering and the parton distribution functions in the proton. We show that the A(s,pT) function, introduced in our earlier publication to describe the pT dependence of the inclusive cross section, is directly related to the underlying hard parton–parton scattering for jet production, with little influence from soft physics. In addition to the a function, we introduce another function, the F(s,xR) function that obeys radial scaling for inclusive jets and offers another test of the underlying parton physics. An application to heavy ion physics is given, where we use our variables to determine the transparency of cold nuclear matter to penetrating heavy mesons through the lead nucleus.

]]>Universe doi: 10.3390/universe7060195

Authors: Valery N. Marachevsky Arseny A. Sidelnikov

We propose Green functions scattering method to obtain the Casimir–Polder potential between anisotropic atom and one or two planar parallel plates. Lifshitz formula for pressure between two dielectric half-spaces separated by a vacuum slit is derived within the same method. The method is also applied to known conducting systems including graphene which are overviewed.

]]>Universe doi: 10.3390/universe7060194

Authors: Matteo Giordano Tamás Kovács

It is by now well established that Dirac fermions coupled to non-Abelian gauge theories can undergo an Anderson-type localization transition. This transition affects eigenmodes in the lowest part of the Dirac spectrum, the ones most relevant to the low-energy physics of these models. Here we review several aspects of this phenomenon, mostly using the tools of lattice gauge theory. In particular, we discuss how the transition is related to the finite-temperature transitions leading to the deconfinement of fermions, as well as to the restoration of chiral symmetry that is spontaneously broken at low temperature. Other topics we touch upon are the universality of the transition, and its connection to topological excitations (instantons) of the gauge field and the associated fermionic zero modes. While the main focus is on Quantum Chromodynamics, we also discuss how the localization transition appears in other related models with different fermionic contents (including the quenched approximation), gauge groups, and in different space-time dimensions. Finally, we offer some speculations about the physical relevance of the localization transition in these models.

]]>Universe doi: 10.3390/universe7060193

Authors: Nicolas Chamel Anthea Francesca Fantina Lami Suleiman Julian-Leszek Zdunik Pawel Haensel

The persistent thermal luminosity of magnetars and their outbursts suggest the existence of some internal heat sources located in their outer crust. The compression of matter accompanying the decay of the magnetic field may trigger exothermic electron captures and, possibly, pycnonuclear fusions of light elements that may have been accreted onto the surface from the fallback of supernova debris, from a disk or from the interstellar medium. This scenario bears some resemblance to deep crustal heating in accreting neutron stars, although the matter composition and the thermodynamic conditions are very different. The maximum possible amount of heat that can be released by each reaction and their locations are determined analytically taking into account the Landau–Rabi quantization of electron motion. Numerical results are also presented using experimental, as well as theoretical nuclear data. Whereas the heat deposited is mainly determined by atomic masses, the locations of the sources are found to be very sensitive to the magnetic field strength, thus providing a new way of probing the internal magnetic field of magnetars. Most sources are found to be concentrated at densities 1010–1011 g cm−3 with heat power W∞∼1035–1036 erg/s, as found empirically by comparing cooling simulations with observed thermal luminosity. The change of magnetic field required to trigger the reactions is shown to be consistent with the age of known magnetars. This suggests that electron captures and pycnonuclear fusion reactions may be a viable heating mechanism in magnetars. The present results provide consistent microscopic inputs for neutron star cooling simulations, based on the same model as that underlying the Brussels-Montreal unified equations of state.

]]>Universe doi: 10.3390/universe7060192

Authors: David Lucchesi Luciano Anselmo Massimo Bassan Marco Lucente Carmelo Magnafico Carmen Pardini Roberto Peron Giuseppe Pucacco Massimo Visco

A new satellite-based experiment in the field of gravitation, SaToR-G, is presented. It aims to compare the predictions of different theories of gravitation in the limit of weak-field and slow-motion. The ultimate goal of SaToR-G is searching for possible “new physics” beyond General Relativity, which represent the state-of-the-art of our current knowledge of gravitational physics. A key role in the above perspective is the theoretical and experimental framework that confines our work. To this end, we will exploit as much as possible the classical framework suggested by R.H. Dicke over fifty years ago.

]]>Universe doi: 10.3390/universe7060191

Authors: Zeyun Li Hanxian Fang Hongwei Gong Zhe Guo

We present the observations of the artificial ionospheric heating experiment of EISCAT (European Incoherent Scatter Scientific Association) on 22 February 2012 in Tromsø, Norway. When the pump is operating near the fourth electron gyrofrequency, the UHF radar observation shows some strong enhancements in electron temperature, electron density, ion line, and the outshifted plasma lines. Based on some existing theories, we find the following: first, Langmuir waves scattering off lower hybrid density fluctuations and strong Langmuir turbulence (SLT) in the Zakharov model cannot completely explain the outshifted plasma lines, but the data suggest that this phenomenon is related to the cascade of the pump wave and should be researched further; second, the spatiotemporal consistency between the enhancement in electron density/electron temperature reaches up to three to four times that of the undisturbed state and HF-enhanced ion lines (HFILs) suggest that SLT excited by parametric instability plays a significant role in superthermal electron formation and electron acceleration; third, some enhancements in HFILs and HF-induced plasma lines (HFPLs) are generated by parametric decay instability (PDI) during underdense heating in the third cycle, we suggest that this is due to the existence of a second cut-off in the upper hybrid dispersion relation as derived from a kinetic description.

]]>Universe doi: 10.3390/universe7060190

Authors: Sebastian Garcia-Saenz

We prove that vector fields described by the generalized Proca class of theories do not admit consistent coupling with a gravitational sector defined by a scalar–tensor theory of the degenerate type. Under the assumption that there exists a frame in which the Proca field interacts with gravity only through the metric tensor, our analysis shows that at least one of the constraints associated with the degeneracy of the scalar–tensor sector is inevitably lost whenever the vector theory includes coupling with the Christoffel connection.

]]>Universe doi: 10.3390/universe7060189

Authors: Diego A. R. Dalvit Wilton J. M. Kort-Kamp

Temporal modulation of the quantum vacuum through fast motion of a neutral body or fast changes of its optical properties is known to promote virtual into real photons, the so-called dynamical Casimir effect. Empowering modulation protocols with spatial control could enable the shaping of spectral, spatial, spin, and entanglement properties of the emitted photon pairs. Space–time quantum metasurfaces have been proposed as a platform to realize this physics via modulation of their optical properties. Here, we report the mechanical analog of this phenomenon by considering systems in which the lattice structure undergoes modulation in space and in time. We develop a microscopic theory that applies both to moving mirrors with a modulated surface profile and atomic array meta-mirrors with perturbed lattice configuration. Spatiotemporal modulation enables motion-induced generation of co- and cross-polarized photon pairs that feature frequency-linear momentum entanglement as well as vortex photon pairs featuring frequency-angular momentum entanglement. The proposed space–time dynamical Casimir effect can be interpreted as induced dynamical asymmetry in the quantum vacuum.

]]>Universe doi: 10.3390/universe7060188

Authors: Marco Berton Emilia Järvelä

It is well known that active galactic nuclei (AGN) show various forms of interaction with their host galaxy, in a number of phenomena generally called AGN feedback. In particular, the relativistic plasma jets launched by a fraction of AGN can strongly affect their environment. We present here a study of the [O III] λλ4959,5007 lines in a diverse sample of early evolution stage AGN–specifically narrow-line Seyfert 1 galaxies. Radio imaging observations of all of the sources enable a division to jetted and non-jetted sources, and exploiting this we show that the ionized gas properties are significantly influenced by the presence of the jets, as we often find the [O III] lines (blue-)shifted with respect to their restframe wavelength. We also show how the radio morphology and the radio spectral index do not seem to play a role in the origin of the [O III] shifts, thus suggesting that the source inclination is not relevant to the lines displacement. We do not find a strong relation between the [O III] line properties and the bolometric luminosity, suggesting that within our sample radiatively driven outflows do not seem to have a significant contribution to the [O III] line kinematics. We finally suggest that [O III] shifts may be a good proxy to identify the presence of relativistic jets. Additional studies, especially with integral-field spectroscopy, will provide a deeper insight into the relation between jets and their environment in early evolution stage AGN.

]]>Universe doi: 10.3390/universe7060187

Authors: Antonio Gallerati

We review a special class of N=2 supergravity model that interpolates all the single-dilaton truncations of the maximal SO(8) gauged supergravity. We also provide explicit non-extremal, charged black hole solutions and their supersymmetric limits, asymptotic charges, thermodynamics and boundary conditions. We also discuss a suitable Hamilton–Jacobi formulation and related BPS flow equations for the supersymmetric configurations, with an explicit form for the superpotential function. Finally, we briefly analyze certain models within the class under consideration as consistent truncations of the maximal, N=8 gauged supergravity in four dimensions.

]]>