Next Article in Journal
A Residual Voltage Data-Driven Prediction Method for Voltage Sag Based on Data Fusion
Next Article in Special Issue
A Note on a Minimal Irreducible Adjustment Pagerank
Previous Article in Journal / Special Issue
Spectral Distribution and Numerical Methods for Rational Eigenvalue Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Solvability of a System of Quaternion Matrix Equations Involving ϕ-Skew-Hermicity

1
Department of Mathematics, Shanghai University, Shanghai 200444, China
2
Department of Mathematics, University of California, Los Angeles, CA 90095, USA
3
School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
*
Author to whom correspondence should be addressed.
Submission received: 30 May 2022 / Revised: 12 June 2022 / Accepted: 18 June 2022 / Published: 20 June 2022

Abstract

:
Let H be the real quaternion algebra and H m × n denote the set of all m × n matrices over H . For A H m × n , we denote by A ϕ the n × m matrix obtained by applying ϕ entrywise to the transposed matrix A T , where ϕ is a non-standard involution of H . A H n × n is said to be ϕ -skew-Hermicity if A = A ϕ . In this paper, we provide some necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution to the system of quaternion matrix equations with four unknowns A i X i ( A i ) ϕ + B i X i + 1 ( B i ) ϕ = C i , ( i = 1 , 2 , 3 ) , A 4 X 4 ( A 4 ) ϕ = C 4 .

1. Introduction

Let R denote the field of real numbers, H be a four-dimensional vector space over R with an ordered basis { 1 , i , j , k } . A real quaternion, simply called quaternion, is a vector x = a 0 + a 1 i + a 2 j + a 3 k H with real coefficients a 0 , a 1 , a 2 , a 3 . Moreover, i , j , k satisfies
i 2 = j 2 = k 2 = 1 ,
i j = j i = k , j k = k j = i , k i = i k = j .
Let R and H m × n stand, respectively, for the real number field and the set of all m × n matrices over the real quaternion algebra
H = { a 0 + a 1 i + a 2 j + a 3 k | i 2 = j 2 = k 2 = i j k = 1 , a 0 , a 1 , a 2 , a 3 R } .
The definitions of ϕ -skew-Hermitian quaternion matrices were first introduced by Rodman (Definition 3.6.1 in [1]). For A H m × n , we denote by A ϕ the n × m matrix obtained by applying ϕ entrywise to the transposed matrix A T , where ϕ is a non-standard involution of H (see Definition 1). A H n × n is said to be ϕ -skew-Hermicity if A = A ϕ .
The decompositions of the quaternion matrices have applications in many fields, such as color image processing(e.g., [2,3]), quantum mechanics [4], signal processing [5], and so on. Research on quaternion matrix theories (e.g., [6,7,8,9,10,11,12,13,14,15,16,17,18]) and equations (e.g., [13,19,20,21,22,23,24,25,26,27]) is ongoing.
The quaternion matrix equation involving Hermicity is one of the active research topics in the matrix field and its applications. Wang and Zhang [28] provided necessary and sufficient conditions for the existence and expression of the Re-nonnegative definite solution to the system
A X A * + B Y B * = C
over H by using the decomposition of pairwise matrices, where * stands for conjugate transpose. Wang and Jiang [29] further studied the extreme ranks of the (skew-)Hermitian solutions to the quaternion matrix equation. He [30] investigated the system of coupled real quaternion matrix equations involving η -Hermicity
A i X i A i η * + B i X i + 1 B i η * = C i , ( i = 1 , 2 , 3 ) ,
where A i H p i × t i , B i H p i × t i + 1 , C i H p i × p i , and C i are η -Hermitian matrices. He gave the solvability conditions, general solutions, and the rank bounds of the general η -Hermitian solutions. Some researchers have considered the ϕ -skew-Hermitian solution to some quaternion matrix equations. For example, He [31] derived some necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution to the following system of quaternion matrix equations involving ϕ -skew-Hermicity
B X B ϕ + C Y C ϕ = A , E Z E ϕ + D Y D ϕ = F , X = X ϕ , Y = Y ϕ , Z = Z ϕ ,
where A, B, C, D, E, F are the given quaternion matrices.
To our knowledge, there is little information on the system of quaternion matrix equations involving ϕ -skew-Hermicity with four unknowns
A 1 X 1 ( A 1 ) ϕ + B 1 X 2 ( B 1 ) ϕ = C 1 , A 2 X 2 ( A 2 ) ϕ + B 2 X 3 ( B 2 ) ϕ = C 2 , A 3 X 3 ( A 3 ) ϕ + B 3 X 4 ( B 3 ) ϕ = C 3 , A 4 X 4 ( A 4 ) ϕ = C 4 , X i = ( X i ) ϕ ,
where A i H p i × t i , B i H p i × t i + 1 , C i H p i × p i , and C i are ϕ -skew-Hermitian matrices. Using the simultaneous decomposition of a set of seven real quaternion matrices
A 1 B 1 A 2 B 2 A 3 B 3 A 4 ,
we provide some necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution to the system (1).
The remainder of this paper is organized as follows. In Section 2, we review the definitions of the non-standard involution ϕ and the ϕ -skew-Hermitian quaternion matrix; we also provide a simultaneous decomposition for a set of eleven real quaternion matrices involving ϕ -skew-Hermicity and present a canonical form of the system of the quaternion matrix, Equation (1). In Section 3, we provide some necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution to the system (1).

2. A Canonical Form of the System of the Quaternion Matrix Equation

In this section, we investigate the structure of a simultaneous decomposition for the matrix array (2) and provide a canonical form of the system of the quaternion matrix Equations (1). First, we review the definitions of non-standard involution ϕ and ϕ -skew-Hermitian matrix.
Definition 1. 
(Non-standard involution [1]). Let ϕ be an anti-endomorphism of H . Assume that ϕ does not map H into zero. Then, ϕ is one-to-one and onto H ; thus, ϕ is an anti-automorphism. Moreover, ϕ is real linear and can be represented as a 4 × 4 real matrix with respect to the basis { 1 , i , j , k } . Then, ϕ is a non-standard involution if and only if
ϕ = 1 0 0 T ,
where T is a 3 × 3 real orthogonal symmetric matrix with eigenvalues 1 , 1 , 1 .
Definition 2. 
( ϕ -skew-Hermitian [1]). A ∈ H n × n is said to be ϕ-skew-Hermitian if A = ( A ) ϕ , where ϕ is a non-standard involution.
The following Theorem presents the equivalence canonical form of the set of seven real quaternion matrices (2).
Using the results of [31,32], we can obtain the following result.
Lemma 1. 
Consider a set of seven matrices (2); there exists a unitary matrix T 1 ^ H t 1 × t 1 , nonsingular matrices P i ^ H p i × p i , ( i = 1 , 2 , 3 ) , T 2 ^ H t 2 × t 2 , T 3 ^ H t 3 × t 3 , T 4 ^ H t 4 × t 4 , P 4 ^ H p 4 × p 4 such that
P i ^ A i T i ^ = S a i , P i ^ B i T i + 1 ^ = S b i , P 4 ^ A 4 T 4 ^ = S a 4
where
S a 1 S b 1 S a 2 S b 2 S a 3 S b 3 S a 4 = I 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .
It follows from Lemma 1 that the system (1) becomes
P 1 ^ A 1 T 1 ^ T 1 ^ 1 X 1 ( T 1 ^ ) ϕ 1 ( T 1 ^ ) ϕ ( A 1 ) ϕ ( P 1 ^ ) ϕ + P 1 ^ B 1 T 2 ^ T 2 ^ 1 X 2 ( T 2 ^ ) ϕ 1 ( T 2 ^ ) ϕ ( B 1 ) ϕ ( P 1 ^ ) ϕ = P 1 ^ C 1 ( P 1 ^ ) ϕ , P 2 ^ A 2 T 2 ^ T 2 ^ 1 X 2 ( T 2 ^ ) ϕ 1 ( T 2 ^ ) ϕ ( A 2 ) ϕ ( P 2 ^ ) ϕ + P 2 ^ B 2 T 3 ^ T 3 ^ 1 X 3 ( T 3 ^ ) ϕ 1 ( T 3 ^ ) ϕ ( B 2 ) ϕ ( P 2 ^ ) ϕ = P 2 ^ C 2 ( P 2 ^ ) ϕ , P 3 ^ A 3 T 3 ^ T 3 ^ 1 X 3 ( T 3 ^ ) ϕ 1 ( T 3 ^ ) ϕ ( A 3 ) ϕ ( P 3 ^ ) ϕ + P 3 ^ B 3 T 4 ^ T 4 ^ 1 X 4 ( T 4 ^ ) ϕ 1 ( T 4 ^ ) ϕ ( B 3 ) ϕ ( P 3 ^ ) ϕ = P 3 ^ C 3 ( P 3 ^ ) ϕ , P 4 ^ A 4 T 4 ^ T 4 ^ 1 X 4 ( T 4 ^ ) ϕ 1 ( T 4 ^ ) ϕ ( A 4 ) ϕ ( P 4 ^ ) ϕ = P 4 ^ C 4 ( P 4 ^ ) ϕ ,
where X i = ( X i ) ϕ .
Put
X 1 ^ = T 1 ^ 1 X 1 ( T 1 ^ ) ϕ 1 , X 2 ^ = T 2 ^ 1 X 2 ( T 2 ^ ) ϕ 1 , X 3 ^ = T 3 ^ 1 X 3 ( T 3 ^ ) ϕ 1 , X 4 ^ = T 4 ^ 1 X 4 ( T 4 ^ ) ϕ 1 ,
D i j ( 1 ) = P 1 ^ C 1 ( P 1 ^ ) ϕ , D i j ( 2 ) = P 2 ^ C 2 ( P 2 ^ ) ϕ , D i j ( 3 ) = P 3 ^ C 3 ( P 3 ^ ) ϕ , D i j ( 4 ) = P 4 ^ C 4 ( P 4 ^ ) ϕ .
According to Lemma 1, the system (1) is equivalent to the following system:
S a 1 X 1 ^ ( S a 1 ) ϕ + S b 1 X 2 ^ ( S b 1 ) ϕ = D i j ( 1 ) , S a 2 X 2 ^ ( S a 2 ) ϕ + S b 2 X 3 ^ ( S b 2 ) ϕ = D i j ( 2 ) , S a 3 X 3 ^ ( S a 3 ) ϕ + S b 3 X 4 ^ ( S b 3 ) ϕ = D i j ( 3 ) , S a 4 X 4 ^ ( S a 4 ) ϕ = D i j ( 4 ) ,
where X i = ( X i ) ϕ . In the next section, we will consider the system (4).

3. Solvability Conditions for the Quaternion Matrix Equation to Possess a ϕ -Skew-Hermitian Solution

In this section, we provide some necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution to the system (1). In order to solve the system of quaternion matrix Equation (1), we need to solve the system of quaternion matrix Equation (4).
First, let matrices X 1 ^ , X 2 ^ , X 3 ^ , X 4 ^ have the following forms:
X 1 ^ = ( X 1 ^ ) ϕ = X 11 ( 1 ) X 12 ( 1 ) X 18 ( 1 ) ( X 12 ( 1 ) ) ϕ X 22 ( 1 ) X 28 ( 1 ) ( X 18 ( 1 ) ) ϕ ( X 28 ( 1 ) ) ϕ X 88 ( 1 ) ,
X 2 ^ = ( X 2 ^ ) ϕ = X 11 ( 2 ) X 12 ( 2 ) X 1 , 18 ( 2 ) ( X 12 ( 2 ) ) ϕ X 22 ( 2 ) X 2 , 18 ( 2 ) ( X 1 , 18 ( 2 ) ) ϕ ( X 2 , 18 ( 2 ) ) ϕ X 18 , 18 ( 2 ) ,
X 3 ^ = ( X 3 ^ ) ϕ = X 11 ( 3 ) X 12 ( 3 ) X 1 , 20 ( 3 ) ( X 12 ( 3 ) ) ϕ X 22 ( 3 ) X 2 , 20 ( 3 ) ( X 1 , 20 ( 3 ) ) ϕ ( X 2 , 20 ( 3 ) ) ϕ X 20 , 20 ( 3 ) ,
X 4 ^ = ( X 4 ^ ) ϕ = X 11 ( 4 ) X 12 ( 4 ) X 1 , 14 ( 4 ) ( X 12 ( 4 ) ) ϕ X 22 ( 4 ) X 2 , 14 ( 4 ) ( X 1 , 14 ( 4 ) ) ϕ ( X 2 , 14 ( 4 ) ) ϕ X 14 , 14 ( 4 ) .
Then, substituting X 1 ^ and X 2 ^ into the first equation in (4) yields
( D i j ( 1 ) ) 14 × 14 = ( D 1 ( 1 ) , D 2 ( 1 ) ) ,
where
D 1 ( 1 ) = X 11 ( 1 ) + X 11 ( 2 ) X 12 ( 1 ) + X 12 ( 2 ) X 13 ( 1 ) + X 13 ( 2 ) X 14 ( 1 ) + X 14 ( 2 ) X 15 ( 1 ) + X 15 ( 2 ) ( X 12 ( 1 ) + X 12 ( 2 ) ) ϕ X 22 ( 1 ) + X 22 ( 2 ) X 23 ( 1 ) + X 23 ( 2 ) X 24 ( 1 ) + X 24 ( 2 ) X 25 ( 1 ) + X 25 ( 2 ) ( X 13 ( 1 ) + X 13 ( 2 ) ) ϕ ( X 23 ( 1 ) + X 23 ( 2 ) ) ϕ X 33 ( 1 ) + X 33 ( 2 ) X 34 ( 1 ) + X 34 ( 2 ) X 35 ( 1 ) + X 35 ( 2 ) ( X 14 ( 1 ) + X 14 ( 2 ) ) ϕ ( X 24 ( 1 ) + X 24 ( 2 ) ) ϕ ( X 34 ( 1 ) + X 34 ( 2 ) ) ϕ X 44 ( 1 ) + X 44 ( 2 ) X 45 ( 1 ) + X 45 ( 2 ) ( X 15 ( 1 ) + X 15 ( 2 ) ) ϕ ( X 25 ( 1 ) + X 25 ( 2 ) ) ϕ ( X 35 ( 1 ) + X 35 ( 2 ) ) ϕ ( X 45 ( 1 ) + X 45 ( 2 ) ) ϕ X 55 ( 1 ) + X 55 ( 2 ) ( X 16 ( 1 ) + X 16 ( 2 ) ) ϕ ( X 26 ( 1 ) + X 26 ( 2 ) ) ϕ ( X 36 ( 1 ) + X 36 ( 2 ) ) ϕ ( X 46 ( 1 ) + X 46 ( 2 ) ) ϕ ( X 56 ( 1 ) + X 56 ( 2 ) ) ϕ ( X 17 ( 1 ) ) ϕ ( X 27 ( 1 ) ) ϕ ( X 37 ( 1 ) ) ϕ ( X 47 ( 1 ) ) ϕ ( X 57 ( 1 ) ) ϕ ( X 17 ( 2 ) ) ϕ ( X 27 ( 2 ) ) ϕ ( X 37 ( 2 ) ) ϕ ( X 47 ( 2 ) ) ϕ ( X 57 ( 2 ) ) ϕ ( X 18 ( 2 ) ) ϕ ( X 28 ( 2 ) ) ϕ ( X 38 ( 2 ) ) ϕ ( X 48 ( 2 ) ) ϕ ( X 58 ( 2 ) ) ϕ ( X 19 ( 2 ) ) ϕ ( X 29 ( 2 ) ) ϕ ( X 39 ( 2 ) ) ϕ ( X 49 ( 2 ) ) ϕ ( X 59 ( 2 ) ) ϕ ( X 1 , 10 ( 2 ) ) ϕ ( X 2 , 10 ( 2 ) ) ϕ ( X 3 , 10 ( 2 ) ) ϕ ( X 4 , 10 ( 2 ) ) ϕ ( X 5 , 10 ( 2 ) ) ϕ ( X 1 , 11 ( 2 ) ) ϕ ( X 2 , 11 ( 2 ) ) ϕ ( X 3 , 11 ( 2 ) ) ϕ ( X 4 , 11 ( 2 ) ) ϕ ( X 5 , 11 ( 2 ) ) ϕ ( X 1 , 12 ( 2 ) ) ϕ ( X 2 , 12 ( 2 ) ) ϕ ( X 3 , 12 ( 2 ) ) ϕ ( X 4 , 12 ( 2 ) ) ϕ ( X 5 , 12 ( 2 ) ) ϕ 0 0 0 0 0 ,
D 2 ( 1 ) = X 16 ( 1 ) + X 16 ( 2 ) X 17 ( 1 ) X 17 ( 2 ) X 18 ( 2 ) X 19 ( 2 ) X 1 , 10 ( 2 ) X 1 , 11 ( 2 ) X 1 , 12 ( 2 ) 0 X 26 ( 1 ) + X 26 ( 2 ) X 27 ( 1 ) X 27 ( 2 ) X 28 ( 2 ) X 29 ( 2 ) X 2 , 10 ( 2 ) X 2 , 11 ( 2 ) X 2 , 12 ( 2 ) 0 X 36 ( 1 ) + X 36 ( 2 ) X 37 ( 1 ) X 37 ( 2 ) X 38 ( 2 ) X 39 ( 2 ) X 3 , 10 ( 2 ) X 3 , 11 ( 2 ) X 3 , 12 ( 2 ) 0 X 46 ( 1 ) + X 46 ( 2 ) X 47 ( 1 ) X 47 ( 2 ) X 48 ( 2 ) X 49 ( 2 ) X 4 , 10 ( 2 ) X 4 , 11 ( 2 ) X 4 , 12 ( 2 ) 0 X 56 ( 1 ) + X 56 ( 2 ) X 57 ( 1 ) X 57 ( 2 ) X 58 ( 2 ) X 59 ( 2 ) X 5 , 10 ( 2 ) X 5 , 11 ( 2 ) X 5 , 12 ( 2 ) 0 X 66 ( 1 ) + X 66 ( 2 ) X 67 ( 1 ) X 67 ( 2 ) X 68 ( 2 ) X 69 ( 2 ) X 6 , 10 ( 2 ) X 6 , 11 ( 2 ) X 6 , 12 ( 2 ) 0 ( X 67 ( 1 ) ) ϕ X 77 ( 1 ) 0 0 0 0 0 0 0 ( X 67 ( 2 ) ) ϕ 0 X 77 ( 2 ) X 78 ( 2 ) X 79 ( 2 ) X 7 , 10 ( 2 ) X 7 , 11 ( 2 ) X 7 , 12 ( 2 ) 0 ( X 68 ( 2 ) ) ϕ 0 ( X 78 ( 2 ) ) ϕ X 88 ( 2 ) X 89 ( 2 ) X 8 , 10 ( 2 ) X 8 , 11 ( 2 ) X 8 , 12 ( 2 ) 0 ( X 69 ( 2 ) ) ϕ 0 ( X 79 ( 2 ) ) ϕ ( X 89 ( 2 ) ) ϕ X 9 , 9 ( 2 ) X 9 , 10 ( 2 ) X 9 , 11 ( 2 ) X 9 , 12 ( 2 ) 0 ( X 6 , 10 ( 2 ) ) ϕ 0 ( X 7 , 10 ( 2 ) ) ϕ ( X 8 , 10 ( 2 ) ) ϕ ( X 9 , 10 ( 2 ) ) ϕ X 10 , 10 ( 2 ) X 10 , 11 ( 2 ) X 10 , 12 ( 2 ) 0 ( X 6 , 11 ( 2 ) ) ϕ 0 ( X 7 , 11 ( 2 ) ) ϕ ( X 8 , 11 ( 2 ) ) ϕ ( X 9 , 11 ( 2 ) ) ϕ ( X 10 , 11 ( 2 ) ) ϕ X 11 , 11 ( 2 ) X 11 , 12 ( 2 ) 0 ( X 6 , 12 ( 2 ) ) ϕ 0 ( X 7 , 12 ( 2 ) ) ϕ ( X 8 , 12 ( 2 ) ) ϕ ( X 9 , 12 ( 2 ) ) ϕ ( X 10 , 12 ( 2 ) ) ϕ ( X 11 , 12 ( 2 ) ) ϕ X 12 , 12 ( 2 ) 0 0 0 0 0 0 0 0 0 0 .
Substituting X 2 ^ and X 3 ^ into the second Equation in (4) yields
( D i j ( 2 ) ) 20 × 20 = ( D 1 ( 2 ) , D 2 ( 2 ) , D 3 ( 2 ) ) ,
where
D 1 ( 2 ) = X 11 ( 2 ) + X 11 ( 3 ) X 12 ( 2 ) + X 12 ( 3 ) X 13 ( 2 ) + X 13 ( 3 ) X 14 ( 2 ) + X 14 ( 3 ) X 15 ( 2 ) X 17 ( 2 ) + X 15 ( 3 ) ( X 12 ( 2 ) + X 12 ( 3 ) ) ϕ X 22 ( 2 ) + X 22 ( 3 ) X 23 ( 2 ) + X 23 ( 3 ) X 24 ( 2 ) + X 24 ( 3 ) X 25 ( 2 ) X 27 ( 2 ) + X 25 ( 3 ) ( X 13 ( 2 ) + X 13 ( 3 ) ) ϕ ( X 23 ( 2 ) + X 23 ( 3 ) ) ϕ X 33 ( 2 ) + X 33 ( 3 ) X 34 ( 2 ) + X 34 ( 3 ) X 35 ( 2 ) X 37 ( 2 ) + X 35 ( 3 ) ( X 14 ( 2 ) + X 14 ( 3 ) ) ϕ ( X 24 ( 2 ) + X 24 ( 3 ) ) ϕ ( X 34 ( 2 ) + X 34 ( 3 ) ) ϕ X 44 ( 2 ) + X 44 ( 3 ) X 45 ( 2 ) X 47 ( 2 ) + X 45 ( 3 ) ( X 15 ( 2 ) ) ϕ ( X 25 ( 2 ) ) ϕ ( X 35 ( 2 ) ) ϕ ( X 45 ( 2 ) ) ϕ X 55 ( 2 ) X 57 ( 2 ) ( X 17 ( 2 ) + X 15 ( 3 ) ) ϕ ( X 27 ( 2 ) + X 25 ( 3 ) ) ϕ ( X 37 ( 2 ) + X 35 ( 3 ) ) ϕ ( X 47 ( 2 ) + X 45 ( 3 ) ) ϕ ( X 57 ( 2 ) ) ϕ X 77 ( 2 ) + X 55 ( 3 ) ( X 18 ( 2 ) + X 16 ( 3 ) ) ϕ ( X 28 ( 2 ) + X 26 ( 3 ) ) ϕ ( X 38 ( 2 ) + X 36 ( 3 ) ) ϕ ( X 48 ( 2 ) + X 46 ( 3 ) ) ϕ ( X 58 ( 2 ) ) ϕ ( X 78 ( 2 ) + X 56 ( 3 ) ) ϕ ( X 19 ( 2 ) + X 17 ( 3 ) ) ϕ ( X 29 ( 2 ) + X 27 ( 3 ) ) ϕ ( X 39 ( 2 ) + X 37 ( 3 ) ) ϕ ( X 49 ( 2 ) + X 47 ( 3 ) ) ϕ ( X 59 ( 2 ) ) ϕ ( X 79 ( 2 ) + X 57 ( 3 ) ) ϕ ( X 1 , 10 ( 2 ) + X 18 ( 3 ) ) ϕ ( X 2 , 10 ( 2 ) + X 28 ( 3 ) ) ϕ ( X 3 , 10 ( 2 ) + X 38 ( 3 ) ) ϕ ( X 4 , 10 ( 2 ) + X 48 ( 3 ) ) ϕ ( X 5 , 10 ( 2 ) ) ϕ ( X 7 , 10 ( 2 ) + X 58 ( 3 ) ) ϕ ( X 1 , 11 ( 2 ) ) ϕ ( X 2 , 11 ( 2 ) ) ϕ ( X 3 , 11 ( 2 ) ) ϕ ( X 4 , 11 ( 2 ) ) ϕ ( X 5 , 11 ( 2 ) ) ϕ ( X 7 , 11 ( 2 ) ) ϕ ( X 1 , 13 ( 2 ) + X 19 ( 3 ) ) ϕ ( X 2 , 13 ( 2 ) + X 29 ( 3 ) ) ϕ ( X 3 , 13 ( 2 ) + X 39 ( 3 ) ) ϕ ( X 4 , 13 ( 2 ) + X 49 ( 3 ) ) ϕ ( X 5 , 13 ( 2 ) ) ϕ ( X 7 , 13 ( 2 ) + X 59 ( 3 ) ) ϕ ( X 1 , 14 ( 2 ) + X 1 , 10 ( 3 ) ) ϕ ( X 2 , 14 ( 2 ) + X 2 , 10 ( 3 ) ) ϕ ( X 3 , 14 ( 2 ) + X 3 , 10 ( 3 ) ) ϕ ( X 4 , 14 ( 2 ) + X 4 , 10 ( 3 ) ) ϕ ( X 5 , 14 ( 2 ) ) ϕ ( X 7 , 14 ( 2 ) + X 5 , 10 ( 3 ) ) ϕ ( X 1 , 15 ( 2 ) + X 1 , 11 ( 3 ) ) ϕ ( X 2 , 15 ( 2 ) + X 2 , 11 ( 3 ) ) ϕ ( X 3 , 15 ( 2 ) + X 3 , 11 ( 3 ) ) ϕ ( X 4 , 15 ( 2 ) + X 4 , 11 ( 3 ) ) ϕ ( X 5 , 15 ( 2 ) ) ϕ ( X 7 , 15 ( 2 ) + X 5 , 11 ( 3 ) ) ϕ ( X 1 , 16 ( 2 ) + X 1 , 12 ( 3 ) ) ϕ ( X 2 , 16 ( 2 ) + X 2 , 12 ( 3 ) ) ϕ ( X 3 , 16 ( 2 ) + X 3 , 12 ( 3 ) ) ϕ ( X 4 , 16 ( 2 ) + X 4 , 12 ( 3 ) ) ϕ ( X 5 , 16 ( 2 ) ) ϕ ( X 7 , 16 ( 2 ) + X 5 , 12 ( 3 ) ) ϕ ( X 1 , 17 ( 2 ) ) ϕ ( X 2 , 17 ( 2 ) ) ϕ ( X 3 , 17 ( 2 ) ) ϕ ( X 4 , 17 ( 2 ) ) ϕ ( X 5 , 17 ( 2 ) ) ϕ ( X 7 , 17 ( 2 ) ) ϕ ( X 1 , 13 ( 3 ) ) ϕ ( X 2 , 13 ( 3 ) ) ϕ ( X 3 , 13 ( 3 ) ) ϕ ( X 4 , 13 ( 3 ) ) ϕ 0 ( X 5 , 13 ( 3 ) ) ϕ ( X 1 , 14 ( 3 ) ) ϕ ( X 2 , 14 ( 3 ) ) ϕ ( X 3 , 14 ( 3 ) ) ϕ ( X 4 , 14 ( 3 ) ) ϕ 0 ( X 5 , 14 ( 3 ) ) ϕ ( X 1 , 15 ( 3 ) ) ϕ ( X 2 , 15 ( 3 ) ) ϕ ( X 3 , 15 ( 3 ) ) ϕ ( X 4 , 15 ( 3 ) ) ϕ 0 ( X 5 , 15 ( 3 ) ) ϕ ( X 1 , 16 ( 3 ) ) ϕ ( X 2 , 16 ( 3 ) ) ϕ ( X 3 , 16 ( 3 ) ) ϕ ( X 4 , 16 ( 3 ) ) ϕ 0 ( X 5 , 16 ( 3 ) ) ϕ 0 0 0 0 0 0 ,
D 2 ( 2 ) = X 18 ( 2 ) + X 16 ( 3 ) X 19 ( 2 ) + X 17 ( 3 ) X 1 , 10 ( 2 ) + X 18 ( 3 ) X 1 , 11 ( 2 ) X 1 , 13 ( 2 ) + X 19 ( 3 ) X 1 , 14 ( 2 ) + X 1 , 10 ( 3 ) X 28 ( 2 ) + X 26 ( 3 ) X 29 ( 2 ) + X 27 ( 3 ) X 2 , 10 ( 2 ) + X 28 ( 3 ) X 2 , 11 ( 2 ) X 2 , 13 ( 2 ) + X 29 ( 3 ) X 2 , 14 ( 2 ) + X 2 , 10 ( 3 ) X 38 ( 2 ) + X 36 ( 3 ) X 39 ( 2 ) + X 37 ( 3 ) X 3 , 10 ( 2 ) + X 38 ( 3 ) X 3 , 11 ( 2 ) X 3 , 13 ( 2 ) + X 39 ( 3 ) X 3 , 14 ( 2 ) + X 3 , 10 ( 3 ) X 48 ( 2 ) + X 46 ( 3 ) X 49 ( 2 ) + X 47 ( 3 ) X 4 , 10 ( 2 ) + X 48 ( 3 ) X 4 , 11 ( 2 ) X 4 , 13 ( 2 ) + X 49 ( 3 ) X 4 , 14 ( 2 ) + X 4 , 10 ( 3 ) X 58 ( 2 ) X 59 ( 2 ) X 5 , 10 ( 2 ) X 5 , 11 ( 2 ) X 5 , 13 ( 2 ) X 5 , 14 ( 2 ) X 78 ( 2 ) + X 56 ( 3 ) X 79 ( 2 ) + X 57 ( 3 ) X 7 , 10 ( 2 ) + X 58 ( 3 ) X 7 , 11 ( 2 ) X 7 , 13 ( 2 ) + X 59 ( 3 ) X 7 , 14 ( 2 ) + X 5 , 10 ( 3 ) X 88 ( 2 ) + X 66 ( 3 ) X 89 ( 2 ) + X 67 ( 3 ) X 8 , 10 ( 2 ) + X 68 ( 3 ) X 8 , 11 ( 2 ) X 8 , 13 ( 2 ) + X 69 ( 3 ) X 8 , 14 ( 2 ) + X 6 , 10 ( 3 ) ( X 89 ( 2 ) + X 67 ( 3 ) ) ϕ X 99 ( 2 ) + X 77 ( 3 ) X 9 , 10 ( 2 ) + X 78 ( 3 ) X 9 , 11 ( 2 ) X 9 , 13 ( 2 ) + X 79 ( 3 ) X 9 , 14 ( 2 ) + X 7 , 10 ( 3 ) ( X 8 , 10 ( 2 ) + X 68 ( 3 ) ) ϕ ( X 9 , 10 ( 2 ) + X 78 ( 3 ) ) ϕ X 10 , 10 ( 2 ) + X 88 ( 3 ) X 10 , 11 ( 2 ) X 10 , 13 ( 2 ) + X 89 ( 3 ) X 10 , 14 ( 2 ) + X 8 , 10 ( 3 ) ( X 8 , 11 ( 2 ) ) ϕ ( X 9 , 11 ( 2 ) ) ϕ ( X 10 , 11 ( 2 ) ) ϕ X 11 , 11 ( 2 ) X 11 , 13 ( 2 ) X 11 , 14 ( 2 ) ( X 8 , 13 ( 2 ) + X 69 ( 3 ) ) ϕ ( X 9 , 13 ( 2 ) + X 79 ( 3 ) ) ϕ ( X 10 , 13 ( 2 ) + X 89 ( 3 ) ) ϕ ( X 11 , 13 ( 2 ) ) ϕ X 13 , 13 ( 2 ) + X 99 ( 3 ) X 13 , 14 ( 2 ) + X 9 , 10 ( 3 ) ( X 8 , 14 ( 2 ) + X 6 , 10 ( 3 ) ) ϕ ( X 9 , 14 ( 2 ) + X 7 , 10 ( 3 ) ) ϕ ( X 10 , 14 ( 2 ) + X 8 , 10 ( 3 ) ) ϕ ( X 11 , 14 ( 2 ) ) ϕ ( X 13 , 14 ( 2 ) + X 9 , 10 ( 3 ) ) ϕ X 14 , 14 ( 2 ) + X 10 , 10 ( 3 ) ( X 8 , 15 ( 2 ) + X 6 , 11 ( 3 ) ) ϕ ( X 9 , 15 ( 2 ) + X 7 , 11 ( 3 ) ) ϕ ( X 10 , 15 ( 2 ) + X 8 , 11 ( 3 ) ) ϕ ( X 11 , 15 ( 2 ) ) ϕ ( X 13 , 15 ( 2 ) + X 9 , 11 ( 3 ) ) ϕ ( X 14 , 15 ( 2 ) + X 10 , 11 ( 3 ) ) ϕ ( X 8 , 16 ( 2 ) + X 6 , 12 ( 3 ) ) ϕ ( X 9 , 16 ( 2 ) + X 7 , 12 ( 3 ) ) ϕ ( X 10 , 16 ( 2 ) + X 8 , 12 ( 3 ) ) ϕ ( X 11 , 16 ( 2 ) ) ϕ ( X 13 , 16 ( 2 ) + X 9 , 12 ( 3 ) ) ϕ ( X 14 , 16 ( 2 ) + X 10 , 12 ( 3 ) ) ϕ ( X 8 , 17 ( 2 ) ) ϕ ( X 9 , 17 ( 2 ) ) ϕ ( X 10 , 17 ( 2 ) ) ϕ ( X 11 , 17 ( 2 ) ) ϕ ( X 13 , 17 ( 2 ) ) ϕ ( X 14 , 17 ( 2 ) ) ϕ ( X 6 , 13 ( 3 ) ) ϕ ( X 7 , 13 ( 3 ) ) ϕ ( X 8 , 13 ( 3 ) ) ϕ 0 ( X 9 , 13 ( 3 ) ) ϕ ( X 10 , 13 ( 3 ) ) ϕ ( X 6 , 14 ( 3 ) ) ϕ ( X 7 , 14 ( 3 ) ) ϕ ( X 8 , 14 ( 3 ) ) ϕ 0 ( X 9 , 14 ( 3 ) ) ϕ ( X 10 , 14 ( 3 ) ) ϕ ( X 6 , 15 ( 3 ) ) ϕ ( X 7 , 15 ( 3 ) ) ϕ ( X 8 , 15 ( 3 ) ) ϕ 0 ( X 9 , 15 ( 3 ) ) ϕ ( X 10 , 15 ( 3 ) ) ϕ ( X 6 , 16 ( 3 ) ) ϕ ( X 7 , 16 ( 3 ) ) ϕ ( X 8 , 16 ( 3 ) ) ϕ 0 ( X 9 , 16 ( 3 ) ) ϕ ( X 10 , 16 ( 3 ) ) ϕ 0 0 0 0 0 0 ,
D 3 ( 2 ) = X 1 , 15 ( 2 ) + X 1 , 11 ( 3 ) X 1 , 16 ( 2 ) + X 1 , 12 ( 3 ) X 1 , 17 ( 2 ) X 1 , 13 ( 3 ) X 1 , 14 ( 3 ) X 1 , 15 ( 3 ) X 1 , 16 ( 3 ) 0 X 2 , 15 ( 2 ) + X 2 , 11 ( 3 ) X 2 , 16 ( 2 ) + X 2 , 12 ( 3 ) X 2 , 17 ( 2 ) X 2 , 13 ( 3 ) X 2 , 14 ( 3 ) X 2 , 15 ( 3 ) X 2 , 16 ( 3 ) 0 X 3 , 15 ( 2 ) + X 3 , 11 ( 3 ) X 3 , 16 ( 2 ) + X 3 , 12 ( 3 ) X 3 , 17 ( 2 ) X 3 , 13 ( 3 ) X 3 , 14 ( 3 ) X 3 , 15 ( 3 ) X 3 , 16 ( 3 ) 0 X 4 , 15 ( 2 ) + X 4 , 11 ( 3 ) X 4 , 16 ( 2 ) + X 4 , 12 ( 3 ) X 4 , 17 ( 2 ) X 4 , 13 ( 3 ) X 4 , 14 ( 3 ) X 4 , 15 ( 3 ) X 4 , 16 ( 3 ) 0 X 5 , 15 ( 2 ) X 5 , 16 ( 2 ) X 5 , 17 ( 2 ) 0 0 0 0 0 X 7 , 15 ( 2 ) + X 5 , 11 ( 3 ) X 7 , 16 ( 2 ) + X 5 , 12 ( 3 ) X 7 , 17 ( 2 ) X 5 , 13 ( 3 ) X 5 , 14 ( 3 ) X 5 , 15 ( 3 ) X 5 , 16 ( 3 ) 0 X 8 , 15 ( 2 ) + X 6 , 11 ( 3 ) X 8 , 16 ( 2 ) + X 6 , 12 ( 3 ) X 8 , 17 ( 2 ) X 6 , 13 ( 3 ) X 6 , 14 ( 3 ) X 6 , 15 ( 3 ) X 6 , 16 ( 3 ) 0 X 9 , 15 ( 2 ) + X 7 , 11 ( 3 ) X 9 , 16 ( 2 ) + X 7 , 12 ( 3 ) X 9 , 17 ( 2 ) X 7 , 13 ( 3 ) X 7 , 14 ( 3 ) X 7 , 15 ( 3 ) X 7 , 16 ( 3 ) 0 X 10 , 15 ( 2 ) + X 8 , 11 ( 3 ) X 10 , 16 ( 2 ) + X 8 , 12 ( 3 ) X 10 , 17 ( 2 ) X 8 , 13 ( 3 ) X 8 , 14 ( 3 ) X 8 , 15 ( 3 ) X 8 , 16 ( 3 ) 0 X 11 , 15 ( 2 ) X 11 , 16 ( 2 ) X 11 , 17 ( 2 ) 0 0 0 0 0 X 13 , 15 ( 2 ) + X 9 , 11 ( 3 ) X 13 , 16 ( 2 ) + X 9 , 12 ( 3 ) X 13 , 17 ( 2 ) X 9 , 13 ( 3 ) X 9 , 14 ( 3 ) X 9 , 15 ( 3 ) X 9 , 16 ( 3 ) 0 X 14 , 15 ( 2 ) + X 10 , 11 ( 3 ) X 14 , 16 ( 2 ) + X 10 , 12 ( 3 ) X 14 , 17 ( 2 ) X 10 , 13 ( 3 ) X 10 , 14 ( 3 ) X 10 , 15 ( 3 ) X 10 , 16 ( 3 ) 0 X 15 , 15 ( 2 ) + X 11 , 11 ( 3 ) X 15 , 16 ( 2 ) + X 11 , 12 ( 3 ) X 15 , 17 ( 2 ) X 11 , 13 ( 3 ) X 11 , 14 ( 3 ) X 11 , 15 ( 3 ) X 11 , 16 ( 3 ) 0 ( X 15 , 16 ( 2 ) + X 11 , 12 ( 3 ) ) ϕ X 16 , 16 ( 2 ) + X 12 , 12 ( 3 ) X 16 , 17 ( 2 ) X 12 , 13 ( 3 ) X 12 , 14 ( 3 ) X 12 , 15 ( 3 ) X 12 , 16 ( 3 ) 0 ( X 15 , 17 ( 2 ) ) ϕ ( X 16 , 17 ( 2 ) ) ϕ X 17 , 17 ( 2 ) 0 0 0 0 0 ( X 11 , 13 ( 3 ) ) ϕ ( X 12 , 13 ( 3 ) ) ϕ 0 X 13 , 13 ( 3 ) X 13 , 14 ( 3 ) X 13 , 15 ( 3 ) X 13 , 16 ( 3 ) 0 ( X 11 , 14 ( 3 ) ) ϕ ( X 12 , 14 ( 3 ) ) ϕ 0 ( X 13 , 14 ( 3 ) ) ϕ X 14 , 14 ( 3 ) X 14 , 15 ( 3 ) X 14 , 16 ( 3 ) 0 ( X 11 , 15 ( 3 ) ) ϕ ( X 12 , 15 ( 3 ) ) ϕ 0 ( X 13 , 15 ( 3 ) ) ϕ ( X 14 , 15 ( 3 ) ) ϕ X 15 , 15 ( 3 ) X 15 , 16 ( 3 ) 0 ( X 11 , 16 ( 3 ) ) ϕ ( X 12 , 16 ( 3 ) ) ϕ 0 ( X 13 , 16 ( 3 ) ) ϕ ( X 14 , 16 ( 3 ) ) ϕ ( X 15 , 16 ( 3 ) ) ϕ X 16 , 16 ( 3 ) 0 0 0 0 0 0 0 0 0 .
Substituting X 3 ^ and X 4 ^ into the third equation in (4) yields
( D i j ( 3 ) ) 18 × 18 = ( D 1 ( 3 ) , D 2 ( 3 ) , D 3 ( 3 ) ) ,
where
D 1 ( 3 ) = X 11 ( 3 ) + X 11 ( 4 ) X 12 ( 3 ) + X 12 ( 4 ) X 13 ( 3 ) X 15 ( 3 ) + X 13 ( 4 ) X 16 ( 3 ) + X 14 ( 4 ) X 17 ( 3 ) ( X 12 ( 3 ) + X 12 ( 4 ) ) ϕ X 22 ( 3 ) + X 22 ( 4 ) X 23 ( 3 ) X 25 ( 3 ) + X 23 ( 4 ) X 26 ( 3 ) + X 24 ( 4 ) X 27 ( 3 ) ( X 13 ( 3 ) ) ϕ ( X 23 ( 3 ) ) ϕ X 33 ( 3 ) X 35 ( 3 ) X 36 ( 3 ) X 37 ( 3 ) ( X 15 ( 3 ) + X 13 ( 4 ) ) ϕ ( X 25 ( 3 ) + X 23 ( 4 ) ) ϕ ( X 35 ( 3 ) ) ϕ X 55 ( 3 ) + X 33 ( 4 ) X 56 ( 3 ) + X 34 ( 4 ) X 57 ( 3 ) ( X 16 ( 3 ) + X 14 ( 4 ) ) ϕ ( X 26 ( 3 ) + X 24 ( 4 ) ) ϕ ( X 36 ( 3 ) ) ϕ ( X 56 ( 3 ) + X 34 ( 4 ) ) ϕ X 66 ( 3 ) + X 44 ( 4 ) X 67 ( 3 ) ( X 17 ( 3 ) ) ϕ ( X 27 ( 3 ) ) ϕ ( X 37 ( 3 ) ) ϕ ( X 57 ( 3 ) ) ϕ ( X 67 ( 3 ) ) ϕ X 77 ( 3 ) ( X 19 ( 3 ) + X 15 ( 4 ) ) ϕ ( X 29 ( 3 ) + X 25 ( 4 ) ) ϕ ( X 39 ( 3 ) ) ϕ ( X 59 ( 3 ) + X 35 ( 4 ) ) ϕ ( X 69 ( 3 ) + X 45 ( 4 ) ) ϕ ( X 79 ( 3 ) ) ϕ ( X 1 , 10 ( 3 ) + X 16 ( 4 ) ) ϕ ( X 2 , 10 ( 3 ) + X 26 ( 4 ) ) ϕ ( X 3 , 10 ( 3 ) ) ϕ ( X 5 , 10 ( 3 ) + X 36 ( 4 ) ) ϕ ( X 6 , 10 ( 3 ) + X 46 ( 4 ) ) ϕ ( X 7 , 10 ( 3 ) ) ϕ ( X 1 , 11 ( 3 ) ) ϕ ( X 2 , 11 ( 3 ) ) ϕ ( X 3 , 11 ( 3 ) ) ϕ ( X 5 , 11 ( 3 ) ) ϕ ( X 6 , 11 ( 3 ) ) ϕ ( X 7 , 11 ( 3 ) ) ϕ ( X 1 , 13 ( 3 ) + X 17 ( 4 ) ) ϕ ( X 2 , 13 ( 3 ) + X 27 ( 4 ) ) ϕ ( X 3 , 13 ( 3 ) ) ϕ ( X 5 , 13 ( 3 ) + X 37 ( 4 ) ) ϕ ( X 6 , 13 ( 3 ) + X 47 ( 4 ) ) ϕ ( X 7 , 13 ( 3 ) ) ϕ ( X 1 , 14 ( 3 ) + X 18 ( 4 ) ) ϕ ( X 2 , 14 ( 3 ) + X 28 ( 4 ) ) ϕ ( X 3 , 14 ( 3 ) ) ϕ ( X 5 , 14 ( 3 ) + X 38 ( 4 ) ) ϕ ( X 6 , 14 ( 3 ) + X 48 ( 4 ) ) ϕ ( X 7 , 14 ( 3 ) ) ϕ ( X 1 , 15 ( 3 ) ) ϕ ( X 2 , 15 ( 3 ) ) ϕ ( X 3 , 15 ( 3 ) ) ϕ ( X 5 , 15 ( 3 ) ) ϕ ( X 6 , 15 ( 3 ) ) ϕ ( X 7 , 15 ( 3 ) ) ϕ ( X 1 , 17 ( 3 ) + X 19 ( 4 ) ) ϕ ( X 2 , 17 ( 3 ) + X 29 ( 4 ) ) ϕ ( X 3 , 17 ( 3 ) ) ϕ ( X 5 , 17 ( 3 ) + X 39 ( 4 ) ) ϕ ( X 6 , 17 ( 3 ) + X 49 ( 4 ) ) ϕ ( X 7 , 17 ( 3 ) ) ϕ ( X 1 , 18 ( 3 ) + X 1 , 10 ( 4 ) ) ϕ ( X 2 , 18 ( 3 ) + X 2 , 10 ( 4 ) ) ϕ ( X 3 , 18 ( 3 ) ) ϕ ( X 5 , 18 ( 3 ) + X 3 , 10 ( 4 ) ) ϕ ( X 6 , 18 ( 3 ) + X 4 , 10 ( 4 ) ) ϕ ( X 7 , 18 ( 3 ) ) ϕ ( X 1 , 19 ( 3 ) ) ϕ ( X 2 , 19 ( 3 ) ) ϕ ( X 3 , 19 ( 3 ) ) ϕ ( X 5 , 19 ( 3 ) ) ϕ ( X 6 , 19 ( 3 ) ) ϕ ( X 7 , 19 ( 3 ) ) ϕ ( X 1 , 11 ( 4 ) ) ϕ ( X 2 , 11 ( 4 ) ) ϕ 0 ( X 3 , 11 ( 4 ) ) ϕ ( X 4 , 11 ( 4 ) ) ϕ 0 ( X 1 , 12 ( 4 ) ) ϕ ( X 2 , 12 ( 4 ) ) ϕ 0 ( X 3 , 12 ( 4 ) ) ϕ ( X 4 , 12 ( 4 ) ) ϕ 0 0 0 0 0 0 0 ,
D 2 ( 3 ) = X 19 ( 3 ) + X 15 ( 4 ) X 1 , 10 ( 3 ) + X 16 ( 4 ) X 1 , 11 ( 3 ) X 1 , 13 ( 3 ) + X 17 ( 4 ) X 1 , 14 ( 3 ) + X 18 ( 4 ) X 1 , 15 ( 3 ) X 29 ( 3 ) + X 25 ( 4 ) X 2 , 10 ( 3 ) + X 26 ( 4 ) X 2 , 11 ( 3 ) X 2 , 13 ( 3 ) + X 27 ( 4 ) X 2 , 14 ( 3 ) + X 28 ( 4 ) X 2 , 15 ( 3 ) X 39 ( 3 ) X 3 , 10 ( 3 ) X 3 , 11 ( 3 ) X 3 , 13 ( 3 ) X 3 , 14 ( 3 ) X 3 , 15 ( 3 ) X 59 ( 3 ) + X 35 ( 4 ) X 5 , 10 ( 3 ) + X 36 ( 4 ) X 5 , 11 ( 3 ) X 5 , 13 ( 3 ) + X 37 ( 4 ) X 5 , 14 ( 3 ) + X 38 ( 4 ) X 5 , 15 ( 3 ) X 69 ( 3 ) + X 45 ( 4 ) X 6 , 10 ( 3 ) + X 46 ( 4 ) X 6 , 11 ( 3 ) X 6 , 13 ( 3 ) + X 47 ( 4 ) X 6 , 14 ( 3 ) + X 48 ( 4 ) X 6 , 15 ( 3 ) X 79 ( 3 ) X 7 , 10 ( 3 ) X 7 , 11 ( 3 ) X 7 , 13 ( 3 ) X 7 , 14 ( 3 ) X 7 , 15 ( 3 ) X 99 ( 3 ) + X 55 ( 4 ) X 9 , 10 ( 3 ) + X 56 ( 4 ) X 9 , 11 ( 3 ) X 9 , 13 ( 3 ) + X 57 ( 4 ) X 9 , 14 ( 3 ) + X 58 ( 4 ) X 9 , 15 ( 3 ) ( X 9 , 10 ( 3 ) + X 56 ( 4 ) ) ϕ X 10 , 10 ( 3 ) + X 66 ( 4 ) X 10 , 11 ( 3 ) X 10 , 13 ( 3 ) + X 67 ( 4 ) X 10 , 14 ( 3 ) + X 68 ( 4 ) X 10 , 15 ( 3 ) ( X 9 , 11 ( 3 ) ) ϕ ( X 10 , 11 ( 3 ) ) ϕ X 11 , 11 ( 3 ) X 11 , 13 ( 3 ) X 11 , 14 ( 3 ) X 11 , 15 ( 3 ) ( X 9 , 13 ( 3 ) + X 57 ( 4 ) ) ϕ ( X 10 , 13 ( 3 ) + X 67 ( 4 ) ) ϕ ( X 11 , 13 ( 3 ) ) ϕ X 13 , 13 ( 3 ) + X 77 ( 4 ) X 13 , 14 ( 3 ) + X 78 ( 4 ) X 13 , 15 ( 3 ) ( X 9 , 14 ( 3 ) + X 58 ( 4 ) ) ϕ ( X 10 , 14 ( 3 ) + X 68 ( 4 ) ) ϕ ( X 11 , 14 ( 3 ) ) ϕ ( X 13 , 14 ( 3 ) + X 78 ( 4 ) ) ϕ X 14 , 14 ( 3 ) + X 88 ( 4 ) X 14 , 15 ( 3 ) ( X 9 , 15 ( 3 ) ) ϕ ( X 10 , 15 ( 3 ) ) ϕ ( X 11 , 15 ( 3 ) ) ϕ ( X 13 , 15 ( 3 ) ) ϕ ( X 14 , 15 ( 3 ) ) ϕ X 15 , 15 ( 3 ) ( X 9 , 17 ( 3 ) + X 59 ( 4 ) ) ϕ ( X 10 , 17 ( 3 ) + X 69 ( 4 ) ) ϕ ( X 11 , 17 ( 3 ) ) ϕ ( X 13 , 17 ( 3 ) + X 79 ( 4 ) ) ϕ ( X 14 , 17 ( 3 ) + X 89 ( 4 ) ) ϕ ( X 15 , 17 ( 3 ) ) ϕ ( X 9 , 18 ( 3 ) + X 5 , 10 ( 4 ) ) ϕ ( X 10 , 18 ( 3 ) + X 6 , 10 ( 4 ) ) ϕ ( X 11 , 18 ( 3 ) ) ϕ ( X 13 , 18 ( 3 ) + X 7 , 10 ( 4 ) ) ϕ ( X 14 , 18 ( 3 ) + X 8 , 10 ( 4 ) ) ϕ ( X 15 , 18 ( 3 ) ) ϕ ( X 9 , 19 ( 3 ) ) ϕ ( X 10 , 19 ( 3 ) ) ϕ ( X 11 , 19 ( 3 ) ) ϕ ( X 13 , 19 ( 3 ) ) ϕ ( X 14 , 19 ( 3 ) ) ϕ ( X 15 , 19 ( 3 ) ) ϕ ( X 5 , 11 ( 4 ) ) ϕ ( X 6 , 11 ( 4 ) ) ϕ 0 ( X 7 , 11 ( 4 ) ) ϕ ( X 8 , 11 ( 4 ) ) ϕ 0 ( X 5 , 12 ( 4 ) ) ϕ ( X 6 , 12 ( 4 ) ) ϕ 0 ( X 7 , 12 ( 4 ) ) ϕ ( X 8 , 12 ( 4 ) ) ϕ 0 0 0 0 0 0 0 ,
D 3 ( 3 ) = X 1 , 17 ( 3 ) + X 19 ( 4 ) X 1 , 18 ( 3 ) + X 1 , 10 ( 4 ) X 1 , 19 ( 3 ) X 1 , 11 ( 4 ) X 1 , 12 ( 4 ) 0 X 2 , 17 ( 3 ) + X 29 ( 4 ) X 2 , 18 ( 3 ) + X 2 , 10 ( 4 ) X 2 , 19 ( 3 ) X 2 , 11 ( 4 ) X 2 , 12 ( 4 ) 0 X 3 , 17 ( 3 ) X 3 , 18 ( 3 ) X 3 , 19 ( 3 ) 0 0 0 X 5 , 17 ( 3 ) + X 39 ( 4 ) X 5 , 18 ( 3 ) + X 3 , 10 ( 4 ) X 5 , 19 ( 3 ) X 3 , 11 ( 4 ) X 3 , 12 ( 4 ) 0 X 6 , 17 ( 3 ) + X 49 ( 4 ) X 6 , 18 ( 3 ) + X 4 , 10 ( 4 ) X 6 , 19 ( 3 ) X 4 , 11 ( 4 ) X 4 , 12 ( 4 ) 0 X 7 , 17 ( 3 ) X 7 , 18 ( 3 ) X 7 , 19 ( 3 ) 0 0 0 X 9 , 17 ( 3 ) + X 59 ( 4 ) X 9 , 18 ( 3 ) + X 5 , 10 ( 4 ) X 9 , 19 ( 3 ) X 5 , 11 ( 4 ) X 5 , 12 ( 4 ) 0 X 10 , 17 ( 3 ) + X 69 ( 4 ) X 10 , 18 ( 3 ) + X 6 , 10 ( 4 ) X 10 , 19 ( 3 ) X 6 , 11 ( 4 ) X 6 , 12 ( 4 ) 0 X 11 , 17 ( 3 ) X 11 , 18 ( 3 ) X 11 , 19 ( 3 ) 0 0 0 X 13 , 17 ( 3 ) + X 79 ( 4 ) X 13 , 18 ( 3 ) + X 7 , 10 ( 4 ) X 13 , 19 ( 3 ) X 7 , 11 ( 4 ) X 7 , 12 ( 4 ) 0 X 14 , 17 ( 3 ) + X 89 ( 4 ) X 14 , 18 ( 3 ) + X 8 , 10 ( 4 ) X 14 , 19 ( 3 ) X 8 , 11 ( 4 ) X 8 , 12 ( 4 ) 0 X 15 , 17 ( 3 ) X 15 , 18 ( 3 ) X 15 , 19 ( 3 ) 0 0 0 X 17 , 17 ( 3 ) + X 99 ( 4 ) X 17 , 18 ( 3 ) + X 9 , 10 ( 4 ) X 17 , 19 ( 3 ) X 9 , 11 ( 4 ) X 9 , 12 ( 4 ) 0 ( X 17 , 18 ( 3 ) + X 9 , 10 ( 4 ) ) ϕ X 18 , 18 ( 3 ) + X 10 , 10 ( 4 ) X 18 , 19 ( 3 ) X 10 , 11 ( 4 ) X 10 , 12 ( 4 ) 0 ( X 17 , 19 ( 3 ) ) ϕ ( X 18 , 19 ( 3 ) ) ϕ X 19 , 19 ( 3 ) 0 0 0 ( X 9 , 11 ( 4 ) ) ϕ ( X 10 , 11 ( 4 ) ) ϕ 0 X 11 , 11 ( 4 ) X 11 , 12 ( 4 ) 0 ( X 9 , 12 ( 4 ) ) ϕ ( X 10 , 12 ( 4 ) ) ϕ 0 ( X 11 , 12 ( 4 ) ) ϕ X 12 , 12 ( 4 ) 0 0 0 0 0 0 0 .
Substituting X 4 ^ into the fourth equation in (4) yields
( D i j ( 4 ) ) 8 × 8 = X 11 ( 4 ) X 13 ( 4 ) X 15 ( 4 ) X 17 ( 4 ) X 19 ( 4 ) X 1 , 11 ( 4 ) X 1 , 13 ( 4 ) 0 ( X 13 ( 4 ) ) ϕ X 33 ( 4 ) X 35 ( 4 ) X 37 ( 4 ) X 39 ( 4 ) X 3 , 11 ( 4 ) X 3 , 13 ( 4 ) 0 ( X 15 ( 4 ) ) ϕ ( X 35 ( 4 ) ) ϕ X 55 ( 4 ) X 57 ( 4 ) X 59 ( 4 ) X 5 , 11 ( 4 ) X 5 , 13 ( 4 ) 0 ( X 17 ( 4 ) ) ϕ ( X 37 ( 4 ) ) ϕ ( X 57 ( 4 ) ) ϕ X 77 ( 4 ) X 79 ( 4 ) X 7 , 11 ( 4 ) X 7 , 13 ( 4 ) 0 ( X 19 ( 4 ) ) ϕ ( X 39 ( 4 ) ) ϕ ( X 59 ( 4 ) ) ϕ ( X 79 ( 4 ) ) ϕ X 99 ( 4 ) X 9 , 11 ( 4 ) X 9 , 13 ( 4 ) 0 ( X 1 , 11 ( 4 ) ) ϕ ( X 3 , 11 ( 4 ) ) ϕ ( X 5 , 11 ( 4 ) ) ϕ ( X 7 , 11 ( 4 ) ) ϕ ( X 9 , 11 ( 4 ) ) ϕ X 11 , 11 ( 4 ) X 11 , 13 ( 4 ) 0 ( X 1 , 13 ( 4 ) ) ϕ ( X 3 , 13 ( 4 ) ) ϕ ( X 5 , 13 ( 4 ) ) ϕ ( X 7 , 13 ( 4 ) ) ϕ ( X 9 , 13 ( 4 ) ) ϕ ( X 11 , 13 ( 4 ) ) ϕ X 13 , 13 ( 4 ) 0 0 0 0 0 0 0 0 0 .
Hence, the system of (1) has a ϕ -skew-Hermitian solution ( X 1 , X 2 , X 3 , X 4 ) if and only if Equation (4) has a ϕ -skew-Hermitian solution. Note that (5)–(8) are consistent if and only if
D 14 , 1 ( 1 ) D 14 , 2 ( 1 ) D 14 , 14 ( 1 ) = 0 , D 20 , 1 ( 2 ) D 20 , 2 ( 2 ) D 20 , 20 ( 2 ) = 0 , D 18 , 1 ( 3 ) D 18 , 2 ( 3 ) D 18 , 18 ( 3 ) = 0 , D 81 ( 4 ) D 82 ( 4 ) D 88 ( 4 ) = 0 ,
D 1 , 14 ( 1 ) D 2 , 14 ( 1 ) D 14 , 14 ( 1 ) = 0 , D 1 , 20 ( 2 ) D 2 , 20 ( 2 ) D 20 , 20 ( 2 ) = 0 , D 1 , 18 ( 3 ) D 2 , 18 ( 3 ) D 18 , 18 ( 3 ) = 0 , D 18 ( 4 ) D 28 ( 4 ) D 88 ( 4 ) = 0 ,
D 87 ( 1 ) D 97 ( 1 ) D 14 , 7 ( 1 ) = 0 ,
D 16 , 5 ( 2 ) D 17 , 5 ( 2 ) D 20 , 5 ( 2 ) = 0 , D 16 , 10 ( 2 ) D 17 , 10 ( 2 ) D 20 , 10 ( 2 ) = 0 , D 16 , 15 ( 2 ) D 17 , 15 ( 2 ) D 20 , 15 ( 2 ) = 0 ,
D 16 , 3 ( 3 ) D 17 , 3 ( 3 ) D 18 , 3 ( 3 ) = 0 , D 16 , 6 ( 3 ) D 17 , 6 ( 3 ) D 18 , 6 ( 3 ) = 0 , D 16 , 9 ( 3 ) D 17 , 9 ( 3 ) D 18 , 9 ( 3 ) = 0 , D 16 , 12 ( 3 ) D 17 , 12 ( 3 ) D 18 , 12 ( 3 ) = 0 , D 16 , 15 ( 3 ) D 17 , 15 ( 3 ) D 18 , 15 ( 3 ) = 0 ,
D 12 , 1 ( 1 ) = D 10 , 1 ( 2 ) , D 12 , 2 ( 1 ) = D 10 , 2 ( 2 ) , D 12 , 3 ( 1 ) = D 10 , 3 ( 2 ) , D 12 , 4 ( 1 ) = D 10 , 4 ( 2 ) , D 12 , 5 ( 1 ) = D 10 , 5 ( 2 ) ,
D 12 , 8 ( 1 ) = D 10 , 6 ( 2 ) , D 12 , 9 ( 1 ) = D 10 , 7 ( 2 ) , D 12 , 10 ( 1 ) = D 10 , 8 ( 2 ) , D 12 , 11 ( 1 ) = D 10 , 9 ( 2 ) , D 12 , 12 ( 1 ) = D 10 , 10 ( 2 ) ,
D 18 , 1 ( 2 ) = D 12 , 1 ( 3 ) , D 18 , 2 ( 2 ) = D 12 , 2 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) , D 18 , 6 ( 2 ) = D 12 , 4 ( 3 ) , D 18 , 7 ( 2 ) = D 12 , 5 ( 3 ) , D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) ,
D 18 , 11 ( 2 ) = D 12 , 7 ( 3 ) , D 18 , 12 ( 2 ) = D 12 , 8 ( 3 ) , D 18 , 13 ( 2 ) = D 12 , 9 ( 3 ) ,
D 18 , 16 ( 2 ) = D 12 , 10 ( 3 ) , D 18 , 17 ( 2 ) = D 12 , 11 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) ,
D 85 ( 1 ) = D 65 ( 2 ) , D 95 ( 1 ) = D 75 ( 2 ) , D 10 , 5 ( 1 ) = D 85 ( 2 ) , D 11 , 5 ( 1 ) = D 95 ( 2 ) , D 12 , 5 ( 1 ) = D 10 , 5 ( 2 ) ,
D 8 , 12 ( 1 ) = D 6 , 10 ( 2 ) , D 9 , 12 ( 1 ) = D 7 , 10 ( 2 ) , D 10 , 12 ( 1 ) = D 8 , 10 ( 2 ) , D 11 , 12 ( 1 ) = D 9 , 10 ( 2 ) , D 12 , 12 ( 1 ) = D 10 , 10 ( 2 ) ,
D 16 , 3 ( 2 ) = D 10 , 3 ( 3 ) , D 17 , 3 ( 2 ) = D 11 , 3 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) , D 16 , 8 ( 2 ) = D 10 , 6 ( 3 ) , D 17 , 8 ( 2 ) = D 11 , 6 ( 3 ) , D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) ,
D 16 , 13 ( 2 ) = D 10 , 9 ( 3 ) , D 17 , 13 ( 2 ) = D 11 , 9 ( 3 ) , D 18 , 13 ( 2 ) = D 12 , 9 ( 3 ) ,
D 16 , 18 ( 2 ) = D 10 , 12 ( 3 ) , D 17 , 18 ( 2 ) = D 11 , 12 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) ,
D 16 , 1 ( 3 ) = D 61 ( 4 ) , D 16 , 4 ( 3 ) = D 62 ( 4 ) , D 16 , 7 ( 3 ) = D 63 ( 4 ) , D 16 , 10 ( 3 ) = D 64 ( 4 ) , D 16 , 13 ( 3 ) = D 65 ( 4 ) , D 16 , 16 ( 3 ) = D 66 ( 4 ) ,
D 10 , 1 ( 1 ) + D 61 ( 3 ) = D 81 ( 2 ) , D 10 , 2 ( 1 ) + D 62 ( 3 ) = D 82 ( 2 ) , D 10 , 3 ( 1 ) + D 63 ( 3 ) = D 83 ( 2 ) ,
D 10 , 8 ( 1 ) + D 64 ( 3 ) = D 86 ( 2 ) , D 10 , 9 ( 1 ) + D 65 ( 3 ) = D 87 ( 2 ) , D 10 , 10 ( 1 ) + D 66 ( 3 ) = D 88 ( 2 ) ,
D 83 ( 1 ) + D 43 ( 3 ) = D 63 ( 2 ) , D 93 ( 1 ) + D 53 ( 3 ) = D 73 ( 2 ) , D 8 , 10 ( 1 ) + D 46 ( 3 ) = D 68 ( 2 ) , D 9 , 10 ( 1 ) + D 56 ( 3 ) = D 78 ( 2 ) ,
D 16 , 1 ( 2 ) + D 41 ( 4 ) = D 10 , 1 ( 3 ) , D 16 , 6 ( 2 ) + D 42 ( 4 ) = D 10 , 4 ( 3 ) ,
D 16 , 11 ( 2 ) + D 43 ( 4 ) = D 10 , 7 ( 3 ) , D 16 , 16 ( 2 ) + D 44 ( 4 ) = D 10 , 10 ( 3 ) ,
D 81 ( 1 ) + D 41 ( 3 ) = D 61 ( 2 ) + D 21 ( 4 ) , D 88 ( 1 ) + D 44 ( 3 ) = D 66 ( 2 ) + D 22 ( 4 ) .
Based on the above analysis, we have the following conclusions:
Theorem 1. 
The system (1) has a ϕ-skew-Hermitian solution ( X 1 , X 2 , X 3 , X 4 ) if and only if the Equations (9)–(22) hold.
The following theorem presents the solvability conditions to the system (1) in terms of rank.
Theorem 2. 
The system (1) has a ϕ-skew-Hermitian solution ( X 1 , X 2 , X 3 , X 4 ) if and only if the ranks satisfy:
r ( A i , C i , B i ) = r ( A i , B i ) , ( i = 1 , 2 , 3 ) .
r A 4 , C 4 = r ( A 4 ) .
r A i C i 0 ( B i ) ϕ = r ( A i ) + r ( B i ) , ( i = 1 , 2 , 3 ) .
r A j C j B j 0 0 0 ( B j ) ϕ 0 ( A j + 1 ) ϕ 0 0 0 A j + 1 C j + 1 B j + 1 = r A j B j 0 0 A j + 1 B j + 1 + r B j A j + 1 ( j = 1 , 2 ) .
r A j C j B j 0 0 ( B j ) ϕ 0 ( A j + 1 ) ϕ 0 0 A j + 1 C j + 1 0 0 0 ( B j + 1 ) ϕ = r A j B j 0 A j + 1 + r B j 0 A j + 1 B j + 1 ( j = 1 , 2 ) .
r A 3 C 3 B 3 0 0 ( B 3 ) ϕ 0 ( A 4 ) ϕ 0 0 A 4 C 4 = r A 3 B 3 0 A 4 + r B 3 A 4 .
r A 1 C 1 B 1 0 0 0 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 0 0 0 A 2 C 2 B 2 0 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 0 A 3 C 3 B 3 = r A 1 B 1 0 0 0 A 2 B 2 0 0 0 A 3 B 3 + r B 1 0 A 2 B 2 0 A 3 .
r A 1 C 1 B 1 0 0 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 0 0 A 2 C 2 B 2 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 A 3 C 3 0 0 0 0 0 ( B 3 ) ϕ = r A 1 B 1 0 0 A 2 B 2 0 0 A 3 + r B 1 0 0 A 2 B 2 0 0 A 3 B 3 .
r A 2 C 2 B 2 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 A 3 C 3 B 3 0 0 0 0 ( B 3 ) ϕ 0 ( A 4 ) ϕ 0 0 0 0 A 4 C 4 = r A 2 B 2 0 0 A 3 B 3 0 0 A 4 + r B 2 0 A 3 B 3 0 A 4 .
r A 1 C 1 B 1 0 0 0 0 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 0 0 0 0 A 2 C 2 B 2 0 0 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 0 0 A 3 C 3 B 3 0 0 0 0 0 0 ( B 3 ) ϕ 0 ( A 4 ) ϕ 0 0 0 0 0 0 A 4 C 4 = r A 1 B 1 0 0 0 A 2 B 2 0 0 0 A 3 B 3 0 0 0 A 4 + r B 1 0 0 A 2 B 2 0 0 A 3 B 3 0 0 A 4 .
Proof. 
According to the structure of the matrix, Lemma 1, Theorem 1, and the elementary transformation of the row and column of the matrix, we have
r ( A i , C i , B i ) = r ( A i , B i )
r ( P i ^ A i T i ^ , P i ^ C i ( P i ^ ) ϕ , P i ^ B i T i + 1 ^ ) = r ( P i ^ A i T i ^ , P i ^ B i T i + 1 ^ )
r ( S a i , D ( i ) , S b i ) = r ( S a i , S b i )
D 14 , j ( 1 ) = 0 , ( j = 1 , , 14 ) , D 20 , j ( 2 ) = 0 , ( j = 1 , , 20 ) , D 18 , j ( 3 ) = 0 , ( j = 1 , , 18 ) .
r ( A 4 , C 4 ) = r ( A 4 )
r ( P 4 ^ A 4 T 4 ^ , P 4 ^ C 4 ( P 4 ^ ) ϕ ) = r ( P 4 ^ A 4 T 4 ^ )
r ( S a 4 , D ( 4 ) ) = r ( S a 4 )
D 8 j ( 4 ) = 0 , ( j = 1 , , 8 ) .
r A 1 C 1 0 ( B 1 ) ϕ = r ( A 1 ) + r ( B 1 )
r P 1 ^ A 1 T 1 ^ P 1 ^ C 1 ( P 1 ^ ) ϕ 0 ( T 2 ^ ) ϕ ( B 1 ) ϕ ( P 1 ^ ) ϕ = r ( P 1 ^ A 1 T 1 ^ ) + r ( P 1 ^ B 1 T 2 ^ )
r S a 1 D ( 1 ) 0 ( S b 1 ) ϕ = r ( S a 1 ) + r ( S b 1 )
D i , 7 ( 1 ) = 0 , ( i = 8 , , 14 ) , D i , 14 ( 1 ) = 0 , ( i = 8 , , 14 ) .
r A 2 C 2 0 ( B 2 ) ϕ = r ( A 2 ) + r ( B 2 )
r P 2 ^ A 2 T 2 ^ P 2 ^ C 2 ( P 2 ^ ) ϕ 0 ( T 3 ^ ) ϕ ( B 2 ) ϕ ( P 2 ^ ) ϕ = r ( P 2 ^ A 2 T 2 ^ ) + r ( P 2 ^ B 2 T 3 ^ )
r S a 2 D ( 2 ) 0 ( S b 2 ) ϕ = r ( S a 2 ) + r ( S b 2 )
D i , 5 ( 2 ) = 0 , D i , 10 ( 2 ) = 0 , D i , 15 ( 2 ) = 0 , D i , 20 ( 2 ) = 0 , ( i = 16 , , 20 ) .
r A 3 C 3 0 ( B 3 ) ϕ = r ( A 3 ) + r ( B 3 )
r P 3 ^ A 3 T 3 ^ P 3 ^ C 3 ( P 3 ^ ) ϕ 0 ( T 4 ^ ) ϕ ( B 3 ) ϕ ( P 3 ^ ) ϕ = r ( P 3 ^ A 3 T 3 ^ ) + r ( P 3 ^ B 3 T 4 ^ )
r S a 3 D ( 3 ) 0 ( S b 3 ) ϕ = r ( S a 3 ) + r ( S b 3 )
D i , 3 ( 3 ) = 0 , D i , 6 ( 3 ) = 0 , D i , 9 ( 3 ) = 0 ,
D i , 12 ( 3 ) = 0 , D i , 15 ( 3 ) = 0 , D i , 18 ( 3 ) = 0 , ( i = 16 , 17 , 18 ) .
r A 1 C 1 B 1 0 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 0 A 2 C 2 B 2 = r A 1 B 1 0 0 A 2 B 2 + r B 1 A 2
r S a 1 D ( 1 ) S b 1 0 0 0 ( S b 1 ) ϕ 0 ( S a 2 ) ϕ 0 0 0 S a 2 D ( 2 ) S b 2 = r S a 1 S b 1 0 0 S a 2 S b 2 + r S b 1 S a 2
D 14 , j ( 1 ) = 0 , ( j = 1 , , 14 ) , D 12 , 7 ( 1 ) = 0 , D 12 , 14 ( 1 ) = 0 ,
D 20 , j ( 2 ) = 0 , ( j = 1 , , 10 , 16 , , 20 ) , D 10 , j ( 2 ) = 0 , ( j = 16 , , 20 ) ,
D 12 , 1 ( 1 ) = D 10 , 1 ( 2 ) , D 12 , 2 ( 1 ) = D 10 , 2 ( 2 ) , D 12 , 3 ( 1 ) = D 10 , 3 ( 2 ) , D 12 , 4 ( 1 ) = D 10 , 4 ( 2 ) , D 12 , 5 ( 1 ) = D 10 , 5 ( 2 ) ,
D 12 , 8 ( 1 ) = D 10 , 6 ( 2 ) , D 12 , 9 ( 1 ) = D 10 , 7 ( 2 ) , D 12 , 10 ( 1 ) = D 10 , 8 ( 2 ) , D 12 , 11 ( 1 ) = D 10 , 9 ( 2 ) , D 12 , 12 ( 1 ) = D 10 , 10 ( 2 ) .
r A 2 C 2 B 2 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 A 3 C 3 B 3 = r A 2 B 2 0 0 A 3 B 3 + r B 2 A 3
r S a 2 D ( 2 ) S b 2 0 0 0 ( S b 2 ) ϕ 0 ( S a 3 ) ϕ 0 0 0 S a 3 D ( 3 ) S b 3 = r S a 2 S b 2 0 0 S a 3 S b 3 + r S b 2 S a 3
D 20 , j ( 2 ) = 0 , ( j = 1 , 2 , 3 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 15 , 16 , 17 , 18 , 20 ) ,
D 18 , j ( 3 ) = 0 , ( j = 1 , , 12 , 16 , 17 , 18 ) ,
D 18 , 5 ( 2 ) = 0 , D 18 , 10 ( 2 ) = 0 , D 18 , 15 ( 2 ) = 0 , D 18 , 18 ( 2 ) = 0 ,
D 12 , 16 ( 3 ) = 0 , D 12 , 17 ( 3 ) = 0 , D 12 , 18 ( 3 ) = 0 ,
D 18 , 1 ( 2 ) = D 12 , 1 ( 3 ) , D 18 , 2 ( 2 ) = D 12 , 2 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) ,
D 18 , 6 ( 2 ) = D 12 , 4 ( 3 ) , D 18 , 7 ( 2 ) = D 12 , 5 ( 3 ) , D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) ,
D 18 , 11 ( 2 ) = D 12 , 7 ( 3 ) , D 18 , 12 ( 2 ) = D 12 , 8 ( 3 ) , D 18 , 13 ( 2 ) = D 12 , 9 ( 3 ) ,
D 18 , 16 ( 2 ) = D 12 , 10 ( 3 ) , D 18 , 17 ( 2 ) = D 12 , 11 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) .
r A 1 C 1 B 1 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 A 2 C 2 0 0 0 ( B 2 ) ϕ = r A 1 B 1 0 A 2 + r B 1 0 A 2 B 2
r S a 1 D ( 1 ) S b 1 0 0 ( S b 1 ) ϕ 0 ( S a 2 ) ϕ 0 0 S a 2 D ( 2 ) 0 0 0 ( S b 2 ) ϕ = r S a 1 S b 1 0 S a 2 + r S b 1 0 S a 2 S b 2
D i , 14 ( 1 ) = 0 , ( i = 8 , , 14 ) , D i , 20 ( 2 ) = 0 , ( i = 6 , , 10 , 16 , , 20 ) ,
D i , 7 ( 1 ) = 0 , ( i = 8 , , 14 ) , D 14 , 5 ( 1 ) = 0 , D 14 , 12 ( 1 ) = 0 ,
D i , 5 ( 2 ) = 0 , D i , 10 ( 2 ) = 0 , ( i = 16 , , 20 ) ,
D 85 ( 1 ) = D 65 ( 2 ) , D 95 ( 1 ) = D 75 ( 2 ) , D 10 , 5 ( 1 ) = D 85 ( 2 ) , D 11 , 5 ( 1 ) = D 95 ( 2 ) , D 12 , 5 ( 1 ) = D 10 , 5 ( 2 ) ,
D 8 , 12 ( 1 ) = D 6 , 10 ( 2 ) , D 9 , 12 ( 1 ) = D 7 , 10 ( 2 ) , D 10 , 12 ( 1 ) = D 8 , 10 ( 2 ) , D 11 , 12 ( 1 ) = D 9 , 10 ( 2 ) , D 12 , 12 ( 1 ) = D 10 , 10 ( 2 ) .
r A 2 C 2 B 2 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 A 3 C 3 0 0 0 ( B 3 ) ϕ = r A 2 B 2 0 A 3 + r B 2 0 A 3 B 3
r S a 2 D ( 2 ) S b 2 0 0 ( S b 2 ) ϕ 0 ( S a 3 ) ϕ 0 0 S a 3 D ( 3 ) 0 0 0 ( S b 3 ) ϕ = r S a 2 S b 2 0 S a 3 + r S b 2 0 S a 3 S b 3
D i , 5 ( 2 ) = 0 , D i , 10 ( 2 ) = 0 , D i , 15 ( 2 ) = 0 , D i , 20 ( 2 ) = 0 , ( i = 16 , 17 , 18 , 20 ) ,
D i , 3 ( 3 ) = 0 , D i , 6 ( 3 ) = 0 , D i , 9 ( 3 ) = 0 ,
D i , 12 ( 3 ) = 0 , ( i = 16 , 17 , 18 ) , D i , 18 ( 3 ) = 0 , ( i = 10 , 11 , 12 , 16 , 17 , 18 ) ,
D 16 , 3 ( 2 ) = D 10 , 3 ( 3 ) , D 17 , 3 ( 2 ) = D 11 , 3 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) ,
D 16 , 8 ( 2 ) = D 10 , 6 ( 3 ) , D 17 , 8 ( 2 ) = D 11 , 6 ( 3 ) , D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) ,
D 16 , 13 ( 2 ) = D 10 , 9 ( 3 ) , D 17 , 13 ( 2 ) = D 11 , 9 ( 3 ) , D 18 , 13 ( 2 ) = D 12 , 9 ( 3 ) ,
D 16 , 18 ( 2 ) = D 10 , 12 ( 3 ) , D 17 , 18 ( 2 ) = D 11 , 12 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) .
r A 3 C 3 B 3 0 0 ( B 3 ) ϕ 0 ( A 4 ) ϕ 0 0 A 4 C 4 = r A 3 B 3 0 A 4 + r B 3 A 4
r S a 3 D ( 3 ) S b 3 0 0 ( S b 3 ) ϕ 0 ( S a 4 ) ϕ 0 0 S a 4 D ( 4 ) = r S a 3 S b 3 0 S a 4 + r S b 3 S a 4
D 16 , j ( 3 ) = 0 , ( j = 3 , 6 , 9 , 12 , 15 , 18 ) ,
D 18 , j ( 3 ) = 0 , ( j = 1 , 3 , 4 , 6 , 7 , 9 , 10 , 12 , 13 , 15 , 16 , 18 ) ,
D 8 j ( 4 ) = 0 , ( j = 1 , , 6 , 8 ) , D 68 ( 4 ) = 0 ,
D 16 , 1 ( 3 ) = D 61 ( 4 ) , D 16 , 4 ( 3 ) = D 62 ( 4 ) , D 16 , 7 ( 3 ) = D 63 ( 4 ) ,
D 16 , 10 ( 3 ) = D 64 ( 4 ) , D 16 , 13 ( 3 ) = D 65 ( 4 ) , D 16 , 16 ( 3 ) = D 66 ( 4 ) .
r A 1 C 1 B 1 0 0 0 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 0 0 0 A 2 C 2 B 2 0 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 0 A 3 C 3 B 3 = r A 1 B 1 0 0 0 A 2 B 2 0 0 0 A 3 B 3 + r B 1 0 A 2 B 2 0 A 3
r S a 1 D ( 1 ) S b 1 0 0 0 0 0 ( S b 1 ) ϕ 0 ( S a 2 ) ϕ 0 0 0 0 0 S a 2 D ( 2 ) S a 2 0 0 0 0 0 ( S b 2 ) ϕ 0 ( S a 3 ) ϕ 0 0 0 0 0 S a 3 D ( 3 ) S b 3
= r S a 1 S b 1 0 0 0 S a 2 S b 2 0 0 0 S a 3 S b 3 + r S b 1 0 S a 2 S b 2 0 S a 3
D 14 , j ( 1 ) = 0 , ( j = 1 , 2 , 3 , 5 , 7 , 8 , 9 , 10 , 12 , 14 ) , D 10 , 7 ( 1 ) = 0 ,
D 12 , 7 ( 1 ) = 0 , D 10 , 14 ( 1 ) = 0 , D 12 , 14 ( 1 ) = 0 ,
D 20 , j ( 2 ) = 0 , ( j = 1 , 2 , 3 , 5 , 6 , 7 , 8 , 10 , 16 , 17 , 18 , 20 ) , D 8 , 20 ( 2 ) = 0 , D 10 , 20 ( 2 ) = 0 , D 18 , 20 ( 2 ) = 0 ,
D 10 , j ( 2 ) = 0 , ( j = 16 , 17 , 18 ) , D 18 , 5 ( 2 ) = 0 , D 18 , 10 ( 2 ) = 0 ,
D 18 , j ( 3 ) = 0 , ( j = 1 , , 6 , 10 , 11 , 12 , 16 , 17 , 18 ) ,
D 6 , j ( 3 ) = 0 , ( j = 16 , 17 , 18 ) , D 12 , j ( 3 ) = 0 , ( j = 16 , 17 , 18 ) ,
D 12 , 1 ( 1 ) = D 10 , 1 ( 2 ) , D 12 , 2 ( 1 ) = D 10 , 2 ( 2 ) , D 12 , 3 ( 1 ) = D 10 , 3 ( 2 ) , D 12 , 5 ( 1 ) = D 10 , 5 ( 2 ) , D 12 , 8 ( 1 ) = D 10 , 6 ( 2 ) ,
D 12 , 9 ( 1 ) = D 10 , 7 ( 2 ) , D 12 , 10 ( 1 ) = D 10 , 8 ( 2 ) , D 12 , 12 ( 1 ) = D 10 , 10 ( 2 ) , D 10 , 5 ( 1 ) = D 85 ( 2 ) , D 10 , 12 ( 1 ) = D 8 , 10 ( 2 ) ,
D 18 , 1 ( 2 ) = D 12 , 1 ( 3 ) , D 18 , 2 ( 2 ) = D 12 , 2 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) ,
D 18 , 6 ( 2 ) = D 12 , 4 ( 3 ) , D 18 , 7 ( 2 ) = D 12 , 5 ( 3 ) , D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) ,
D 18 , 16 ( 2 ) = D 12 , 10 ( 3 ) , D 18 , 17 ( 2 ) = D 12 , 11 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) ,
D 8 , 16 ( 2 ) = D 6 , 10 ( 3 ) , D 8 , 17 ( 2 ) = D 6 , 11 ( 3 ) , D 8 , 18 ( 2 ) = D 6 , 12 ( 3 ) ,
D 10 , 1 ( 1 ) + D 61 ( 3 ) = D 81 ( 2 ) , D 10 , 2 ( 1 ) + D 62 ( 3 ) = D 82 ( 2 ) , D 10 , 3 ( 1 ) + D 63 ( 3 ) = D 83 ( 2 ) ,
D 10 , 8 ( 1 ) + D 64 ( 3 ) = D 86 ( 2 ) , D 10 , 9 ( 1 ) + D 65 ( 3 ) = D 87 ( 2 ) , D 10 , 10 ( 1 ) + D 66 ( 3 ) = D 88 ( 2 ) .
r A 1 C 1 B 1 0 0 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 0 0 A 2 C 2 B 2 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 A 3 C 3 0 0 0 0 0 ( B 3 ) ϕ = r A 1 B 1 0 0 A 2 B 2 0 0 A 3 + r B 1 0 0 A 2 B 2 0 0 A 3 B 3
r S a 1 D ( 1 ) S b 1 0 0 0 0 ( S b 1 ) ϕ 0 ( S a 2 ) ϕ 0 0 0 0 S a 2 D ( 2 ) S b 2 0 0 0 0 ( S b 2 ) ϕ 0 ( S a 3 ) ϕ 0 0 0 0 S a 3 D ( 3 ) 0 0 0 0 0 ( S b 3 ) ϕ
= r S a 1 S b 1 0 0 S a 2 S b 2 0 0 S a 3 + r S b 1 0 0 S a 2 S b 2 0 0 S a 3 S b 3
D i , 14 ( 1 ) = 0 , ( i = 8 , , 14 ) , D 14 , j ( 1 ) = 0 , ( j = 3 , 5 , 7 , 10 , 12 ) , D i , 7 ( 1 ) = 0 , ( i = 8 , , 10 , 12 ) ,
D i , 20 ( 2 ) = 0 , ( i = 1 , 2 , 3 , 5 , 6 , 7 , 8 , 10 , 16 , 17 , 18 , 20 ) , D 20 , j ( 2 ) = 0 , ( j = 3 , 5 , 8 , 10 , 18 , 20 ) ,
D i , 5 ( 2 ) = 0 , ( i = 16 , 17 , 18 ) , D i , 10 ( 2 ) = 0 , ( i = 16 , 17 , 18 ) , D 10 , 18 ( 2 ) = 0 ,
D i , 18 ( 3 ) = 0 , ( i = 4 , 5 , 6 , 10 , 11 , 12 , 16 , 17 , 18 ) ,
D i , 3 ( 3 ) = 0 , D i , 6 ( 3 ) = 0 , D i , 12 ( 3 ) = 0 , ( i = 16 , 17 , 18 ) ,
D 12 , 3 ( 1 ) = D 10 , 3 ( 2 ) , D 85 ( 1 ) = D 65 ( 2 ) , D 95 ( 1 ) = D 75 ( 2 ) , D 10 , 5 ( 1 ) = D 85 ( 2 ) , D 12 , 5 ( 1 ) = D 10 , 5 ( 2 ) ,
D 12 , 10 ( 1 ) = D 10 , 8 ( 2 ) , D 8 , 12 ( 1 ) = D 6 , 10 ( 2 ) , D 9 , 12 ( 1 ) = D 7 , 10 ( 2 ) , D 10 , 12 ( 1 ) = D 8 , 10 ( 2 ) , D 12 , 12 ( 1 ) = D 10 , 10 ( 2 ) ,
D 6 , 18 ( 2 ) = D 4 , 12 ( 3 ) , D 7 , 18 ( 2 ) = D 5 , 12 ( 3 ) , D 8 , 18 ( 2 ) = D 6 , 12 ( 3 ) ,
D 16 , 3 ( 2 ) = D 10 , 3 ( 3 ) , D 17 , 3 ( 2 ) = D 11 , 3 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) ,
D 16 , 8 ( 2 ) = D 10 , 6 ( 3 ) , D 17 , 8 ( 2 ) = D 11 , 6 ( 3 ) , D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) ,
D 16 , 18 ( 2 ) = D 10 , 12 ( 3 ) , D 17 , 18 ( 2 ) = D 11 , 12 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) ,
D 83 ( 1 ) + D 43 ( 3 ) = D 63 ( 2 ) , D 93 ( 1 ) + D 53 ( 3 ) = D 73 ( 2 ) , D 10 , 3 ( 1 ) + D 63 ( 3 ) = D 83 ( 2 ) ,
D 8 , 10 ( 1 ) + D 46 ( 3 ) = D 68 ( 2 ) , D 9 , 10 ( 1 ) + D 56 ( 3 ) = D 78 ( 2 ) , D 10 , 10 ( 1 ) + D 66 ( 3 ) = D 88 ( 2 ) .
r A 2 C 2 B 2 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 A 3 C 3 B 3 0 0 0 0 ( B 3 ) ϕ 0 ( A 4 ) ϕ 0 0 0 0 A 4 C 4 = r A 2 B 2 0 0 A 3 B 3 0 0 A 4 + r B 2 0 A 3 B 3 0 A 4
r S a 2 D ( 2 ) S b 2 0 0 0 0 ( S b 2 ) ϕ 0 ( S a 3 ) ϕ 0 0 0 0 S a 3 D ( 3 ) S b 3 0 0 0 0 ( S b 3 ) ϕ 0 ( S a 4 ) ϕ 0 0 0 0 S a 4 D ( 4 ) = r S a 2 S b 2 0 0 S a 3 S b 3 0 0 S a 4 + r S b 2 0 S a 3 S b 3 0 S a 4
D i , 20 ( 2 ) = 0 , ( i = 16 , 18 , 20 ) , D 20 , j ( 2 ) = 0 , ( j = 1 , 3 , 5 , 6 , 8 , 10 , 11 , 13 , 15 , 16 , 18 ) ,
D 16 , 5 ( 2 ) = 0 , D 18 , 5 ( 2 ) = 0 , D 16 , 10 ( 2 ) = 0 , D 18 , 10 ( 2 ) = 0 , D 16 , 15 ( 2 ) = 0 , D 18 , 15 ( 2 ) = 0 ,
D i , 18 ( 3 ) = 0 , ( i = 10 , 12 , 16 , 18 ) , D 18 , j ( 3 ) = 0 , ( i = 1 , 3 , 4 , 6 , 7 , 9 , 10 , 12 , 16 ) ,
D 12 , 16 ( 3 ) = 0 , D 16 , 3 ( 3 ) = 0 , D 16 , 6 ( 3 ) = 0 , D 16 , 9 ( 3 ) = 0 , D 16 , 12 ( 3 ) = 0 ,
D i 8 ( 4 ) = 0 , ( i = 4 , 6 , 8 ) , D 8 j ( 4 ) = 0 , ( j = 1 , 2 , 3 , 4 , 6 ) ,
D 16 , 3 ( 2 ) = D 10 , 3 ( 3 ) , D 16 , 8 ( 2 ) = D 10 , 6 ( 3 ) , D 16 , 13 ( 2 ) = D 10 , 9 ( 3 ) ,
D 16 , 18 ( 2 ) = D 10 , 12 ( 3 ) , D 18 , 1 ( 2 ) = D 12 , 1 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) ,
D 18 , 6 ( 2 ) = D 12 , 4 ( 3 ) , D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) , D 18 , 11 ( 2 ) = D 12 , 7 ( 3 ) ,
D 18 , 13 ( 2 ) = D 12 , 9 ( 3 ) , D 18 , 16 ( 2 ) = D 12 , 10 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) ,
D 10 , 16 ( 3 ) = D 46 ( 4 ) , D 16 , 1 ( 3 ) = D 61 ( 4 ) , D 16 , 4 ( 3 ) = D 62 ( 4 ) ,
D 16 , 7 ( 3 ) = D 63 ( 4 ) , D 16 , 10 ( 3 ) = D 64 ( 4 ) , D 16 , 16 ( 3 ) = D 66 ( 4 ) ,
D 16 , 1 ( 2 ) + D 41 ( 4 ) = D 10 , 1 ( 3 ) , D 16 , 6 ( 2 ) + D 42 ( 4 ) = D 10 , 4 ( 3 ) ,
D 16 , 11 ( 2 ) + D 43 ( 4 ) = D 10 , 7 ( 3 ) , D 16 , 16 ( 2 ) + D 44 ( 4 ) = D 10 , 10 ( 3 ) .
r A 1 C 1 B 1 0 0 0 0 0 0 ( B 1 ) ϕ 0 ( A 2 ) ϕ 0 0 0 0 0 0 A 2 C 2 B 2 0 0 0 0 0 0 ( B 2 ) ϕ 0 ( A 3 ) ϕ 0 0 0 0 0 0 A 3 C 3 B 3 0 0 0 0 0 0 ( B 3 ) ϕ 0 ( A 4 ) ϕ 0 0 0 0 0 0 A 4 C 4 = r A 1 B 1 0 0 0 A 2 B 2 0 0 0 A 3 B 3 0 0 0 A 4 + r B 1 0 0 A 2 B 2 0 0 A 3 B 3 0 0 A 4
r S a 1 D ( 1 ) S b 1 0 0 0 0 0 0 ( S b 1 ) ϕ 0 ( S a 2 ) ϕ 0 0 0 0 0 0 S a 2 D ( 2 ) S b 2 0 0 0 0 0 0 ( S b 2 ) ϕ 0 ( S a 3 ) ϕ 0 0 0 0 0 0 S a 3 D ( 3 ) S b 3 0 0 0 0 0 0 ( S b 3 ) ϕ 0 ( S a 4 ) ϕ 0 0 0 0 0 0 S a 4 D ( 4 )
= r S a 1 S b 1 0 0 0 S a 2 S b 2 0 0 0 S a 3 S b 3 0 0 0 S a 4 + r S b 1 0 0 S a 2 S b 2 0 0 S a 3 S b 3 0 0 S a 4
D 14 , j ( 1 ) = 0 , ( j = 1 , 3 , 5 , 7 , 8 , 10 , 12 , 14 ) , D 87 ( 1 ) = 0 , D 8 , 14 ( 1 ) = 0 , D 10 , 7 ( 1 ) = 0 ,
D 10 , 14 ( 1 ) = 0 , D 12 , 7 ( 1 ) = 0 , D 12 , 14 ( 1 ) = 0 ,
D 20 , j ( 2 ) = 0 , ( j = 1 , 3 , 5 , 6 , 8 , 10 , 16 , 18 , 20 ) , D 10 , 16 ( 2 ) = 0 , D 10 , 18 ( 2 ) = 0 , D 10 , 20 ( 2 ) = 0 ,
D 6 , 20 ( 2 ) = 0 , D 8 , 20 ( 2 ) = 0 , D 16 , 5 ( 2 ) = 0 ,
D 16 , 10 ( 2 ) = 0 , D 16 , 20 ( 2 ) = 0 , D 18 , 5 ( 2 ) = 0 , D 18 , 10 ( 2 ) = 0 , D 18 , 20 ( 2 ) = 0 ,
D i , 18 ( 3 ) = 0 , ( i = 4 , 6 , 10 , 12 , 16 , 18 ) , D 18 , j ( 3 ) = 0 , ( j = 1 , 3 , 4 , 6 , 10 , 12 , 16 , 18 ) ,
D 16 , 3 ( 3 ) = 0 , D 16 , 6 ( 3 ) = 0 , D 16 , 12 ( 3 ) = 0 , D 6 , 16 ( 3 ) = 0 , D 12 , 16 ( 3 ) = 0 ,
D i 8 ( 4 ) = 0 , ( i = 2 , 4 , 6 , 8 ) , D 8 j ( 4 ) = 0 , ( j = 1 , 2 , 4 , 6 ) ,
D 85 ( 1 ) = D 65 ( 2 ) , D 8 , 12 ( 1 ) = D 6 , 10 ( 2 ) , D 10 , 5 ( 1 ) = D 85 ( 2 ) , D 10 , 12 ( 1 ) = D 8 , 10 ( 2 ) ,
D 12 , 1 ( 1 ) = D 10 , 1 ( 2 ) , D 12 , 3 ( 1 ) = D 10 , 3 ( 2 ) , D 12 , 5 ( 1 ) = D 10 , 5 ( 2 ) ,
D 12 , 8 ( 1 ) = D 10 , 6 ( 2 ) , D 12 , 10 ( 1 ) = D 10 , 8 ( 2 ) , D 12 , 12 ( 1 ) = D 10 , 10 ( 2 ) ,
D 6 , 18 ( 2 ) = D 4 , 12 ( 3 ) , D 8 , 16 ( 2 ) = D 6 , 10 ( 3 ) , D 8 , 18 ( 2 ) = D 6 , 12 ( 3 ) ,
D 16 , 3 ( 2 ) = D 10 , 3 ( 3 ) , D 16 , 8 ( 2 ) = D 10 , 6 ( 3 ) , D 16 , 18 ( 2 ) = D 10 , 12 ( 3 ) ,
D 18 , 1 ( 2 ) = D 12 , 1 ( 3 ) , D 18 , 3 ( 2 ) = D 12 , 3 ( 3 ) , D 18 , 6 ( 2 ) = D 12 , 4 ( 3 ) ,
D 18 , 8 ( 2 ) = D 12 , 6 ( 3 ) , D 18 , 16 ( 2 ) = D 12 , 10 ( 3 ) , D 18 , 18 ( 2 ) = D 12 , 12 ( 3 ) ,
D 16 , 1 ( 3 ) = D 61 ( 4 ) , D 16 , 4 ( 3 ) = D 62 ( 4 ) , D 16 , 10 ( 3 ) = D 64 ( 4 ) ,
D 16 , 16 ( 3 ) = D 66 ( 4 ) , D 4 , 16 ( 3 ) = D 26 ( 4 ) , D 10 , 16 ( 3 ) = D 46 ( 4 ) ,
D 10 , 1 ( 1 ) + D 61 ( 3 ) = D 81 ( 2 ) , D 10 , 3 ( 1 ) + D 63 ( 3 ) = D 83 ( 2 ) ,
D 10 , 8 ( 1 ) + D 64 ( 3 ) = D 86 ( 2 ) , D 10 , 10 ( 1 ) + D 66 ( 3 ) = D 88 ( 2 ) ,
D 83 ( 1 ) + D 43 ( 3 ) = D 63 ( 2 ) , D 8 , 10 ( 1 ) + D 46 ( 3 ) = D 68 ( 2 ) ,
D 16 , 1 ( 2 ) + D 41 ( 4 ) = D 10 , 1 ( 3 ) , D 16 , 6 ( 2 ) + D 42 ( 4 ) = D 10 , 4 ( 3 ) ,
D 16 , 16 ( 2 ) + D 44 ( 4 ) = D 10 , 10 ( 3 ) , D 6 , 16 ( 2 ) + D 24 ( 4 ) = D 4 , 10 ( 3 ) ,
D 81 ( 1 ) + D 41 ( 3 ) = D 61 ( 2 ) + D 21 ( 4 ) , D 88 ( 1 ) + D 44 ( 3 ) = D 66 ( 2 ) + D 22 ( 4 ) .
In Theorem 2, let A 3 , B 3 , A 4 , and C 3 , C 4 vanish, then we can obtain the necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution in the following equation:
Corollary 1. 
Let C 1 = ( C 1 ) ϕ H p × p , A 1 H p × l , B 1 H p × n , A 2 H q × n , B 2 H q × k , and C 2 = ( C 2 ) ϕ H q × q are given. The system
A 1 X 1 ( A 1 ) ϕ + B 1 X 2 ( B 1 ) ϕ = C 1 , A 2 X 2 ( A 2 ) ϕ + B 2 X 3 ( B 2 ) ϕ = C 2 X i = ( X i ) ϕ ,
has a ϕ-skew-Hermitian solution ( X 1 , X 2 , X 3 ) H l × l × H n × n × H k × k if and only if the ranks satisfy:
r ( A 1 , C 1 , B 1 ) = r ( A 1 , B 1 ) , r ( A 2 , C 2 , B 2 ) = r ( A 2 , B 2 ) ,
r A 1 C 1 0 ( B 1 ) ϕ = r ( A 1 ) + r ( B 1 ) , r A 2 C 2 0 ( B 2 ) ϕ = r ( A 2 ) + r ( B 2 ) ,
r 0 ( B 1 ) ϕ ( A 2 ) ϕ 0 0 B 1 C 1 0 A 1 0 A 2 0 ( C 2 ) 0 B 2 = r A 1 B 1 0 0 A 2 B 2 + r B 1 A 2 ,
r 0 ( B 1 ) ϕ ( A 2 ) ϕ 0 B 1 C 1 0 A 1 A 2 0 ( C 2 ) 0 0 0 ( B 2 ) ϕ 0 = r A 1 B 1 0 A 2 + r B 1 0 A 2 B 2 .
Remark 1. 
Corollary 1 is the main result of [31].

4. Conclusions

We investigated some necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution to the system (1) by using a simultaneous decomposition for a set of quaternion matrices. Some of the known results can be considered special cases in this paper.

Author Contributions

Methodology, Z.-H.H. and X.-N.Z.; software, Y.-F.Z.; writing—original draft preparation, Z.-H.H. and X.-N.Z.; writing—review and editing, Z.-H.H., X.-N.Z. and S.-W.Y.; supervision, S.-W.Y.; project administration, S.-W.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (grant nos. 11801354 and 11971294).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not Applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Rodman, L. Topics in Quaternion Linear Algebra; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
  2. Ghouti, L. Robust perceptual color image hashing using quaternion singular value decomposition. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3794–3798. [Google Scholar]
  3. Sangwine, S.J. Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electron. Lett. 1996, 32, 1979–1980. [Google Scholar] [CrossRef]
  4. Adler, S.L. Scattering and decay theory for quaternionic quantum mechanics, and the structure of induced T nonconservation. Phys. Rev. D 1988, 37, 3654–3662. [Google Scholar] [CrossRef] [PubMed]
  5. Bihan, N.L.; Mars, J. Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]
  6. Cohen, N.; Leo, S.D. The quaternionic determinant. Electron. J. Linear Algebra 2000, 7, 100–111. [Google Scholar] [CrossRef]
  7. He, Z.H. Some new results on a system of Sylvester-type quaternion matrix equations. Linear Multilinear Algebra 2021, 69, 3069–3091. [Google Scholar] [CrossRef]
  8. Horn, R.A.; Zhang, F. A generalization of the complex autonne–takagi factorization to quaternion matrices. Linear Multilinear Algebra 2012, 60, 1239–1244. [Google Scholar] [CrossRef]
  9. Jiang, T.S.; Zhang, Z.Z.; Jiang, Z.W. A New algebraic technique for quaternion constrained least squares problems. Adv. Appl. Clifford Algebr. 2018, 28, 1–10. [Google Scholar] [CrossRef]
  10. Kyrchei, I. Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore–Penrose inverse. Appl. Math. Comput. 2017, 309, 1–16. [Google Scholar] [CrossRef]
  11. Liu, L.S.; Wang, Q.W.; Mehany, M.S. A sylvester-type matrix equation over the Hamilton quaternions with an application. Mathematics 2022, 10, 1758. [Google Scholar] [CrossRef]
  12. Mehany, M.S.; Wang, Q.W. Three symmetrical systems of coupled sylvester-like quaternion matrix equations. Symmetry 2022, 14, 550. [Google Scholar] [CrossRef]
  13. Song, G.J.; Dong, C.Z. New results on condensed Cramer’s rule for the general solution to some restricted quaternion matrix equations. J. Appl. Math. Comput. 2015, 53, 1–21. [Google Scholar] [CrossRef]
  14. Took, C.C.; Mandic, D.P.; Zhang, F. On the unitary diagonalisation of a special class of quaternion matrices. Appl. Math. Lett. 2011, 24, 1806–1809. [Google Scholar] [CrossRef] [Green Version]
  15. Vince, J. Quaternions for Computer Graphics; Springer: London, UK, 2011. [Google Scholar]
  16. Wang, R.N.; Wang, Q.W.; Liu, L.S. Solving a system of sylvester-like quaternion matrix equations. Symmetry 2022, 14, 1056. [Google Scholar] [CrossRef]
  17. Xu, Y.F.; Wang, Q.W.; Liu, L.S.; Mehany, M.S. A constrained system of matrix equations. Comput. Appl. Math. 2022, 41, 166. [Google Scholar] [CrossRef]
  18. Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl. 1997, 251, 21–57. [Google Scholar] [CrossRef] [Green Version]
  19. Kyrchei, I. Determinantal representations of solutions and Hermitian solutions to some system of two-sided quaternion matrix equations. Adv. Math. 2018, 2018, 6294672. [Google Scholar] [CrossRef]
  20. Kyrchei, I. Determinantal representations of solutions to systems of quaternion matrix equations. Adv. Appl. Clifford Algebr. 2018, 28, 23. [Google Scholar] [CrossRef]
  21. Kyrchei, I. Cramer’s rules for sylvester quaternion matrix equation and its special cases. Adv. Appl. Clifford Algebr. 2018, 28, 90. [Google Scholar] [CrossRef]
  22. Song, C.; Chen, G.; Zhang, X. An itertive solution to coupled quaternion matrix equations. Filomat 2012, 26, 809–826. [Google Scholar] [CrossRef] [Green Version]
  23. Wang, Q.W. The general solution to a system of real quaternion matrix equations. Comput. Math. Appl. 2005, 49, 665–675. [Google Scholar] [CrossRef] [Green Version]
  24. Wang, Q.W.; van der Woude, J.W.; Chang, H.X. A system of real quaternion matrix equations with applications. Linear Algebra Appl. 2009, 431, 2291–2303. [Google Scholar] [CrossRef] [Green Version]
  25. Yuan, S.F.; Wang, Q.W. Two special kinds of least squares solutions for the quaternion matrix equation AXB+CXD=E. Electron. J. Linear Algebra 2012, 23, 257–274. [Google Scholar] [CrossRef] [Green Version]
  26. Yuan, S.F.; Wang, Q.W. L-structured quaternion matrices and quaternion linear matrix equations. Linear Multilinear Algebra 2016, 64, 321–339. [Google Scholar] [CrossRef]
  27. Yuan, S.F.; Wang, Q.W.; Duan, X.F. On solutions of the quaternion matrix equation AX=B and their applications in color image restoration. Appl. Math. Comput. 2013, 221, 10–20. [Google Scholar]
  28. Wang, Q.W.; Zhang, F. The reflexive re-nonnegative definite solution to a quaternion matrix equation. Electron. J. Linear Algebra 2008, 17, 88–101. [Google Scholar] [CrossRef] [Green Version]
  29. Wang, Q.W.; Jiang, J. Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation. Electron. J. Linear Algebra 2010, 20, 552–573. [Google Scholar] [CrossRef] [Green Version]
  30. He, Z.H.; Wang, Q.W.; Zhang, Y. Simultaneous decomposition of quaternion matrices involving η-Hermicity with applications. Appl. Math. Comput. 2017, 298, 13–35. [Google Scholar] [CrossRef]
  31. He, Z.H. Structure, properties and applications of some simultaneous decompositions for quaternion matrices involving ϕ-skew-Hermicity. Adv. Appl. Clifford Algebr. 2019, 29, 6. [Google Scholar] [CrossRef]
  32. Moor, B.D.; Zha, H. A tree of generalization of the ordinary singular value decomposition. Linear Algebra Appl. 1991, 147, 469–500. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

He, Z.-H.; Zhang, X.-N.; Zhao, Y.-F.; Yu, S.-W. The Solvability of a System of Quaternion Matrix Equations Involving ϕ-Skew-Hermicity. Symmetry 2022, 14, 1273. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14061273

AMA Style

He Z-H, Zhang X-N, Zhao Y-F, Yu S-W. The Solvability of a System of Quaternion Matrix Equations Involving ϕ-Skew-Hermicity. Symmetry. 2022; 14(6):1273. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14061273

Chicago/Turabian Style

He, Zhuo-Heng, Xiao-Na Zhang, Yun-Fan Zhao, and Shao-Wen Yu. 2022. "The Solvability of a System of Quaternion Matrix Equations Involving ϕ-Skew-Hermicity" Symmetry 14, no. 6: 1273. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14061273

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop