Compounds with Medicinal Value

Dear Colleagues,

In industrialized countries over the last few decades, there has been a significant increase in infectious; cardiovascular, inflammatory, and neurodegenerative diseases; as well as different forms of cancer, diabetes, and so on.

Between them, microbial infections and cancer are still the major causes of death among the world’s population due to increased bacterial resistance phenomena and the development of resistance to chemotherapeutics. For these reasons, there is an urgent need to design and synthesize new antimicrobial agents, particularly those with antibacterial activity, and particularly against Gram-negative pathogens that could be used to fight drug resistance, and also for new antineoplastic drugs with higher selectivity on tumoral cells, which are able to overcome cancer cells’ resistance with minimal side effects.

Recently, some delivery systems have proved particulary effective as antimicrobial and anticancer carriers due to targeted drug delivery at the action sites, reduced drug-resistance and side effects, and an increased therapeutic index.

Potential topics for manuscripts include the following:

The design, synthesis, and biological evaluation of anticancer agents;
The design, synthesis, and biological evaluation of antimicrobial agents;
Delivery systems and nanosystems for targeted cancer and antimicrobial therapy...

Deadline for abstract submissions: 31 December 2021.
Deadline for manuscript submissions: 31 March 2022.

Topic Board

Prof. Dr. Maria Stefania Sinicropi
E-Mail Website
Topic Editor-in-Chief
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
Interests: the study of new molecules as anticancer drugs; the design, synthesis and biological evaluation of compounds of pharmaceutic interest; the study and biological evaluation of nutraceuticals
Special Issues and Collections in MDPI journals

Keywords

molecular modeling; synthesis; anticancer compounds; antimicrobial compounds; targeted therapy; delivery systems

Relevant Journals List

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.679 3.0 2011 13.8 Days 2000 CHF Submit
Biomolecules
biomolecules
4.879 3.2 2011 16.29 Days 2000 CHF Submit
Pharmaceuticals
pharmaceuticals
5.863 4.6 2004 13.7 Days 1800 CHF Submit
Biomedicines
biomedicines
6.081 3.6 2013 16.34 Days 2000 CHF Submit
Antibiotics
antibiotics
4.639 2.8 2012 13.26 Days 1800 CHF Submit

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:
Article
Carica papaya Leaf Extract Silver Synthesized Nanoparticles Inhibit Dengue Type 2 Viral Replication In Vitro
Pharmaceuticals 2021, 14(8), 718; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14080718 - 26 Jul 2021
Abstract
The current global occurrence of dengue infection annually is approximately 400 million, with a case fatality rate of 2.5%. However, there are no antiviral agents. Carica papaya leaf extract is known for its medicinal value, due to the presence of organic compounds that [...] Read more.
The current global occurrence of dengue infection annually is approximately 400 million, with a case fatality rate of 2.5%. However, there are no antiviral agents. Carica papaya leaf extract is known for its medicinal value, due to the presence of organic compounds that possess antimicrobial, anti-inflammatory, and antioxidant activities. This study determined the anti-dengue effect of C. papaya leaf extract silver synthesized nanoparticles. In this study, aqueous and non-aqueous extractions were carried out, followed by the synthesis of silver nanoparticles as well as characterization through Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The in vitro anti-dengue effect was evaluated using a focus reduction neutralization test on kidney Vero E2 cell lines. In silico studies involved molecular docking to determine the potential interactions between the bioactive compounds in C. papaya leaf extract and the viral NS5 protein. C. papaya leaf methanol extract silver synthesized nanoparticle was the most promising with an IC50 of 9.20 µg/mL. Molecular docking showed 5,7 dimethoxycoumarin as the best ligand, with binding energy of −7.75 kcal/mol, indicating high affinity for the NS5 protein. These results highlight that C. papaya leaf methanol extract silver synthesized nanoparticles could be used to inhibit dengue virus type 2 viral replication. However, we recommend further studies to determine their toxicity and the safety profiles. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Article
Development and Characterization of a Novel Peptide—Drug Conjugate with DM1 for Treatment of FGFR2-Positive Tumors
Biomedicines 2021, 9(8), 849; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedicines9080849 - 21 Jul 2021
Abstract
A maytansin derivative, DM1, is a promising therapeutic compound for treating tumors, but is also a highly poisonous substance with various side effects. For clinical expansion, we tried to develop novel peptide–drug conjugates (PDCs) with DM1. In the study, a one-bead one-compound (OBOC) [...] Read more.
A maytansin derivative, DM1, is a promising therapeutic compound for treating tumors, but is also a highly poisonous substance with various side effects. For clinical expansion, we tried to develop novel peptide–drug conjugates (PDCs) with DM1. In the study, a one-bead one-compound (OBOC) platform was used to screen and identify a novel, highly stable, non-natural amino acid peptide targeting the tyrosine receptor FGFR2. Then, the identified peptide, named LLC2B, was conjugated with the cytotoxin DM1. Our results show that LLC2B has high affinity for the FGFR2 protein according to an isothermal titration calorimetry (ITC) test. LLC2B-Cy5.5 binding to FGFR2-positive cancer cells was confirmed by fluorescent microscopic imaging and flow cytometry in vitro. Using xenografted nude mouse models established with breast cancer MCF-7 cells and esophageal squamous cell carcinoma KYSE180 cells, respectively, LLC2B-Cy5.5 was observed to specifically target tumor tissues 24 h after tail vein injection. Incubation assays, both in aqueous solution at room temperature and in human plasma at 37 °C, suggested that LLC2B has high stability and strong anti-proteolytic ability. Then, we used two different linkers, one of molecular disulfide bonds and another of a maleimide group, to couple LLC2B to the toxin DM1. The novel peptide–drug conjugates (PDCs) inhibited tumor growth and significantly increased the maximum tolerated dose of DM1 in xenografted mice. In brief, our results suggest that LLC2B–DM1 can be developed into a potential PDC for tumor treatment in the future. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Graphical abstract

Review
Phytomedicines Targeting Cancer Stem Cells: Therapeutic Opportunities and Prospects for Pharmaceutical Development
Pharmaceuticals 2021, 14(7), 676; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14070676 - 15 Jul 2021
Abstract
The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial–mesenchymal transition [...] Read more.
The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial–mesenchymal transition (EMT) and resulted in the development of aggressive tumors. CSCs have potential to modulate numerous signaling pathways including Wnt, Hh, and Notch, therefore increasing the stem-like characteristics of cancer cells. The raised expression of drug efflux pump and suppression of apoptosis has shown increased resistance with anti-cancer drugs. Among many agents which were shown to modulate these, the plant-derived bioactive agents appear to modulate these key regulators and were shown to remove CSCs. This review aims to comprehensively scrutinize the preclinical and clinical studies demonstrating the effects of phytocompounds on CSCs isolated from various tumors. Based on the available convincing literature from preclinical studies, with some clinical data, it is apparent that selective targeting of CSCs with plants, plant preparations, and plant-derived bioactive compounds, termed phytochemicals, may be a promising strategy for the treatment of relapsed cancers. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Article
A High-Throughput Metabolic Microarray Assay Reveals Antibacterial Effects of Black and Red Raspberries and Blackberries against Helicobacter pylori Infection
Antibiotics 2021, 10(7), 845; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10070845 - 12 Jul 2021
Abstract
Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have [...] Read more.
Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Article
Comparative EPR Study on the Scavenging Effect of Methotrexate with the Isomers of Its Photoswitchable Derivative
Pharmaceuticals 2021, 14(7), 665; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14070665 - 11 Jul 2021
Abstract
The scavenging effect of the antimetabolite dihydrofolate reductase inhibitor methotrexate (MTX) and the isomers of its photoswitchable derivate, cis- and trans-phototrexate (PHX), have been compared by ESR spectroscopy, with the application of a cyclic hydroxylamine spin probe. The results showed the [...] Read more.
The scavenging effect of the antimetabolite dihydrofolate reductase inhibitor methotrexate (MTX) and the isomers of its photoswitchable derivate, cis- and trans-phototrexate (PHX), have been compared by ESR spectroscopy, with the application of a cyclic hydroxylamine spin probe. The results showed the most pronounced scavenging effect in the presence of trans-phototrexate (trans-PHX). At a low concentration (100 µM) cis-PHX also showed a greater scavenging effect than the parent molecule MTX. Direct antioxidant properties of the investigated molecules were measured by ABTS scavenging assay, which showed no significant difference between trans-PHX and cis-PHX, but both of the isomers of PHX showed a higher antioxidant capacity than MTX. These findings imply that trans-PHX may have more pronounced anti-inflammatory and tissue-protective effects than MTX, despite the lack of its cytotoxic, antineoplastic effect. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Article
Identification of HSP47 Binding Site on Native Collagen and Its Implications for the Development of HSP47 Inhibitors
Biomolecules 2021, 11(7), 983; https://0-doi-org.brum.beds.ac.uk/10.3390/biom11070983 - 03 Jul 2021
Abstract
HSP47 (heat shock protein 47) is a collagen-specific molecular chaperone that is essential for procollagen folding and function. Previous studies have shown that HSP47 binding requires a critical Arg residue at the Y position of the (Gly-Xaa-Yaa) repeats of collagen; however, the exact [...] Read more.
HSP47 (heat shock protein 47) is a collagen-specific molecular chaperone that is essential for procollagen folding and function. Previous studies have shown that HSP47 binding requires a critical Arg residue at the Y position of the (Gly-Xaa-Yaa) repeats of collagen; however, the exact binding sites of HSP47 on native collagens are not fully defined. To address this, we mapped the HSP47 binding sites on collagens through an ELISA binding assay using collagen toolkits, synthetic collagen peptides covering the entire amino acid sequences of collagen types II and III assembled in triple-helical conformation. Our results showed that HSP47 binds to only a few of the GXR motifs in collagen, with most of the HSP47 binding sites identified located near the N-terminal part of the triple-helical region. Molecular modelling and binding energy calculation indicated that residues flanking the key Arg in the collagen sequence also play an important role in defining the high-affinity HSP47 binding site of collagen. Based on this binding mode of HSP47 to collagen, virtual screening targeting both the Arg binding site and its neighboring area on the HSP47 surface, and a subsequent bioassay, we identified two novel compounds with blocking activity towards HSP47 binding of collagen. Overall, our study revealed the native HSP47 binding sites on collagen and provided novel information for the design of small-molecule inhibitors of HSP47. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Graphical abstract

Article
Therapeutic Potential of Luteolin on Impaired Wound Healing in Streptozotocin-Induced Rats
Biomedicines 2021, 9(7), 761; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedicines9070761 - 30 Jun 2021
Abstract
Long-term hyperglycemia may lead to diabetic microvascular and macrovascular complications that can affect the peripheral vascular system, particularly in wound healing capacity. Impaired angiogenesis and delayed wound healing are significant clinically. Luteolin (3′, 4′, 5, 7-tetrahydroxyflavone) is a naturally occurring flavonoid that is [...] Read more.
Long-term hyperglycemia may lead to diabetic microvascular and macrovascular complications that can affect the peripheral vascular system, particularly in wound healing capacity. Impaired angiogenesis and delayed wound healing are significant clinically. Luteolin (3′, 4′, 5, 7-tetrahydroxyflavone) is a naturally occurring flavonoid that is ubiquitously found in plants. Recent evidence has shown that luteolin is an anti-inflammatory and anti-oxidative agent. However, the effect of systemic luteolin administration on diabetic wound restoration remains unclear. Herein, we explored the effectiveness of luteolin for improving delayed and impaired healing of skin wound and further clarified the underlying mechanisms. The results indicated that luteolin significantly attenuates blood glucose concentration, improves impaired healing and accelerates re-epithelization of skin wound in streptozotocin (STZ)-induced diabetic rats. Histopathological staining and immunoblotting revealed an inhibitory effect of luteolin on inflammatory cell and cytokine production. We also observed remarkable decreases in protein expressions of inflammatory factors including matrix metalloproteinase (MMP)-9, tumor necrosis factor (TNF)-α, interleukin (IL-6), and IL1-β and downregulation of nuclear factor (NF)-κB, as well as increases in anti-oxidative enzymes such as superoxide dismutase 1 (SOD1) and glutathione peroxidase (GSH-Px) induced by nuclear factor erythroid 2-related factor (Nrf)-2 following luteolin supplementation. Furthermore, luteolin decreased the expression of vascular endothelial growth factor (VEGF) and increased the expression of ubiquitin carboxy-terminal hydrolase (UCH)-L1, as evidenced by angiogenesis and neuronal regeneration in completely healed wound. In conclusion, systemic administration of luteolin promotes wound restoration by ameliorating inflammation and oxidative stress through the inactivation of NF-κB and upregulation of Nrf2 in STZ-induced diabetic rats. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Graphical abstract

Article
Rifamycin W Analogues from Amycolatopsis mediterranei S699 Δrif-orf5 Strain
Biomolecules 2021, 11(7), 920; https://0-doi-org.brum.beds.ac.uk/10.3390/biom11070920 - 22 Jun 2021
Abstract
Rifamycin W, the most predominant intermediate in the biosynthesis of rifamycin, needs to undergo polyketide backbone rearrangement to produce rifamycin B via an oxidative cleavage of the C-12/C-29 double bond. However, the mechanism of this putative oxidative cleavage has not been characterized yet. [...] Read more.
Rifamycin W, the most predominant intermediate in the biosynthesis of rifamycin, needs to undergo polyketide backbone rearrangement to produce rifamycin B via an oxidative cleavage of the C-12/C-29 double bond. However, the mechanism of this putative oxidative cleavage has not been characterized yet. Rif-Orf5 (a putative cytochrome P450 monooxygenase) was proposed to be involved in the cleavage of this olefinic moiety of rifamycin W. In this study, the mutant strain Amycolatopsis mediterranei S699 Δrif-orf5 was constructed by in-frame deleting the rif-orf5 gene to afford thirteen rifamycin W congeners (113) including seven new ones (17). Their structures were elucidated by extensive analysis of 1D and 2D NMR spectroscopic data and high-resolution ESI mass spectra. Presumably, compounds 14 were derivatized from rifamycin W via C-5/C-11 retro-Claisen cleavage, and compounds 13, 9 and 10 featured a hemiacetal. Compounds 57 and 11 showed oxygenations at various sites of the ansa chain. In addition, compounds 13 exhibited antibacterial activity against Staphylococcus aureus with minimal inhibitory concentration (MIC) values of 5, 40 and 0.5 µg/mL, respectively. Compounds 1 and 3 showed modest antiproliferative activity against HeLa and Caco-2 cells with half maximal inhibitory concentration (IC50) values of about 50 µM. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Article
Elucidating the Antimycobacterial Mechanism of Action of Decoquinate Derivative RMB041 Using Metabolomics
Antibiotics 2021, 10(6), 693; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10060693 - 10 Jun 2021
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of death from a single infectious agent worldwide. The high prevalence of this disease is mostly ascribed to the rapid development of drug resistance to the current [...] Read more.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of death from a single infectious agent worldwide. The high prevalence of this disease is mostly ascribed to the rapid development of drug resistance to the current anti-TB drugs, exacerbated by lack of patient adherence due to drug toxicity. The aforementioned highlights the urgent need for new anti-TB compounds with different antimycobacterial mechanisms of action to those currently being used. An N-alkyl quinolone; decoquinate derivative RMB041, has recently shown promising antimicrobial activity against Mtb, while also exhibiting low cytotoxicity and excellent pharmacokinetic characteristics. Its exact mechanism of action, however, is still unknown. Considering this, we used GCxGC-TOFMS and well described metabolomic approaches to analyze and compare the metabolic alterations of Mtb treated with decoquinate derivative RMB041 by comparison to non-treated Mtb controls. The most significantly altered pathways in Mtb treated with this drug include fatty acid metabolism, amino acid metabolism, glycerol metabolism, and the urea cycle. These changes support previous findings suggesting this drug acts primarily on the cell wall and secondarily on the DNA metabolism of Mtb. Additionally, we identified metabolic changes suggesting inhibition of protein synthesis and a state of dormancy. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Review
Resveratrol Production in Yeast Hosts: Current Status and Perspectives
Biomolecules 2021, 11(6), 830; https://0-doi-org.brum.beds.ac.uk/10.3390/biom11060830 - 02 Jun 2021
Abstract
Resveratrol is a plant secondary metabolite known for its therapeutic applications as an antioxidant, anti-cancer, anti-inflammatory, anti-aging, cardio-protective, and neuroprotective agent. Topical formulas of resveratrol are also used for skin disease management and in cosmetic industries. Due to its importance, high resveratrol production [...] Read more.
Resveratrol is a plant secondary metabolite known for its therapeutic applications as an antioxidant, anti-cancer, anti-inflammatory, anti-aging, cardio-protective, and neuroprotective agent. Topical formulas of resveratrol are also used for skin disease management and in cosmetic industries. Due to its importance, high resveratrol production is urgently required. Since the last decade, intensive efforts have been devoted to obtaining resveratrol from microorganisms by pathway and metabolic engineering. Yeasts were proven to be excellent host candidates for resveratrol production. In addition to the similar intracellular compartments between yeasts and plants, yeasts exhibit the ability to express genes coding for plant-derived enzymes and to perform post-translational modification. Therefore, this review summarizes the attempts to use yeasts as a platform for resveratrol synthesis as the next promising route in producing high titers of resveratrol from genetically engineered strains. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Review
Cannabinoid Activity—Is There a Causal Connection to Spasmolysis in Clinical Studies?
Biomolecules 2021, 11(6), 826; https://0-doi-org.brum.beds.ac.uk/10.3390/biom11060826 - 01 Jun 2021
Abstract
Cannabinoid drugs are registered for postoperative nausea and emesis, Tourette syndrome and tumor-related anorexia, but are also used for spasticity and pain relief, among other conditions. Clinical studies for spasmolysis have been equivocal and even conclusions from meta-analyses were not consistent. This may [...] Read more.
Cannabinoid drugs are registered for postoperative nausea and emesis, Tourette syndrome and tumor-related anorexia, but are also used for spasticity and pain relief, among other conditions. Clinical studies for spasmolysis have been equivocal and even conclusions from meta-analyses were not consistent. This may be due to uncertainty in diagnostic criteria as well as a lack of direct spasmolytic activity (direct causality). In this review we used the Hill criteria to investigate whether a temporal association is causal or spurious. Methods: A systematic literature search was performed to identify all clinical trials of cannabinoids for spasticity. Studies were evaluated for dose dependency and time association; all studies together were analyzed for reproducibility, coherence, analogy and mechanistic consistency. A Funnel plot was done for all studies to identify selection or publication bias. Results: Twenty-seven studies were included in this meta-analysis. The spasmolytic activity (effect strength) was weak, with a nonsignificant small effect in most studies and a large effect only in a few studies (“enriched” studies, low patient numbers). No dose dependency was seen and plotting effect size vs. daily dose resulted in a slope of 0.004. Most studies titrated the cannabinoid to the optimum dose, e.g., 20 mg/d THC. The effect decreased with longer treatment duration (3–4 months). The spasmolytic effect is consistent for different European countries but not always within a country, nor is the effect specific for an etiology (multiple sclerosis, spinal cord injury, others). For other criteria like plausibility, coherence or analogous effects, no data exist to support or refute them. In most studies, adverse effects were frequently reported indicating a therapeutic effect only at high doses with relevant side effects. Conclusions: Current data do not support a specific spasmolytic effect; a general decrease in CNS activity analogous to benzodiazepines appears more likely. Whether individual patients or specific subgroups benefit from cannabinoids is unclear. Further studies should compare cannabinoids with other, nonspecific spasmolytic drugs like benzodiazepines. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

Review
An Overview of Antimicrobial Compounds from African Edible Insects and Their Associated Microbiota
Antibiotics 2021, 10(6), 621; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10060621 - 22 May 2021
Abstract
The need for easily biodegradable and less toxic chemicals in drug development and pest control continues to fuel the exploration and discovery of new natural molecules. Like certain plants, some insects can also respond rapidly to microbial infections by producing a plethora of [...] Read more.
The need for easily biodegradable and less toxic chemicals in drug development and pest control continues to fuel the exploration and discovery of new natural molecules. Like certain plants, some insects can also respond rapidly to microbial infections by producing a plethora of immune-induced molecules that include antibacterial and antifungal peptides/polypeptides (AMPs), among other structurally diverse small molecules. The recent recognition that new natural product-derived scaffolds are urgently needed to tackle life-threatening pathogenic infections has been prompted by the health threats posed by multidrug resistance. Although many researchers have concentrated on the discovery of AMPs, surprisingly, edible insect-produced AMPs/small molecules have received little attention. This review will discuss the recent advances in the identification and bioactivity analysis of insect AMPs, with a focus on small molecules associated with the microbiota of selected African edible insects. These molecules could be used as templates for developing next-generation drugs to combat multidrug-resistant pathogens. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Graphical abstract

Article
Potent Antimicrobial and Antibiofilm Activities of Feleucin-K3 Analogs Modified by α-(4-Pentenyl)-Ala against Multidrug-Resistant Bacteria
Biomolecules 2021, 11(5), 761; https://0-doi-org.brum.beds.ac.uk/10.3390/biom11050761 - 19 May 2021
Abstract
The dramatic increase in antimicrobial resistance (AMR) highlights an urgent need to develop new antimicrobial therapies. Thus, antimicrobial peptides (AMPs) have emerged as promising novel antibiotic alternatives. Feleucin-K3 is an amphiphilic α-helical nonapeptide that has powerful antimicrobial activity. In our previous study, it [...] Read more.
The dramatic increase in antimicrobial resistance (AMR) highlights an urgent need to develop new antimicrobial therapies. Thus, antimicrobial peptides (AMPs) have emerged as promising novel antibiotic alternatives. Feleucin-K3 is an amphiphilic α-helical nonapeptide that has powerful antimicrobial activity. In our previous study, it was found that the fourth residue of Feleucin-K3 is important for antimicrobial activity. After α-(4-pentenyl)-Ala was introduced into this position, both the antimicrobial activity and stability were greatly improved. Herein, to improve the limitations of Feleucin-K3, this unnatural amino acid was further introduced into different positions of Feleucin-K3. Among these synthetic Feleucin-K3 analogs, the N-terminal-substituted analog Feleucin-K65 (K65) and C-terminal-substituted analog Feleucin-K70 (K70) had preferable antimicrobial activity. In particular, their antimicrobial activities against multidrug-resistant bacteria were more potent than that of antibiotics. The stabilities of these peptides in salt and serum environments were improved compared with those of Feleucin-K3. In addition, these analogs had low hemolytic activity and AMR. More importantly, they effectively inhibited biofilm formation and exhibited considerable efficacy compared with traditional antibiotics against biofilm infection caused by methicillin-resistant Staphylococcus aureus (MRSA). In antimicrobial mechanism studies, K65 and K70 mainly permeated the outer membrane and depolarized the cytoplasmic membrane, resulting in cellular component leakage and cell death. In summary, analogs K65 and K70 are potential antimicrobial alternatives to solve the antibiotic crisis. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Graphical abstract

Back to TopTop