Next Article in Journal
Spin Sum Rule of the Nucleon in the QCD Instanton Vacuum
Previous Article in Journal
Entropy and Semi-Entropies of Regular Symmetrical Triangular Interval Type-2 Fuzzy Variables
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Sandwich-Type Results for a Subclass of Certain Univalent Functions Using a New Hadamard Product Operator

by
Mustafa A. Sabri
1,2,*,
Waggas Galib Atshan
3 and
Essam El-Seidy
2
1
Department of Mathematics, College of Education, Mustansiriyah University, Baghdad 10052, Iraq
2
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11772, Egypt
3
Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah 58001, Iraq
*
Author to whom correspondence should be addressed.
Submission received: 2 April 2022 / Revised: 20 April 2022 / Accepted: 25 April 2022 / Published: 3 May 2022

Abstract

:
This paper is concerned with studying some results by introducing a new Hadamard product M γ , b , v , δ C , η operator for differential subordination and superordination for certain univalent functions in the open unit disc U. Firstly, we state some basic definitions and required theorems. Furthermore. Some sandwich theorems are derived. The differential subordination theory’s features and outcomes are symmetric to those derived using the differential superordination theory.

1. Introduction

Let   H = H ( U ) be the class of analytic functions in the open unit disk   U = { z C : | z | < 1 } .
For n a positive integer and a C . Let   H [ a , n ] be the subclass of   H of the form:
Assume that   A be a subclass of   H   of functions   f of the form:
f ( z ) = a + a n z n + a n + 1 z n + 1 + ( a C ,   N = { 1 , 2 , 3 , } ) .
f ( z ) = z + n = 2 a n z n .  
If   f A is given by (1) and   g A given by   g ( z ) = z + n = 2 b n z n .
For f and g the Hadamard product (or convolution) is defined by
( f g ) ( z ) = z + n = 2 a n b n z n = ( g f ) ( z ) .
Assume that both f and g are analytic defined in   U , f is called subordinate to   g , in   U and denoted as f g , if there is function, w , which is Schwarz analytic in U   , and w ( 0 ) = 0 ,   | w ( z ) | < 1   ( z U ) , such that   f ( z ) = g ( w ( z ) ) ,     ( z U ) . Moreover, i The equivalence connection exists if the function g is univalent in U. ([1,2,3]) is given as follows:
f ( z ) g ( z ) f ( 0 ) = g ( 0 )   and   f ( U ) g ( U ) ,   z U .
Definition 1 
([1]). Let   ϕ ( r , s , t ; z ) : C 3 × U C and the analytic function is  h ( z ) in   U , such that   p and   ϕ ( p ( z ) , z p ( z ) , z 2 p ( z ) ; z ) are univalent in   U and  p satisfies the second–order differential superordination,
h ( z ) ϕ ( p ( z ) , z p ( z ) , z 2 p ( z ) ; z ) ,   ( z U ) .  
Then we say that p is a differential superordination solution (2). A subordinate of the solutions of the differential superordination (2), or simply a subordinate, is an analytic function q(z), if p     q for all p satisfying (2). A univalent subordinate q ˜ (z) that satisfies q q ˜ for all subordinants q of (2) is called the best subordinant.
Definition 2 
([3]). Let   ϕ ( r , s , t ; z ) : C 3 × U C and let   h ( z ) be univalent in   U , and   p is analytic in   U satisfying the second−order differential subordination,
ϕ ( p ( z ) , z p ( z ) , z 2 p ( z ) ; z ) h ( z ) ,   ( z U ) ,
Then we say that p a solution of the differential subordination (3). The univalent function   q is called a dominant of the solution of the differential subordination (3) or more simply a dominant if   p q for all   p satisfying (3). A dominant q ˜ ( z ) that satisfies   q q ˜ for every dominant q of (3) is called the best dominant.
Sufficient requirements for the functions h, q and ϕ that satisfy the following condition, were obtained by many authors, see [4,5,6,7,8,9,10,11,12,13,14,15,16].
h ( z ) ϕ ( p ( z ) , z p ( z ) , z 2 p ( z ) ; z ) q ( z ) p ( z ) ,   ( z U ) .
By using the results (see [4,5,6,7,8,9,14,15,16]), we obtain sufficient conditions for normalized analytic functions satisfying:
q 1 ( z ) z f ( z ) f ( z ) q 2 ( z ) ,
where   q 1 and   q 2 are given univalent functions in   U with   q 1 ( 0 ) = q 2 ( 0 ) = 1 . Also, many authors (see [2,4,5,6,7,8,9,10,11,12,13,14,15,16,17]) derived some differential-subordination and superordination results with some sandwich theorems.
Certain univalent functions, Bi-Bazilevic functions and subordination results have been recently studied in the following papers [18,19].
Now, for complex parameters   c 1 , . . c t and   b 1 , . . b r   ( b j C \ { 0 , 1 , 2 , } , j = 1 , , r ,   | γ | < 1 ) , the   γ -hypergeometric:
  t Ψ r   = n = 0 ( c 1 , γ ) n . ( c t , γ ) n ( γ , γ ) n ( b 1 , γ ) n . ( b r , γ ) n z n ,    
( t = r + 1   s u c h   t h a t   t , r N 0 = { 0 , 1 , 2 , 3 , 4 , } ;       z U ) .
The γ-shifted factorial is involving by   ( c , γ ) 0 = 1   a n d   ( c , γ ) n = ( 1 c ) ( 1 c γ ) ( 1 c γ 2 ) ( 1 c γ n 1 ) ,   n N , where   c any complex number and in terms of the Gamma function   ( γ μ , γ ) n = Γ γ ( μ + n ) ( 1 γ ) n Γ γ ( μ ) , such that   Γ γ ( y ) = ( γ , γ ) ( 1 γ ) ( 1 y ) ( γ y , γ ) ,   0 < γ < 1 .
The study suggests that note that and by utilizing ratio test, the series (5) converges absolutely in open unit disk   U ,   | γ | < 1 .
2 Ψ 1 = n = 0 ( c 1 , γ ) n ( c 2 , γ ) n ( γ , γ ) n ( b 1 , γ ) n z n ,   ( | γ | < 1 ,   z U )
is the   γ -Gauss hypergeometric function see ([20,21]).
Recently Mohammed and Darus [22] defined the following:   D ( c i ; b j ; γ ) f : A A .
D ( c i ; b j ; γ ) f ( z ) = z + n = 2 ( c 1 , γ ) n 1 . ( c t , γ ) n 1 ( γ , γ ) n 1 ( b 1 , γ ) n 1 . ( b r , γ ) n 1 a n z n .
Patel [23] defined an integral operator   I ν , δ η on   A as follows:
For   η Ν 0 = Ν   { 0 } ,   δ > 0 with   ν + δ > 0 and   ν a real number.
Then for   f A , we define the operator   I ν , δ η by
I ν , δ 0   f ( z ) = f ( z ) I ν , δ 1   f ( z ) = ( ν + δ δ ) z 1 ( ν + δ δ )   0 z t ( ν + δ δ ) 2   f ( t ) d t ,   z U . I ν , δ 2   f ( z ) = ( ν + δ δ ) z 1 ( ν + δ δ )   0 z t ( ν + δ δ ) 2   I ν , δ 1 f ( t ) d t ,   z U . I ν , δ η   f ( z ) = ( ν + δ δ ) z 1 ( ν + δ δ )   0 z t ( ν + δ δ ) 2   I ν , δ η 1 f ( t ) d t ,   z U . = I ν , δ 1   ( z 1 z ) I ν , δ 1   ( z 1 z ) I ν , δ 1   ( z 1 z ) f ( z ) .
We observe that I ν , δ η : A A is an integral operator and for   f given by (1), we have
I ν , δ η   f ( z ) = z + n = 2 ( ν + δ ν + n δ ) η a n z n .    
It follows from (6) that   I ν , 0 η   f ( z ) = f ( z ) . By specializing the parameters, we get
(1)
I 1 , 1 η   f ( z ) = Τ η f ( z ) (See [23,24]).
(2)
I 1 δ , 1 η   f ( z ) = Τ δ η f ( z ) ,   δ > 0 (See [23]).
(3)
I ν , 1 η   f ( z ) = Τ ν η f ( z ) ,   ν > 0 (See [23]).
Definition 3.
Let   f A ,   z U , we define a new operator   M γ , b , v , δ C , η   f : A A , where
M γ , b , v , δ C , η   f ( z ) = D ( c i ; b j ; γ ) f ( z ) I ν , δ η   f ( z ) = z + n = 2 ( c 1 , γ ) n 1 . ( c t , γ ) n 1 ( γ , γ ) n 1 ( b 1 , γ ) n 1 . ( b r , γ ) n 1 ( ν + δ ν + n δ ) η a n z n .
We note from (7) that
  z ( M γ , b , v , δ C , η   f ( z ) ) + ν δ M γ , b , v , δ C , η   f ( z ) = ν + δ δ M γ , b , v , δ C , η 1   f ( z ) .
The specific aim of this investigation is to find sufficient conditions for certain normalized analytic functions   f to satisfy:
q 1 ( z ) ( M γ , b , v , δ C , η   f ( z ) z ) λ q 2 ( z ) ,
and
q 1 ( z ) ( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ q 2 ( z ) ,
where q 1 ( z ) and q 2 ( z ) are given univalent functions in   U with   q 1 ( 0 ) = q 2 ( 0 ) = 1 .
In our paper, we derive some sandwich–type results involving the operator   M γ , b , v , δ C , η   f ( z ) .
Certain univalent and multivalent functions and differential subordination results for higher-order have been recently studied in the following papers [10,12,17,25,26,27,28,29,30,31,32].

2. Preliminaries

In order to establish our subordination and superordination results, we need the following lemmas and definitions.
Definition 4 
([2]). Denote by   Q the class of all functions   q that are analytic and injective on   U _ \ E ( q ) , where   U _ = U   { z U } , and   E ( q ) = { ζ U : q ( z ) =   } and are such that   q ( ζ ) 0 for   ζ U \ E ( q ) . Further, let the subclass of   Q for which   q ( 0 ) = a be denoted by   Q ( a ) ,   Q ( 0 ) = Q 0 and   Q ( 1 ) = Q 1 = { q Q : q ( 0 ) = 1 } .
Lemma 1 
([6]). Let   q ( z ) be a convex univalent function in   U , let   α C ,   β C \ { 0 } and suppose that   R e { 1 + z q ( z ) q ( z ) } > m a x { 0 , R e ( α β ) }   . If   p ( z ) is analytic in   U and   α p ( z ) + β z p ( z ) α q ( z ) + β z q ( z ) , then   p ( z ) q ( z ) and   q is called the best dominant.
Lemma 2 
([3]). Let   q be univalent in   U and let   and   θ be analytic in the domain   D containing   q ( U ) with   ( w ) 0 , when   w q ( U ) . Set   Q ( z ) = z q ( z ) ( q ( z ) ) and   h ( z ) = θ ( q ( z ) ) + Q ( z ) , suppose that
(1) 
Q is starlike univalent in   U ,
(2) 
R e   ( z h ( z ) Q ( z ) ) > 0 ,   z U .
If   p is analytic in   U with   q ( 0 ) = p ( 0 ) , p ( U ) D and   ( p ( z ) ) + z p ( z ) ( p ( z ) ) ( q ( z ) ) + z q ( z ) ( q ( z ) ) , then   p ( z ) q ( z ) , and   q is the best dominant.
Lemma 3 
([2]). Let   q ( z ) be a convex univalent in the unit disk   U and let   θ and   be analytic in a domain   D containing   q ( U ) . Suppose that
(1) 
R e   { θ ( q ( z ) ) ( q ( z ) ) } > 0 for   z U ,
(2) 
Q ( z ) = z q ( z ) ( q ( z ) ) is starlike univalent in   z U .
If   p H [ q ( 0 ) , 1 ]   Q , with   p ( U ) D , and   θ ( p ( z ) ) + z p ( z ) ( p ( z ) ) is univalent in   U and   θ ( q ( z ) ) + z q ( z ) ( q ( z ) ) θ ( p ( z ) ) + z p ( z ) ( p ( z ) ) , then   q ( z ) p ( z ) , and   q is the best subordinant.
Lemma 4 
([2]). Let   q ( z ) be a convex univalent in   U and   q ( 0 ) = 1 . Let   β C , that   R e { β } > 0 . If   p ( z ) H [ q ( 0 ) , 1 ]   Q and   p ( z ) + β z p ( z ) is univalent in   U , then   q ( z ) + β z q ( z ) p ( z ) + β z p ( z ) , which leads to   p ( z ) q ( z ) and   p ( z ) is called the best subordinant.

3. Differential Subordination Results

Here, some differential subordination results are introduced using the operator   M γ , b , v , δ C , η   f ( z ) .
Theorem 1.
Let   q ( z ) be a convex univalent function in   U with   q ( 0 ) = 1 , 0 α C \ { 0 } ,   λ > 0 and assume that   q ( z ) satisfies:
R e { 1 z q ( z ) q ( z ) } > m a x { 0 , R e ( λ α ) }
If   f A satisfies the subordination
  λ ( ν δ + ( ν δ + 1 ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) 1 ) + p ( z ) q ( z ) + α λ z q ( z ) ,  
then
  ( M γ , b , v , δ C , η   f ( z ) z ) λ q ( z ) ,
and   q ( z ) is the best dominant.
Proof. 
Let
  p ( z ) = ( M γ , b , v , δ C , η   f ( z ) z ) λ ,
then the function   p ( z ) is analytic in   U and   p ( 0 ) = 1 . Therefore, if we differentiate (12) with respect to   z and by (8), in the last equation, it follows that
z p ( z ) p ( z ) = λ ( z ( M γ , b , v , δ C , η   f ( z ) ) M γ , b , v , δ C , η   f ( z ) 1 ) ,
then
z p ( z ) p ( z ) = λ ( ν δ + ( ν δ + 1 ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) 1 ) .
The subordination (10) follows from the hypothesis becomes   p ( z ) + α λ z p ( z ) q ( z ) + α λ z q ( z ) . □
An application of Lemma (1) with   β = α λ and   α = 1 , we obtain (11).
Taking   q ( z ) = 1 + A z 1 + B z   ( 1 B < A 1 ) , in Theorem (1), we obtain the following corollary.
Corollary 1.
Let   λ > 0 ,   α C \ { 0 } and   ( 1 B < A 1 ) .
Assume that   R e ( 1 + A z 1 + B z ) > m a x { 0 , R e ( λ α ) }   . If   f A is satisfies the following subordination condition:
p ( z ) 1 + A z 1 + B z + λ α ( A B ) z ( 1 + B z ) 2 ,
where   p ( z ) given by (12), then   ( M γ , b , v , δ C , η   f ( z ) z ) λ 1 + A z 1 + B z , and   1 + A z 1 + B z is called the best dominant.
Taking   A = 1 and   B = 1 in corollary (1), we get following result.
Corollary 2.
Let   λ > 0 ,   α C \ { 0 } and suppose that   R e ( 1 + z 1 z ) > m a x { 0 , R e ( λ α ) }   . If   f A is satisfies the following subordination
p ( z ) 1 + z 1 z + λ α 2 z ( 1 z ) 2
where   p ( z ) given by (12), then   ( M γ , b , v , δ C , η   f ( z ) z ) λ 1 + z 1 z , and   1 + z 1 z is called the best dominant.
Theorem 2.
Let   q ( z ) be a convex univalent function in   U with   q ( 0 ) = 1 ,   q ( z ) 0 , α   C \ { 0 } , λ > 0 and suppose that   q ( z ) satisfies:
R e { 1 + m ε ( q m ( z ) + q m + 1 ( z ) ) + q m + 1 ( z ) ε z q ( z ) q ( z ) + z q ( z ) q ( z ) } > 0 ,
where   m C ,   ε   C \ { 0 } and   z U .
Suppose that   z q ( z ) q ( z ) is starlike univalent in   U . If   f A satisfies:
    G ( z ) = ϕ ( c , η , γ , b , ν , δ , α , m , ε ; z ) ( 1 + q ( z ) ) ( q ( z ) ) m + z ε q ( z ) q ( z ) ,
where
G ( z ) = ( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ m + ( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ ( m + 1 ) + ε λ ( ν + δ δ ) [ M γ , b , v , δ C , η 2   f ( z ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ] ,
then   ( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ p ( z ) , and   p ( z ) is called the best dominant.
Proof. 
Let
  p ( z ) = ( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ .
Then the function   p ( z ) is analytic in   U and   p ( 0 ) = 1 . Therefore, differentiating (13) with respect to   z and by (8), it follows that
  z p ( z ) p ( z ) = λ ( ν + δ δ ) [ M γ , b , v , δ C , η 2   f ( z ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ] .
Set   θ ( w ) = ( 1 + w ) w m   and     ϕ ( w ) = ε w ,   w 0 ,
It follows that   θ ( w ) and ϕ ( w ) are analytic in   C \ { 0 } , and ϕ ( w ) 0 , w C \ { 0 } . In addition,
Q ( z ) = z q ( z )   ϕ ( q ( z ) ) = z ε q ( z ) q ( z )   and   h ( z ) = θ ( q ( z ) ) + Q ( z ) = ( 1 + q ( z ) ) ( q ( z ) ) m + z ε q ( z ) q ( z ) .
It is clear that   Q ( z ) is starlike univalent in   U , we have
R e { z h ( z ) Q ( z ) } = R e { 1 + m ε ( q m ( z ) + q m + 1 ( z ) ) + q m + 1 ( z ) ε z q ( z ) q ( z ) + z q ( z ) q ( z ) } > 0 .
By a straightforward computation, we obtain
G ( z ) = ( 1 + p ( z ) ) ( p ( z ) ) m + z ε p ( z ) p ( z ) ,
where   G ( z ) is given by (15). From (14) and (18), we have
  ( 1 + p ( z ) ) ( p ( z ) ) m + z ε p ( z ) p ( z ) ( 1 + q ( z ) ) ( q ( z ) ) m + z ε q ( z ) q ( z ) .
Thus, from Lemma (2), it follows that p ( z ) q ( z ) .
By (16), we get the result. □
Taking   q ( z ) = 1 + A z 1 + B z   ( 1 B < A 1 ) , in Theorem (2), for every   λ > 0 ,   ε C \ { 0 } the condition (13) becomes
R e { 1 + m ε ( ( 1 + A z 1 + B z ) m + ( 1 + A z 1 + B z ) m + 1 ) + 1 ε ( 1 + A z 1 + B z ) m + 1 ( A B ) z ( 1 + B z ) ( 1 + A z ) 2 z B 1 + B z } > 0
Thus, we obtain the following corollary.
Corollary 3.
Let   λ > 0 ,   α C \ { 0 } ,   m C and 1 B < A 1 . Assume that (20) hold. If   f A and   G ( z ) ( 1 + 1 + A z 1 + B z ) ( 1 + A z 1 + B z ) m + ( A B ) z ε ( 1 + B z ) ( 1 + A z ) , where   G ( z ) given by (15), then   ( M γ , b , v , δ C , η   f ( z ) z ) λ 1 + A z 1 + B z , and   1 + A z 1 + B z is called the best dominant.
Taking   p ( z ) = ( 1 + z 1 z ) ρ   ( 0 < ρ 1 ) , in Theorem (2), the condition (20) becomes
R e { 1 + m ε ( ( 1 + z 1 z ) ρ m + ( 1 + z 1 z ) ρ ( m + 1 ) ) + 1 ε ( 1 + z 1 z ) ρ ( m + 1 ) 2 z ρ 1 z 2 + 2 z ( z + ρ ) 1 z 2 } > 0 .  
Thus, we obtain the following corollary.
Corollary 4.
Let   λ > 0 ,   α C \ { 0 } ,   m C and   ( 0 < ρ 1 ) . Assume that (21) holds. If   f A and   G ( z ) ( 1 + 1 + z 1 z ) ( 1 + z 1 z ) ρ m + 2 z ε ρ 1 z 2 , where   G ( z ) given by (15), then   ( M γ , b , v , δ C , η   f ( z ) z ) λ ( 1 + z 1 z ) ρ , and   ( 1 + z 1 z ) ρ is the best dominant.

4. Differential Superordination Results

Theorem 3.
Let   q ( z ) be a convex univalent function in   U with   q ( 0 ) = 1 , α   C ,   λ > 0 with   R e ( α ) > 0 . If   f A such that
( M γ , b , v , δ C , η   f ( z ) z ) λ 0 ,
and suppose that   f satisfies the condition:
( M γ , b , v , δ C , η   f ( z ) z ) λ H [ q ( 0 ) , 1 ]   Q .
If the function   p ( z ) given by (12) is univalent and the superordination condition:
q ( z ) + α λ z q ( z ) p ( z ) + λ ( ν δ + ( ν δ + 1 ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) 1 ) ,   holds ,
then   q ( z ) ( M γ , b , v , δ C , η   f ( z ) z ) λ , and   q ( z ) is called the best subordinant.
Proof. 
Let
  p ( z ) = ( M γ , b , v , δ C , η   f ( z ) z ) λ .
Differentiating (12) with respect to   z , we get
z p ( z ) p ( z ) = λ ( ν δ + ( ν δ + 1 ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) 1 )  
λ ( ν δ + ( ν δ + 1 ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) 1 ) + p ( z ) q ( z ) + α λ z q ( z ) .
A simple computation and using (8), from (25), we get   λ ( ν δ + ( ν δ + 1 ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) 1 ) = α λ z p ( z ) .
By Lemma (4), we obtain the desired result.
Taking   q ( z ) = 1 + A z 1 + B z   ( 1 B < A 1 ) , in Theorem (3), we obtain the following corollary. □
Corollary 5.
Let   λ > 0 ,   α C \ { 0 } and   ( 1 B < A 1 ) , such that
( M γ , b , v , δ C , η   f ( z ) z ) λ H [ q ( 0 ) , 1 ]   Q .
If the function   p ( z ) given by (12) is univalent in   U and   f A satisfies the superordination condition:
1 + A z 1 + B z + α λ ( 1 + B z ) A z ( 1 + A z ) B z ( 1 + B z ) 2 p ( z ) ,
then   1 + A z 1 + B z ( M γ , b , v , δ C , η   f ( z ) z ) λ , and   1 + A z 1 + B z is called the best subordinant.
Theorem 4.
Let   q ( z ) be a convex univalent function in   U ,   q ( z ) 0 ,   α , ε C \ { 0 } ,   λ > 0 , m C and suppose that   q ( z ) satisfies:
R e { 1 ε ( ( m ) q m ( z ) + ( m + 1 ) q m + 1 ( z ) ) } > 0 . Let   f ( z ) A and suppose that satisfies the next condition:
( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ H [ q ( 0 ) , 1 ]   Q ,
and
( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ 0 .
If the function   p ( z ) given by (16) is univalent in   U and
( q ( z ) ) m + ( q ( z ) ) m + 1 + ε z q ( z ) q ( z )   G ( z ) ,
then, q ( z ) ( M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ) λ ,   and   q ( z ) is called the best subordinant.
Proof. 
Let the function   p ( z ) defined on   U by (16). Then a computation show that
  z q ( z ) q ( z ) = λ ( ν + δ δ ) [ M γ , b , v , δ C , η 2   f ( z ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η 1   f ( z ) M γ , b , v , δ C , η   f ( z ) ] .
By setting   θ ( w ) = ( 1 + w ) w m and   ϕ ( w ) = ε w ,   w 0 , we see that   θ ( w ) and ϕ ( w ) are analytic in   C \ { 0 } , and that   ϕ ( w ) 0 , w C \ { 0 } . In addition, Q ( z ) = z q ( z )   ϕ ( q ( z ) ) = z ε q ( z ) q ( z ) .
Clearly,   Q ( z ) is starlike univalent in   U , we have R e { θ ( q ( z ) ) ϕ ( q ( z ) ) } = R e { 1 ε ( m q m ( z ) + ( m + 1 ) q m + 1 ( z ) ) } > 0 .   By a straightforward computation, it follows that:
G ( z ) = θ ( p ( z ) ) + p ( z ) = ( 1 + p ( z ) ) ( p ( z ) ) m + z ε p ( z ) p ( z ) ,
where   G ( z ) is given by (15).
From (27) and (29), it follows that:
( 1 + q ( z ) ) ( q ( z ) ) m + z ε q ( z ) q ( z ) ( 1 + p ( z ) ) ( p ( z ) ) m + z ε p ( z ) p ( z ) .
Thus by applying Lemma (3), we get   q ( z ) p ( z ) .
The proof is complete. □

5. Sandwich Results

If we combine Theorem (1) with Theorem (3), we get the sandwich Theorem:
Theorem 5.
Let   q 1 and   q 2 be a convex univalent functions in   U with   q 1 ( 0 ) = q 2 ( 0 ) = 1 and   q 2 satisfies (9). Suppose that R e { α } > 0 ,   λ > 0 ,   α C \ { 0 } .
If   f A , such that
( M γ , b , v , δ C , η   f ( z ) z ) λ H [ q ( 0 ) , 1 ]   Q ,
and the function   p ( z ) defined by (12) is univalent and satisfies,
q 1 ( z ) + α λ z q 1 ( z ) p ( z ) q 2 ( z ) + α λ z q 2 ( z ) ,
implies that
q 1 ( z ) ( M γ , b , v , δ C , η   f ( z ) z ) λ q 2 ( z ) ,
where   q 1 and   q 2 are respectively, the best subordinant and the best dominant of (31).
If we combine Theorem (2) with Theorem (4), we get the sandwich Theorem:
Theorem 6.
Let   q i be two convex univalent functions in   U , such that   q i ( 0 ) = 1 ,   q i ( z ) 0   ( i = 1 , 2 ) . Suppose that   q 1 and   q 2 satisfies (24) and (14), respectively.
If   f A and assume that   f satisfies the next conditions:
( M γ , b , v , δ C , η   f ( z ) z ) λ 0 .
and
( M γ , b , v , δ C , η   f ( z ) z ) λ H [ q ( 0 ) , 1 ]   Q ,
and   ϕ ( z ) is univalent in   U , then
( 1 + q 1 ( z ) ) ( q 1 ( z ) ) m + z ε q 1 ( z ) q 1 ( z ) ϕ ( z ) ( 1 + q 2 ( z ) ) ( q 2 ( z ) ) m + z ε q 2 ( z ) q 2 ( z )
Implies   q 2 ( z ) ϕ ( z ) q 2 ( z ) , and   q 1 and   q 2 are the best subordinant and the best dominant respectively and   ϕ ( z ) takes the form as in (15).

Author Contributions

Conceptualization, methodology, software by E.E.-S., validation, formal analysis, investigation, resources, by M.A.S., data curation, writing—original draft preparation, writing—review and editing, visualization by W.G.A., supervision, project administration, funding acquisition, by W.G.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bulboacă, T. Classes of first-order differential superordinations. Demonstr. Math. 2002, 35, 287–292. [Google Scholar] [CrossRef]
  2. Bulboacă, T. Differential Subordinations and Superordinations, Recent Results; House of Scientific Book Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
  3. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
  4. Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. On sandwich results of univalent functions defined by a linear operator. J. Interdiscip. Math. 2020, 23, 803–809. [Google Scholar] [CrossRef]
  5. Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. Some new results of differential subordinations for Higher-order derivatives of multivalent functions. J. Phys. Conf. Ser. 2021, 1804, 012111. [Google Scholar] [CrossRef]
  6. Ali, R.M.; Ravichandran, V.; Khan, M.H.; Subramaniam, K.G. Differential sandwich theorems for certain analytic functions. Far East J. Math. Sci. 2004, 15, 87–94. [Google Scholar]
  7. Atshan, W.G.; Ali, A.A.R. On some sandwich theorems of analytic functions involving Noor-Sălăgean operator. Adv. Math. Sci. J. 2020, 9, 8455–8467. [Google Scholar] [CrossRef]
  8. Atshan, W.G.; Ali, A.A.R. On sandwich theorems results for certain univalent functions defined by generalized operators. Iraqi J. Sci. 2021, 62, 2376–2383. [Google Scholar] [CrossRef]
  9. Atshan, W.G.; Battor, H.; Abaas, A.F. Some sandwich theorems for meromorphic univalent functions defined by new integral operator. J. Interdiscip. Math. 2021, 24, 579–591. [Google Scholar] [CrossRef]
  10. Atshan, W.G.; Battor, A.H.; Abaas, A.F. On third-order differential subordination results for univalent analytic functions involving an operator. J. Phys. Conf. Ser. 2020, 1664, 012044. [Google Scholar] [CrossRef]
  11. Atshan, W.G.; Hadi, R.A. Some differential subordination and superordination results of p-valent functions defined by differential operator. J. Phys. Conf. Ser. 2020, 1664, 012043. [Google Scholar] [CrossRef]
  12. Atshan, W.G.; Hiress, R.A.; Altinkaya, S. On third-order differential subordination and superordination properties of analytic functions defined by a generalized operator. Symmetry 2022, 14, 418. [Google Scholar] [CrossRef]
  13. Atshan, W.G.; Kulkarni, S.R. On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator. J. Inequal. Pure Appl. Math. 2009, 10, 11. [Google Scholar]
  14. Goyal, S.P.; Goswami, P.; Silverman, H. Subordination and superordination results for a class of analytic multivalent functions. Int. J. Math. Sci. 2008, 2008, 561638. [Google Scholar] [CrossRef] [Green Version]
  15. Shanmugam, T.N.; Sivasubramanian, S.; Silverman, H. On sandwich theorems for some classes of analytic functions. Int. J. Math. Sci. 2006, 2006, 29684. [Google Scholar] [CrossRef] [Green Version]
  16. Shanmugam, T.N.; Ravichandran, V.; Sivasubramanian, S. Differential sandwich theorems for subclasses of analytic functions. Aust. J. Math. Anal. Appl. 2006, 3, 8. [Google Scholar]
  17. Darweesh, A.M.; Atshan, W.G.; Battor, A.H.; Lupas, A.A. Third-order differential subordination results for analytic functions associated with a certain differential operator. Symmetry 2022, 14, 99. [Google Scholar] [CrossRef]
  18. Aouf, M.K.; Seoudy, T. Certain Class of Bi-Bazilevic Functions with Bounded Boundary Rotation Involving Salăgeăn Operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
  19. Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
  20. Carlson, B.C.; Shaffer, D.B. Starlike and presfarlike hypergeometric functions. SIAM J. Math. Anal. 1984, 15, 737–745. [Google Scholar] [CrossRef]
  21. Gasper, G.; Rahman, M. Basic Hypergeometric Series Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
  22. Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
  23. Patel, J. Inclusion relations and convolution properties of certain subclasses of analytic functions defined by generalized Sălăgean operator. Bull. Belg. Math. Soc. 2008, 15, 33–47. [Google Scholar] [CrossRef]
  24. Swamy, S.R. Inclusion properties of certain subclasses of analytic functions. Inter. Math. Forum 2012, 7, 1751–1766. [Google Scholar]
  25. Murugusundaramoorthy, G.; Magesh, N. An application of second order differential inequalities based on linear and integral operators. Int. J. Math. Sci. Eng. Appl. 2008, 2, 105–114. [Google Scholar]
  26. Raducanu, D. Third order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterr. J. Math. 2017, 14, 1–18. [Google Scholar] [CrossRef]
  27. Tang, H.; Srivastava, H.M.; Deniz, E.; Li, S. Third-order differential superordination involving the generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
  28. Tang, H.; Srivastava, H.M.; Li, S.; Ma, L. Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator. Abstract Appl. Anal. 2014, 2014, 11. [Google Scholar] [CrossRef]
  29. Tang, H.; Deniz, E. Third-order differential subordination results for analytic functions involving the generalized Bessel functions. Acta Math. Sci. 2014, 34, 1707–1719. [Google Scholar] [CrossRef]
  30. Gochhayat, P. Sandwich-type results for a class of functions defined by a generalized differential operator. Math. Vesink 2013, 65, 178–186. [Google Scholar]
  31. Gochhayat, P.; Prajapati, A. Applications of third order di_erential subordination and superordination involving generalized Struve function. Filomat 2019, 33, 3047–3059. [Google Scholar] [CrossRef]
  32. El-Ashwah, R.M.; Aouf, M.K. Differential subordination and superordination for certain subclasses of p-valent functions. Math. Comput. Model. 2010, 51, 349–360. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sabri, M.A.; Atshan, W.G.; El-Seidy, E. On Sandwich-Type Results for a Subclass of Certain Univalent Functions Using a New Hadamard Product Operator. Symmetry 2022, 14, 931. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14050931

AMA Style

Sabri MA, Atshan WG, El-Seidy E. On Sandwich-Type Results for a Subclass of Certain Univalent Functions Using a New Hadamard Product Operator. Symmetry. 2022; 14(5):931. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14050931

Chicago/Turabian Style

Sabri, Mustafa A., Waggas Galib Atshan, and Essam El-Seidy. 2022. "On Sandwich-Type Results for a Subclass of Certain Univalent Functions Using a New Hadamard Product Operator" Symmetry 14, no. 5: 931. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14050931

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop