Next Article in Journal
Theoretical Study of closo-Borate Anions [BnHn]2− (n = 5–12): Bonding, Atomic Charges, and Reactivity Analysis
Next Article in Special Issue
New Hermite–Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities
Previous Article in Journal
A Mean Extragradient Method for Solving Variational Inequalities
Previous Article in Special Issue
A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Hilfer-Polya, ψ-Hilfer Ostrowski and ψ-Hilfer-Hilbert-Pachpatte Fractional Inequalities

by
George A. Anastassiou
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
Submission received: 26 February 2021 / Revised: 11 March 2021 / Accepted: 11 March 2021 / Published: 12 March 2021
(This article belongs to the Special Issue Functional Equations and Analytic Inequalities)

Abstract

:
Here we present Hilfer-Polya, ψ -Hilfer Ostrowski and ψ -Hilfer-Hilbert-Pachpatte types fractional inequalities. They are univariate inequalities involving left and right Hilfer and ψ -Hilfer fractional derivatives. All estimates are with respect to norms · p , 1 p . At the end we provide applications.

1. Introduction

We are motivated by the following famous Polya’s integral inequality, see [1], (p. 62, [2]), [3] and (p. 83, [4]).
Theorem 1.
Let f x be a differentiable and not identically a constant on a , b with f a = f b = 0 . Then there exists at least one point ξ a , b such that
f ξ > 4 b a 2 a b f x d x .
We are inspired also by the related first fractional Polya Inequality, see Chapter 2, p. 9, [5].
In this article, we establish fractional integral inequalities using the Hilfer and ψ -Hilfer fractional derivatives. These are of Polya, Ostrowski and Hilbert-Pachpatte types.

2. Background

Let < a < b < , the left and right Riemann-Liouville fractional integrals of order α C ( R α > 0 ) are defined by
I a + α f x = 1 Γ α a x x t α 1 f t d t ,
x > a ; where Γ stands for the gamma function,
And
I b α f x = 1 Γ α x b t x α 1 f t d t ,
x < b .
The Riemann-Liouville left and right fractional derivatives of order α C ( R α 0 ) are defined by
Δ a + α y x = d d x n I a + n α y x = 1 Γ n α d d x n a x x t n α 1 y t d t
( n = R α , · means ceiling of the number; x > a )
Δ b α y x = 1 n d d x n I b n α y x =
1 n Γ n α d d x n x b t x n α 1 y t d t
( n = R α ; x < b ), respectively, where R α is the real part of α .
In particular, when α = n Z + , then
Δ a + 0 y x = Δ b 0 y x = y x ;
Δ a + n y x = y n x , and Δ b n y x = 1 n y n x , n N ,
see [6].
Let α > 0 , I = a , b R , f an integrable function defined on I and ψ C 1 I an increasing function such that ψ x 0 , for all x I . Left fractional integrals and left Riemann-Liouville fractional derivatives of a function f with respect to another function ψ are defined as ([6,7])
I a + α , ψ f x = 1 Γ α a x ψ t ψ x ψ t α 1 f t d t ,
and
Δ a + α , ψ f x = 1 ψ x d d x n I a + n α , ψ f x =
1 Γ n α 1 ψ x d d x n a x ψ t ψ x ψ t n α 1 f t d t ,
respectively, where n = α .
Similarly, we define the right ones:
I b α , ψ f x = 1 Γ α x b ψ t ψ t ψ x α 1 f t d t ,
and
Δ b α , ψ f x = 1 ψ x d d x n I b n α , ψ f x =
1 Γ n α 1 ψ x d d x n x b ψ t ψ t ψ x n α 1 f t d t .
The following semigroup property holds; if α , β > 0 , f C I , then
I a + α , ψ I a + β , ψ f = I a + α + β , ψ f and I b α , ψ I b β , ψ f = I b α + β , ψ f .
Next let again α > 0 , n = α , I = a , b , f , ψ C n I : ψ is increasing and ψ x 0 , for all x I . The left ψ -Caputo fractional derivative of f of order α is given by ([8])
C D a + α , ψ f x = I a + n α , ψ 1 ψ x d d x n f x ,
and the right ψ -Caputo fractional derivative ([8])
C D b α , ψ f x = I b n α , ψ 1 ψ x d d x n f x .
We set
f ψ n x : = f ψ n f x : = 1 ψ x d d x n f x .
Clearly, when α = m N we have
C D a + α , ψ f x = f ψ m x and C D b α , ψ f x = 1 m f ψ m x ,
and if α N , then
C D a + α , ψ f x = 1 Γ n α a x ψ t ψ x ψ t n α 1 f ψ n t d t ,
and
C D b α , ψ f x = 1 n Γ n α x b ψ t ψ t ψ x n α 1 f ψ n t d t .
If ψ x = x , then we get the usual left and right Caputo fractional derivatives
C D a + m f x = f m x , C D b m f x = 1 m f m x ,
for m N , and ( α N )
D a α f x = C D a + α f x = 1 Γ n α a x x t n α 1 f n t d t ,
D b α x = C D b α f x = 1 n Γ n α x b t x n α 1 f n t d t .
Also we set
C D a + 0 , ψ f x = C D b 0 , ψ f x = f x .
Next we will deal with the ψ -Hilfer fractional derivative.
Definition 1.
([9]) Let n 1 < α < n , n N , I = a , b R and f , ψ C n a , b , ψ is increasing and ψ x 0 , for all x I . The ψ-Hilfer fractional derivative (left-sided and right-sided) H D a + b α , β ; ψ f of order α and type 0 β 1 , respectively, are defined by
H D a + α , β ; ψ f x = I a + β n α ; ψ 1 ψ x d d x n I a + 1 β n α ; ψ f x ,
and
H D b α , β ; ψ f x = I b β n α ; ψ 1 ψ x d d x n I b 1 β n α ; ψ f x , x a , b .
The original Hilfer fractional derivatives ([10]) come from ψ x = x , and are denoted by H D a + α , β f x and H D b α , β f x .
When β = 0 , we get Riemann-Liouville fractional derivatives, while when β = 1 we have Caputo type fractional derivatives.
We define γ = α + β n α . We notice that n 1 < α α + β n α α + n α = n , hence γ = n . We can easily write that ([9])
H D a + α , β ; ψ f x = I a + γ α ; ψ Δ a + γ ; ψ f x ,
and
H D b α , β ; ψ f x = I b γ α ; ψ Δ b γ ; ψ f x , x a , b .
We have that ([9])
Δ a + γ , ψ f x = 1 ψ x d d x n I a + 1 β n α ; ψ f x ,
and
Δ b γ , ψ f x = 1 ψ x d d x n I b 1 β n α ; ψ f x .
In particular, when 0 < α < 1 and 0 β 1 ; γ = α + β 1 α , we have that
H D a + α , β ; ψ f x = 1 Γ γ α a x ψ t ψ x ψ t γ α 1 Δ a + γ ; ψ f t d t ,
and
H D b α , β ; ψ f x = 1 Γ γ α x b ψ t ψ t ψ x γ α 1 Δ b γ ; ψ f t d t ,
x a , b .
Remark 1.
([9]) Let μ = n 1 β + β α , then μ = n .
Assume that g x = I a + 1 β n α ; ψ f x C n a , b , we have that
H D a + α , β ; ψ f x = I a + n μ ; ψ 1 ψ x d d x n g x .
Thus,
H D a + α , β ; ψ f = C D a + μ ; ψ g x = C D a + μ ; ψ I a + 1 β n α ; ψ f x .
Assume that w x = I b 1 β n α ; ψ f x C n a , b . Hence
H D b α , β ; ψ f x = I b β n α ; ψ 1 ψ x d d x n w x = I b n μ ; ψ 1 ψ x d d x n w x .
Thus,
H D b α , β ; ψ f = C D b μ ; ψ w x = C D b μ ; ψ I b 1 β n α ; ψ f x .
We mention the simplified ψ -Hilfer fractional Taylor formulae:
Theorem 2.
(see also [9]) Let ψ , f C n a , b , with ψ being increasing such that ψ x 0 over a , b , where n 1 < α < n , 0 β 1 , and γ = α + β n α , x a , b . Then
f x k = 1 n 1 ψ x ψ a γ k Γ γ k + 1 f ψ n k I a + 1 β n α ; ψ f a =
1 Γ α a x ψ t ψ x ψ t α 1 H D a + α , β ; ψ f t d t ,
and
f x k = 1 n 1 1 k ψ b ψ x γ k Γ γ k + 1 f ψ n k I b 1 β n α ; ψ f b =
1 Γ α x b ψ t ψ t ψ x α 1 H D b α , β ; ψ f t d t .
Here notice that I a + 1 β n α ; ψ f a = I b 1 β n α ; ψ f b = 0 .
We also mention the following alternative ψ -Hilfer fractional Taylor formulae:
Theorem 3.
([11]) Let f , ψ C n a , b , with ψ being increasing, ψ x 0 over a , b R , α > 0 : α = n , 0 β 1 , μ = n 1 β + β α . Assume that g x = I a + 1 β n α ; ψ f x , w x = I b 1 β n α ; ψ f x C n a , b .
Then
(1)
I a + μ ; ψ H D a + α , β ; ψ f x = g x k = 0 n 1 g ψ k a k ! ψ x ψ a k ,
where
g ψ k x = 1 ψ x d d x k g x , k = 0 , 1 , , n 1 ,
and
(2)
I b μ ; ψ H D b α , β ; ψ f x = w x k = 0 n 1 1 k w ψ k b k ! ψ b ψ x k ,
where
w ψ k x = 1 ψ x d d x k w x , k = 0 , 1 , , n 1 ; x a , b .
Next we list two Hilfer fractional derivatives representation formulae:
Theorem 4.
([11]) Let α > 0 , α N , α = n , 0 < β < 1 ; f C n a , b , a , b R ; and set γ = α + β n α . Assume further that Δ a + γ f C a , b : Δ a + γ j f a = 0 , for j = 1 , , n . Let also α ¯ > 0 : α ¯ = n ¯ , with γ ¯ = α ¯ + β n ¯ α ¯ , and assume that α > α ¯ and γ > γ ¯ . Then
H D a + α ¯ , β f x = 1 Γ α α ¯ a x x t α α ¯ 1 H D a + α , β f t d t ,
x a , b ,
Furthermore, H D a + α ¯ , β f A C a , b (absolutely continuous functions) if α α ¯ 1 and H D a + α ¯ , β f C a , b if α α ¯ 0 , 1 .
Theorem 5.
([11]) Let α > 0 , α N , α = n , 0 < β < 1 ; f C n a , b , a , b R ; and set γ = α + β n α . Assume further that Δ b γ f C a , b : Δ b γ j f b = 0 , j = 1 , , n . Let also α ¯ > 0 : α ¯ = n ¯ , with γ ¯ = α ¯ + β n ¯ α ¯ , and assume that α > α ¯ and γ > γ ¯ . Then
H D b α ¯ , β f x = 1 Γ α α ¯ x b t x α α ¯ 1 H D b α , β f t d t ,
x a , b ,
Furthermore, H D b α ¯ , β f A C a , b if α α ¯ 1 and H D b α ¯ , β f C a , b if α α ¯ 0 , 1 .

3. Main Results

We present the following Hilfer-Polya type fractional inequalities:
Theorem 6.
Let α > 0 , α N , α = n , 0 < β < 1 ; f C n a , b , a , b R ; and set γ = α + β n α . Assume further that Δ a + γ f C a , b : Δ a + γ j f a = 0 , for j = 1 , , n ; and Δ b γ f C a , b : Δ b γ j f b = 0 , j = 1 , , n . Let also α ¯ > 0 : α ¯ = n ¯ , with γ ¯ = α ¯ + β n ¯ α ¯ , and assume that α > α ¯ and γ > γ ¯ .
Set
H D α ¯ , β f x : = H D a + α ¯ , β f x , x a , a + b 2 , H D b α ¯ , β f x , x a + b 2 , b ,
and
M 1 : = max H D a + α , β f , a , a + b 2 , H D b α , β f , a + b 2 , b .
Then
a b H D α ¯ , β f x d x a b H D α ¯ , β f x d x M 1 b a α α ¯ + 1 2 α α ¯ Γ α α ¯ + 2 .
Proof. 
From (33) we have
H D a + α ¯ , β f x = 1 Γ α α ¯ a x x t α α ¯ 1 H D a + α , β f t d t ,
x a , a + b 2 .
By (34), we get
H D b α ¯ , β f x = 1 Γ α α ¯ x b t x α α ¯ 1 H D b α , β f t d t ,
x a + b 2 , b .
We derive that
H D a + α ¯ , β f x H D a + α , β f , a , a + b 2 Γ α α ¯ + 1 x a α α ¯ ,
x a , a + b 2 , and similarly,
H D b α ¯ , β f x H D b α , β f , a + b 2 , b Γ α α ¯ + 1 b x α α ¯ ,
x a + b 2 , b .
We notice that:
a b H D α ¯ , β f x d x = a a + b 2 H D α ¯ , β f x d x + a + b 2 b H D α ¯ , β f x d x =
a a + b 2 H D a + α ¯ , β f x d x + a + b 2 b H D b α ¯ , β f x d x .
We further derive that
a a + b 2 H D a + α ¯ , β f x d x H D a + α , β f , a , a + b 2 Γ α α ¯ + 1 a a + b 2 x a α α ¯ d x =
H D a + α , β f , a , a + b 2 Γ α α ¯ + 2 a + b 2 a α α ¯ + 1 = H D a + α , β f , a , a + b 2 Γ α α ¯ + 2 b a 2 α α ¯ + 1 .
That is, it holds
a a + b 2 H D a + α ¯ , β f x d x H D a + α , β f , a , a + b 2 Γ α α ¯ + 2 b a 2 α α ¯ + 1 .
Similarly, it holds
a + b 2 b H D b α ¯ , β f x d x H D b α , β f , a + b 2 , b Γ α α ¯ + 2 b a 2 α α ¯ + 1 .
Therefore, we obtain
a b H D α ¯ , β f x d x a b H D α ¯ , β f x d x =
a a + b 2 H D a + α ¯ , β f x d x + a + b 2 b H D b α ¯ , β f x d x
H D a + α , β f , a , a + b 2 Γ α α ¯ + 2 b a 2 α α ¯ + 1 + H D b α , β f , a + b 2 , b Γ α α ¯ + 2 b a 2 α α ¯ + 1 =
b a 2 α α ¯ + 1 Γ α α ¯ + 2 H D a + α , β f , a , a + b 2 + H D b α , β f , a + b 2 , b
2 M 1 b a α α ¯ + 1 2 α α ¯ + 1 Γ α α ¯ + 2 = M 1 b a α α ¯ + 1 2 α α ¯ Γ α α ¯ + 2 .
 □
We continue with the L 1 -variant:
Theorem 7.
All as in Theorem 6 with α α ¯ > 1 (i.e., α > α ¯ + 1 ). Call
M 2 : = max H D a + α , β f 1 , a , a + b 2 , H D b α , β f 1 , a + b 2 , b .
Then
a b H D α ¯ , β f x d x a b H D α ¯ , β f x d x M 2 b a α α ¯ 2 α α ¯ 1 Γ α α ¯ + 1 .
Proof. 
By (38) we have
H D a + α ¯ , β f x 1 Γ α α ¯ a x x t α α ¯ 1 H D a + α , β f t d t
x a α α ¯ 1 Γ α α ¯ H D a + α , β f 1 , a , a + b 2 ,
x a , a + b 2 .
Similarly, from (39) we find that
H D b α ¯ , β f x b x α α ¯ 1 Γ α α ¯ H D b α , β f 1 , a + b 2 , b ,
x a + b 2 , b .
Furthermore, we obtain
a a + b 2 H D a + α ¯ , β f x d x H D a + α , β f 1 , a , a + b 2 Γ α α ¯ a a + b 2 x a α α ¯ 1 d x =
H D a + α , β f 1 , a , a + b 2 Γ α α ¯ + 1 b a 2 α α ¯ .
Similarly, we derive
a + b 2 b H D b α ¯ , β f x d x H D b α , β f 1 , a + b 2 , b Γ α α ¯ + 1 b a 2 α α ¯ .
Therefore we obtain
a b H D α ¯ , β f x d x a b H D α ¯ , β f x d x =
a a + b 2 H D a + α ¯ , β f x d x + a + b 2 b H D b α ¯ , β f x d x
H D a + α , β f 1 , a , a + b 2 + H D b α , β f 1 , a + b 2 , b Γ α α ¯ + 1 b a 2 α α ¯
2 M 2 Γ α α ¯ + 1 b a α α ¯ 2 α α ¯ = M 2 Γ α α ¯ + 1 b a α α ¯ 2 α α ¯ 1 .
 □
Next comes the L q -variant of Hilfer-Polya fractional inequality:
Theorem 8.
All as in Theorem 6 with α α ¯ > 1 q , where p , q > 1 : 1 p + 1 q = 1 . Call
M 3 : = max H D a + α , β f q , a , a + b 2 , H D b α , β f q , a + b 2 , b .
Then
a b H D α ¯ , β f x d x a b H D α ¯ , β f x d x
M 3 Γ α α ¯ p α α ¯ 1 + 1 1 p α α ¯ + 1 p b a α α ¯ + 1 p 2 α α ¯ 1 q .
Proof. 
By (38) we have
H D a + α ¯ , β f x 1 Γ α α ¯ a x x t α α ¯ 1 H D a + α , β f t d t
1 Γ α α ¯ a x x t p α α ¯ 1 d t 1 p H D a + α , β f q , a , a + b 2 =
x a α α ¯ 1 q Γ α α ¯ p α α ¯ 1 + 1 1 p H D a + α , β f q , a , a + b 2 ,
x a , a + b 2 , with α α ¯ > 1 q .
And, by (39), similarly we derive
H D b α ¯ , β f x b x α α ¯ 1 q Γ α α ¯ p α α ¯ 1 + 1 1 p H D b α , β f q , a + b 2 , b ,
x a + b 2 , b , with α α ¯ > 1 q .
Consequently, we obtain that
a a + b 2 H D a + α ¯ , β f x d x H D a + α , β f q , a , a + b 2 Γ α α ¯ p α α ¯ 1 + 1 1 p a a + b 2 x a α α ¯ 1 q d x =
H D a + α , β f q , a , a + b 2 Γ α α ¯ p α α ¯ 1 + 1 1 p α α ¯ + 1 p b a 2 α α ¯ + 1 p .
Similarly, we derive
a + b 2 b H D b α ¯ , β f x d x H D b α , β f q , a + b 2 , b Γ α α ¯ p α α ¯ 1 + 1 1 p α α ¯ + 1 p b a 2 α α ¯ + 1 p .
Therefore, we obtain
a b H D α ¯ , β f x d x a b H D α ¯ , β f x d x =
H D a + α , β f q , a , a + b 2 + H D b α , β f q , a + b 2 , b Γ α α ¯ p α α ¯ 1 + 1 1 p α α ¯ + 1 p b a 2 α α ¯ + 1 p
M 3 Γ α α ¯ p α α ¯ 1 + 1 1 p α α ¯ + 1 p b a α α ¯ + 1 p 2 α α ¯ 1 q ,
proving the claim. □
Next come ψ -Hilfer-Ostrowski type inequalities for several functions involved.
For basic ψ -Hilfer-Ostrowski type inequalities involving one function see [11].
We make
Remark 2.
Our setting here follows: Let f i C n a , b , α N , n = α , α > 0 ; i = 1 , , r N { 1 } , x 0 a , b . Assume that g 1 i x = I x 0 + 1 β n α ; ψ f i x C n x 0 , b and w 1 i x = I x 0 1 β n α ; ψ f i x C n a , x 0 , for all i = 1 , , r .
Define
φ i x 0 x : = g 1 i x , x x 0 , b w 1 i x , x [ a , x 0 ) .
Notice that if β = 1 , we get g 1 i x 0 = w 1 i x 0 = φ i x 0 x 0 = f i x 0 , all i = 1 , , r .
In general, for f C a , b we have
I a + α , ψ f x 1 Γ α a x ψ t ψ x ψ t α 1 f t d t
f , a , b Γ α + 1 ψ x ψ a α , x a , b .
Hence I a + α , ψ f a = 0 .
Similalry, we have
I b α , ψ f x 1 Γ α x b ψ t ψ t ψ x α 1 f t d t
f , a , b Γ α + 1 ψ b ψ x α , x a , b .
That is I b α , ψ f b = 0 .
So when 0 β < 1 , by the above we obtain g 1 i x 0 = w 1 i x 0 = φ i x 0 x 0 = 0 , for all i = 1 , , r .
Thus, it is always true that g 1 i x 0 = w 1 i x 0 , i = 1 , , r .
We present
Theorem 9.
Let ψ , f i C n a , b , α N , n = α , α > 0 ; i = 1 , , r N { 1 } , x 0 a , b . Here ψ is increasing, ψ x 0 over a , b R , 0 β 1 , μ = n 1 β + β α . Assume that g 1 i x = I x 0 + 1 β n α ; ψ f i x C n x 0 , b and w 1 i x = I x 0 1 β n α ; ψ f i x C n a , x 0 , for all i = 1 , , r , and φ i x 0 x is as in (61). Assume also that g 1 i ψ k x 0 = w 1 i ψ k x 0 = 0 , for all k = 1 , , n 1 .
Then
(1)
θ ψ f 1 , , f r x 0 : =
r a b λ = 1 r φ λ x 0 x d x i = 1 r φ i x 0 x 0 a b j = 1 j i r φ j x 0 x d x =
i = 1 r a x 0 j = 1 j i r φ j x 0 x I x 0 μ ; ψ H D x 0 α , β ; ψ f i x d x +
x 0 b j = 1 j i r φ j x 0 x I x 0 + μ ; ψ H D x 0 + α , β ; ψ f i x d x ,
and in case of 0 β < 1 , we have that
θ ψ f 1 , , f r x 0 = r a b λ = 1 r φ λ x 0 x d x ,
(2) furthermore, it holds
θ ψ f 1 , , f r x 0 1 Γ μ + 1
i = 1 r H D x 0 α , β ; ψ f i , a , x 0 j = 1 j i r φ j x 0 1 , a , x 0 ψ x 0 ψ a μ +
i = 1 r H D x 0 + α , β ; ψ f i , x 0 , b j = 1 j i r φ j x 0 1 , x 0 , b ψ b ψ x 0 μ .
It follows the L 1 -variant.
Theorem 10.
All as in Theorem 9, with α > 1 . Then
θ ψ f 1 , , f r x 0 1 Γ μ
i = 1 r H D x 0 α , β ; ψ f i L 1 a , x 0 , ψ j = 1 j i r φ j x 0 1 , a , x 0 ψ x 0 ψ a μ 1 +
i = 1 r H D x 0 + α , β ; ψ f i L 1 x 0 , b , ψ j = 1 j i r φ j x 0 1 , x 0 , b ψ b ψ x 0 μ 1 .
Next we have the L q -variant.
Theorem 11.
All as in Theorem 9. Let also p , q > 1 : 1 p + 1 q = 1 with α > 1 q . Then
θ ψ f 1 , , f r x 0 1 Γ μ p μ 1 + 1 1 p
i = 1 r H D x 0 α , β ; ψ f i L q a , x 0 , ψ j = 1 j i r φ j x 0 1 , a , x 0 ψ x 0 ψ a μ 1 q +
i = 1 r H D x 0 + α , β ; ψ f i L q x 0 , b , ψ j = 1 j i r φ j x 0 1 , x 0 , b ψ b ψ x 0 μ 1 q .
Proof of Theorems 9–11. 
By Theorem 3 we have
g 1 i x g 1 i x 0 = I x 0 + μ ; ψ H D x 0 + α , β ; ψ f i x , x x 0 , b , and w 1 i x w 1 i x 0 = I x 0 μ ; ψ H D x 0 α , β ; ψ f i x , x a , x 0 ,
for all i = 1 , , r .
That is
φ i x 0 x φ i x 0 x 0 = I x 0 + μ ; ψ H D x 0 + α , β ; ψ f i x , x x 0 , b , and φ i x 0 x φ i x 0 x 0 = I x 0 μ ; ψ H D x 0 α , β ; ψ f i x , x [ a , x 0 ) ,
for all i = 1 , , r .
Multiplying (70) by j = 1 j i r φ j x 0 x we get, respectively,
λ = 1 r φ λ x 0 x j = 1 j i r φ j x 0 x φ i x 0 x 0 = j = 1 j i r φ j x 0 x I x 0 + μ ; ψ H D x 0 + α , β ; ψ f i x ,
x x 0 , b ,
And
λ = 1 r φ λ x 0 x j = 1 j i r φ j x 0 x φ i x 0 x 0 = j = 1 j i r φ j x 0 x I x 0 μ ; ψ H D x 0 α , β ; ψ f i x ,
x [ a , x 0 ) , for all i = 1 , , r .
Adding (71) and (72), separately, we obtain
r λ = 1 r φ λ x 0 x i = 1 r j = 1 j i r φ j x 0 x φ i x 0 x 0 =
i = 1 r j = 1 j i r φ j x 0 x I x 0 + μ ; ψ H D x 0 + α , β ; ψ f i x ,
x x 0 , b ,
In addition,
r λ = 1 r φ λ x 0 x i = 1 r j = 1 j i r φ j x 0 x φ i x 0 x 0 =
i = 1 r j = 1 j i r φ j x 0 x I x 0 μ ; ψ H D x 0 α , β ; ψ f i x ,
x [ a , x 0 ) .
Next integrate (73) and (74) with respect to x a , b . We have
r x 0 b λ = 1 r φ λ x 0 x d x i = 1 r φ i x 0 x 0 x 0 b j = 1 j i r φ j x 0 x d x =
i = 1 r x 0 b j = 1 j i r φ j x 0 x I x 0 + μ ; ψ H D x 0 + α , β ; ψ f i x d x ,
and
r a x 0 λ = 1 r φ λ x 0 x d x i = 1 r φ i x 0 x 0 a x 0 j = 1 j i r φ j x 0 x d x =
i = 1 r a x 0 j = 1 j i r φ j x 0 x I x 0 μ ; ψ H D x 0 α , β ; ψ f i x d x .
Finally adding (75) and (76) we obtain the useful and nice identity (64).
Identity (64) implies
θ ψ f 1 , , f r x 0 i = 1 r a x 0 j = 1 j i r φ j x 0 x I x 0 μ ; ψ H D x 0 α , β ; ψ f i x d x +
x 0 b j = 1 j i r φ j x 0 x I x 0 + μ ; ψ H D x 0 + α , β ; ψ f i x d x =
i = 1 r a x 0 j = 1 j i r φ j x 0 x 1 Γ μ
x x 0 ψ t ψ t ψ x μ 1 H D x 0 α , β ; ψ f i t d t d x +
x 0 b j = 1 j i r φ j x 0 x 1 Γ μ
x 0 x ψ t ψ x ψ t μ 1 H D x 0 + α , β ; ψ f i t d t d x
1 Γ μ + 1 i = 1 r H D x 0 α , β ; ψ f i , a , x 0 a x 0 ψ x 0 ψ x μ j = 1 j i r φ j x 0 x d x
+ H D x 0 + α , β ; ψ f i , x 0 , b x 0 b ψ x ψ x 0 μ j = 1 j i r φ j x 0 x d x
1 Γ μ + 1 i = 1 r H D x 0 α , β ; ψ f i , a , x 0 ψ x 0 ψ a μ j = 1 j i r φ j x 0 1 , a , x 0 +
H D x 0 + α , β ; ψ f i , x 0 , b ψ b ψ x 0 μ j = 1 j i r φ j x 0 1 , x 0 , b =
1 Γ μ + 1 i = 1 r H D x 0 α , β ; ψ f i , a , x 0 j = 1 j i r φ j x 0 1 , a , x 0 ψ x 0 ψ a μ +
i = 1 r H D x 0 + α , β ; ψ f i , x 0 , b j = 1 j i r φ j x 0 1 , x 0 , b ψ b ψ x 0 μ ,
proving (66).
If α N and α > 1 , then n = α > 1 , and n 1 1 > β n α . Hence n β n α > 1 and μ > 1 . So we have
θ ψ f 1 , , f r x 0 i = 1 r a x 0 j = 1 j i r φ j x 0 x 1 Γ μ
x x 0 ψ t ψ t ψ x μ 1 H D x 0 α , β ; ψ f i t d t d x +
x 0 b j = 1 j i r φ j x 0 x 1 Γ μ
x 0 x ψ t ψ x ψ t μ 1 H D x 0 + α , β ; ψ f i t d t d x
1 Γ μ i = 1 r H D x 0 α , β ; ψ f i L 1 a , x 0 , ψ a x 0 ψ x 0 ψ x μ 1 j = 1 j i r φ j x 0 x d x
+ H D x 0 + α , β ; ψ f i L 1 x 0 , b , ψ x 0 b ψ x ψ x 0 μ 1 j = 1 j i r φ j x 0 x d x
1 Γ μ i = 1 r H D x 0 α , β ; ψ f i L 1 a , x 0 , ψ ψ x 0 ψ a μ 1 j = 1 j i r φ j x 0 1 , a , x 0 +
H D x 0 + α , β ; ψ f i L 1 x 0 , b , ψ ψ b ψ x 0 μ 1 j = 1 j i r φ j x 0 1 , x 0 , b =
1 Γ μ i = 1 r H D x 0 α , β ; ψ f i L 1 a , x 0 , ψ j = 1 j i r φ j x 0 1 , a , x 0 ψ x 0 ψ a μ 1 +
i = 1 r H D x 0 + α , β ; ψ f i L 1 x 0 , b , ψ j = 1 j i r φ j x 0 1 , x 0 , b ψ b ψ x 0 μ 1 ,
proving (67).
Let α > 0 with α = n N , and let p , q > 1 : 1 p + 1 q = 1 , with α > 1 q . Clearly n > 1 q . Let 0 < β 1 , then α β > β q , furthermore μ = n 1 β + β α > β q + n 1 β β q + 1 β = β q + 1 p + 1 q β p β q = 1 q + 1 p 1 β 1 q . That is μ > 1 q .
From (81), by using Hölder’s inequality twice, we have
θ ψ f 1 , , f r x 0 1 Γ μ
i = 1 r a x 0 j = 1 j i r φ j x 0 x ψ x 0 ψ x p μ 1 + 1 p p μ 1 + 1 1 p H D x 0 α , β ; ψ f i L q a , x 0 , ψ d x +
x 0 b j = 1 j i r φ j x 0 x ψ x ψ x 0 p μ 1 + 1 p p μ 1 + 1 1 p H D x 0 + α , β ; ψ f i L q x 0 , b , ψ d x =
1 Γ μ p μ 1 + 1 1 p
i = 1 r a x 0 j = 1 j i r φ j x 0 x ψ x 0 ψ x μ 1 q H D x 0 α , β ; ψ f i L q a , x 0 , ψ d x +
x 0 b j = 1 j i r φ j x 0 x ψ x ψ x 0 μ 1 q H D x 0 + α , β ; ψ f i L q x 0 , b , ψ d x
1 Γ μ p μ 1 + 1 1 p
i = 1 r H D x 0 α , β ; ψ f i L q a , x 0 , ψ ψ x 0 ψ a μ 1 q j = 1 j i r φ j x 0 1 , a , x 0 +
H D x 0 + α , β ; ψ f i L q x 0 , b , ψ ψ b ψ x 0 μ 1 q j = 1 j i r φ j x 0 1 , x 0 , b =
1 Γ μ p μ 1 + 1 1 p
i = 1 r H D x 0 α , β ; ψ f i L q a , x 0 , ψ j = 1 j i r φ j x 0 1 , a , x 0 ψ x 0 ψ a μ 1 q +
i = 1 r H D x 0 + α , β ; ψ f i L q x 0 , b , ψ j = 1 j i r φ j x 0 1 , x 0 , b ψ b ψ x 0 μ 1 q ,
proving (68). □
Next we present a ψ -Hilfer-Hilbert-Pachpatte left fractional inequality:
Theorem 12.
Let i = 1 , 2 ; ψ i , f i C n i a i , b i , with ψ i being strictly increasing over a i , b i , where n i 1 < α i < n i , 0 β i 1 , and γ i = α i + β i n i α i , x i a i , b i . Assume that f i ψ i n i k i I a i + 1 β i n i α i ; ψ i f i a i = 0 , for k i = 1 , , n i 1 . Let also p , q > 1 : 1 p + 1 q = 1 , such that α 1 > 1 q and α 2 > 1 p . Then
a 1 b 1 a 2 b 2 f 1 x 1 f 2 x 2 d x 1 d x 2 ψ 1 x 1 ψ 1 a 1 p α 1 1 + 1 p p α 1 1 | + 1 + ψ 2 x 2 ψ 2 a 2 q α 2 1 + 1 q q α 2 1 + 1
b 1 a 1 b 2 a 2 Γ α 1 Γ α 2 H D a 1 + α 1 , β 1 ; ψ 1 f 1 L q a 1 , b 1 , ψ 1 H D a 2 + α 2 , β 2 ; ψ 2 f 2 L p a 2 , b 2 , ψ 2 .
Proof. 
By Theorem 2 we have
f i x i = 1 Γ α i a i x i ψ i t i ψ i x i ψ i t i α i 1 H D a i + α i , β i ; ψ i f i t i d t i ,
x i a i , b i , i = 1 , 2 .
Then
f i x i 1 Γ α i a i x i ψ i t i ψ i x i ψ i t i α i 1 H D a i + α i , β i ; ψ i f i t i d t i ,
i = 1 , 2 , x i a i , b i .
By Hölder’s inequality we obtain
f 1 x 1 1 Γ α 1 ψ 1 x 1 ψ 1 a 1 p α 1 1 + 1 p p α 1 1 + 1 1 p H D a 1 + α 1 , β 1 ; ψ 1 f 1 L q a 1 , b 1 , ψ 1 ,
x 1 a 1 , b 1 , and
f 2 x 2 1 Γ α 2 ψ 2 x 2 ψ 2 a 2 q α 2 1 + 1 q q α 2 1 + 1 1 q H D a 2 + α 2 , β 2 ; ψ 2 f 2 L p a 2 , b 2 , ψ 2 ,
x 2 a 2 , b 2 .
Hence we have
f 1 x 1 f 2 x 2 1 Γ α 1 Γ α 2 p α 1 1 + 1 1 p q α 2 1 + 1 1 q
ψ 1 x 1 ψ 1 a 1 p α 1 1 + 1 p ψ 2 x 2 ψ 2 a 2 q α 2 1 + 1 q
H D a 1 + α 1 , β 1 ; ψ 1 f 1 L q a 1 , b 1 , ψ 1 H D a 2 + α 2 , β 2 ; ψ 2 f 2 L p a 2 , b 2 , ψ 2
(using Young’s inequality for a , b 0 , a 1 p b 1 q a p + b q )
1 Γ α 1 Γ α 2 ψ 1 x 1 ψ 1 a 1 p α 1 1 + 1 p p α 1 1 + 1 + ψ 2 x 2 ψ 2 a 2 q α 2 1 + 1 q q α 2 1 + 1
H D a 1 + α 1 , β 1 ; ψ 1 f 1 L q a 1 , b 1 , ψ 1 H D a 2 + α 2 , β 2 ; ψ 2 f 2 L p a 2 , b 2 , ψ 2 ,
x i a i , b i ; i = 1 , 2 .
So far we have
f 1 x 1 f 2 x 2 ψ 1 x 1 ψ 1 a 1 p α 1 1 + 1 p p α 1 1 + 1 + ψ 2 x 2 ψ 2 a 2 q α 2 1 + 1 q q α 2 1 + 1
H D a 1 + α 1 , β 1 ; ψ 1 f 1 L q a 1 , b 1 , ψ 1 H D a 2 + α 2 , β 2 ; ψ 2 f 2 L p a 2 , b 2 , ψ 2 Γ α 1 Γ α 2 ,
x i a i , b i ; i = 1 , 2 .
The denominator in (94) can be zero only when x 1 = a 1 and x 2 = a 2 .
Therefore we obtain (87), by integrating (94) over a 1 , b 1 × a 2 , b 2 .  □
It follows the right side analog of last theorem.
Theorem 13.
Let i = 1 , 2 ; ψ i , f i C n i a i , b i , with ψ i being strictly increasing over a i , b i , where n i 1 < α i < n i , 0 β i 1 , and γ i = α i + β i n i α i , x i a i , b i . Let also p , q > 1 : 1 p + 1 q = 1 , such that α 1 > 1 q and α 2 > 1 p . Assume that f i ψ i n i k i I b i 1 β i n i α i ; ψ i f i b i = 0 , for k i = 1 , , n i 1 . Then
a 1 b 1 a 2 b 2 f 1 x 1 f 2 x 2 d x 1 d x 2 ψ 1 b 1 ψ 1 x 1 p α 1 1 + 1 p p α 1 1 | + 1 + ψ 2 b 2 ψ 2 x 2 q α 2 1 + 1 q q α 2 1 + 1
b 1 a 1 b 2 a 2 Γ α 1 Γ α 2 H D b 1 α 1 , β 1 ; ψ 1 f 1 L q a 1 , b 1 , ψ 1 H D b 2 α 2 , β 2 ; ψ 2 f 2 L p a 2 , b 2 , ψ 2 .
Proof. 
Similar to Theorem 12, by the use of (30). □
We continue with other Hilfer-Hilbert-Pachpatte fractional inequalities.
Theorem 14.
Let i = 1 , 2 ; α i > 0 , α i N , α i = n i , 0 < β i < 1 , f i C n i a i , b i , a i , b i R and set γ i = α i + β i n i α i . Assume further that Δ a i + γ i f i C a i , b i : Δ a i + γ i j i f i a i = 0 , for j i = 1 , , n i . Let also α ¯ i > 0 : α ¯ i = n ¯ i , with γ ¯ i = α ¯ i + β i n ¯ i α ¯ i , and assume that α i > α ¯ i and γ i > γ ¯ i . Furthermore, let p , q > 1 : 1 p + 1 q = 1 , such that α 1 > 1 q and α 2 > 1 p . Then
a 1 b 1 a 2 b 2 H D a 1 + α ¯ 1 , β 1 f 1 x 1 H D a 2 + α ¯ 2 , β 2 f 2 x 2 d x 1 d x 2 x 1 a 1 p α 1 α ¯ 1 1 + 1 p p α 1 α ¯ 1 1 | + 1 + x 2 a 2 q α 2 α ¯ 2 1 + 1 q q α 2 α ¯ 2 1 + 1
b 1 a 1 b 2 a 2 Γ α 1 α ¯ 1 Γ α 2 α ¯ 2 H D a 1 + α 1 , β 1 f 1 L q a 1 , b 1 H D a 2 + α 2 , β 2 f 2 L p a 2 , b 2 .
Proof. 
Similar to Theorem 12, by the use of Theorem 4. □
It follows
Theorem 15.
Let i = 1 , 2 ; α i > 0 , α i N , α i = n i , 0 < β i < 1 , f i C n i a i , b i , a i , b i R and set γ i = α i + β i n i α i . Assume further that Δ b i γ i f i C a i , b i : Δ b i γ i j i f i b i = 0 , for j i = 1 , , n i . Let also α ¯ i > 0 : α ¯ i = n ¯ i , with γ ¯ i = α ¯ i + β i n ¯ i α ¯ i , and assume that α i > α ¯ i and γ i > γ ¯ i . Furthermore, let p , q > 1 : 1 p + 1 q = 1 , such that α 1 > 1 q and α 2 > 1 p . Then
a 1 b 1 a 2 b 2 H D b 1 α ¯ 1 , β 1 f 1 x 1 H D b 2 α ¯ 2 , β 2 f 2 x 2 d x 1 d x 2 b 1 x 1 p α 1 α ¯ 1 1 + 1 p p α 1 α ¯ 1 1 | + 1 + b 2 x 2 q α 2 α ¯ 2 1 + 1 q q α 2 α ¯ 2 1 + 1
b 1 a 1 b 2 a 2 Γ α 1 α ¯ 1 Γ α 2 α ¯ 2 H D b 1 α 1 , β 1 f 1 L q a 1 , b 1 H D b 2 α 2 , β 2 f 2 L p a 2 , b 2 .
Proof. 
Similar to Theorem 12, by the use of Theorem 5. □
We finish with two applications:
Corollary 1.
All as in Theorem 12, with ψ 1 x 1 = e x 1 , ψ 2 x 2 = e x 2 . Then
a 1 b 1 a 2 b 2 f 1 x 1 f 2 x 2 d x 1 d x 2 e x 1 e a 1 p α 1 1 + 1 p p α 1 1 | + 1 + e x 2 e a 2 q α 2 1 + 1 q q α 2 1 + 1
b 1 a 1 b 2 a 2 Γ α 1 Γ α 2 H D a 1 + α 1 , β 1 ; e x 1 f 1 L q a 1 , b 1 , e x 1 H D a 2 + α 2 , β 2 ; e x 2 f 2 L p a 2 , b 2 , e x 2 .
Proof. 
By Theorem 12. □
Corollary 2.
All as in Theorem 13, with a i , b i 0 , + , i = 1 , 2 ; and ψ 1 x 1 = ln x 1 , ψ 2 x 2 = ln x 2 . Then
a 1 b 1 a 2 b 2 f 1 x 1 f 2 x 2 d x 1 d x 2 ln b 1 x 1 p α 1 1 + 1 p p α 1 1 | + 1 + ln b 2 x 2 q α 2 1 + 1 q q α 2 1 + 1
b 1 a 1 b 2 a 2 Γ α 1 Γ α 2 H D b 1 α 1 , β 1 ; ln x 1 f 1 L q a 1 , b 1 , ln x 1 H D b 2 α 2 , β 2 ; ln x 2 f 2 L p a 2 , b 2 , ln x 2 .
Proof. 
By Theorem 13. □

Funding

This research received no external funding.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Polya, G. Ein mittelwertsatz für Funktionen mehrerer Veründerlichen. Tohoku Math. J. 1921, 19, 1–3. [Google Scholar]
  2. Polya, G.; Szegö, G. Aufgaben und Lehrsätze aus der Analysis; Springer: Berlin/Heidelberg, Germany, 1925; Volume I. (In German) [Google Scholar]
  3. Polya, G.; Szegö, G. Problems and Theorems in Analysis; Classics in Mathematics; Springer: Berlin/Heidelberg, Germany, 1972; Volume I. [Google Scholar]
  4. Polya, G.; Szegö, G. Problems and Theorems in Analysis; Chinese Edition; World Book Publishing Co., Ltd.: Beijing, China, 1984; Volume I. [Google Scholar]
  5. Anastassiou, G.A. Intelligent Comparisons: Analytic Inequalities; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2016. [Google Scholar]
  6. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Montreux, Switzerland, 1993. [Google Scholar]
  7. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differentiation Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  8. Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
  9. Da Vanterler, C.; Sousa, J.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  10. Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and Operational Calculus with Generalized Fractional Derivative Operators and Mittag-Leffler Type Functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
  11. Anastassiou, G. Advancements on ψ-Hilfer fractional calculus and fractional integral inequalities. 2021. submitted. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Anastassiou, G.A. Hilfer-Polya, ψ-Hilfer Ostrowski and ψ-Hilfer-Hilbert-Pachpatte Fractional Inequalities. Symmetry 2021, 13, 463. https://0-doi-org.brum.beds.ac.uk/10.3390/sym13030463

AMA Style

Anastassiou GA. Hilfer-Polya, ψ-Hilfer Ostrowski and ψ-Hilfer-Hilbert-Pachpatte Fractional Inequalities. Symmetry. 2021; 13(3):463. https://0-doi-org.brum.beds.ac.uk/10.3390/sym13030463

Chicago/Turabian Style

Anastassiou, George A. 2021. "Hilfer-Polya, ψ-Hilfer Ostrowski and ψ-Hilfer-Hilbert-Pachpatte Fractional Inequalities" Symmetry 13, no. 3: 463. https://0-doi-org.brum.beds.ac.uk/10.3390/sym13030463

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop