Next Article in Journal
Inexact Iterates of Nonexpansive Mappings with Summable Errors in Metric Spaces with Graphs
Next Article in Special Issue
Control Problem Related to a 2D Parabolic–Elliptic Chemo-Repulsion System with Nonlinear Production
Previous Article in Journal
Thermal Characteristics and Safety Aspects of Lithium-Ion Batteries: An In-Depth Review
Previous Article in Special Issue
Automatic Parking Path Optimization Based on Immune Moth Flame Algorithm for Intelligent Vehicles
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multi-Granulation Double Fuzzy Rough Sets

1
Department of Mathematics, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
3
Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
4
Department of Mathematics, Faculty of Science, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia
*
Author to whom correspondence should be addressed.
Submission received: 9 September 2023 / Revised: 4 October 2023 / Accepted: 9 October 2023 / Published: 17 October 2023
(This article belongs to the Special Issue Optimal Control and Symmetry)

Abstract

:
In this article, we introduce two new rough set models based on the concept of double fuzzy relations. These models are called optimistic and pessimistic multi-granulation double fuzzy rough sets. We discuss their properties and explore the relationship between these new models and double fuzzy rough sets. Our study focuses on the lower and upper approximations of these models, which generalize the conventional rough set model. In addition, we suggest that the development of the multi-granulation double fuzzy rough set model is significant for the generalization of the rough set model.

1. Introduction and Preliminaries

The theory of rough sets, introduced by Pawlak [1,2], has become a well-established mathematical tool for studying uncertainty in a variety of applications and intelligent systems that deal with incomplete or inadequate information. The equivalence classes defined by the equivalence relation are used to determine the lower and upper approximations to approximate undefinable sets. Rough sets have been widely applied in various fields, including granular computing, graph theory, algebraic systems, partially ordered sets, medical diagnosis, data mining, and conflict analysis, among others [3,4,5,6,7,8].
The study of set theory involves a significant exploration of the generalization and extension of the rough set model. Qian et al. [9,10] introduced the multi-granulation rough set model, which is defined by a family of equivalence relations, as opposed to Pawlak’s rough set model, which is defined by only one equivalence relation. The multi-granulation rough set model includes two types: the optimistic and pessimistic multi-granulation rough sets. The term “optimistic” is used to refer to the idea that in multi-independent granular structures, at least one granular structure must satisfy the inclusion relation between the equivalence class and the undefinable set. Meanwhile, “pessimistic” denotes the idea that each granular structure must satisfy the inclusion relation between the equivalence class and the undefinable set. There have been several studies exploring multi-granulation rough set models based on various types of relations, leading to a number of intriguing ideas, such as those presented in [11,12,13,14,15,16,17,18].
On the other hand, one of these trends is to combine other theories dealing with uncertain knowledge, such as fuzzy set and rough set theory. The fuzzy set theory addresses potential uncertainties associated with erroneous cases, perceptions, and preferences, whereas approximate sets identify uncertainty caused by the ambiguity of information. As both types of uncertainty can arise in real-world problems, there have been numerous proposed approaches to combining fuzzy set theory with approximation set theory. Dubois and Prade introduced rough fuzzy sets and fuzzy rough sets based on approximations of fuzzy sets by crisp approximation spaces, as seen in [19,20]. Using the same framework, researchers have developed an approach to enhance coarse fuzzy rough sets and rough fuzzy sets, as demonstrated in [21,22,23,24,25,26].
Atanassov [27] proposed the concept of intuitionistic fuzzy sets, which provide membership and non-membership degrees for an element. This allows for more flexibility and efficiency when dealing with incomplete or inaccurate information compared with Zadeh’s fuzzy sets [28].
The use of the term “intuitionistic” in relation to complete lattice L has generated some debate regarding its applicability. However, Garcia and Rodabaugh [29] definitively settled these doubts by demonstrating that this term is not appropriate for mathematics and its applications. As a result, they have adopted the name “double” for their work in this area.
Inspired and motivated by the recent works [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30], our aim in this paper is to investigate and enhance the study of multi-granulation double fuzzy approximation spaces by exploring the double fuzzy upper and lower approximation operators. The framework focuses on introducing two types of double fuzzy sets using multiple pairs of double fuzzy relations on U and analyzing their relationship.
Throughout this paper, let U = { x 1 , x 2 , x n } be a nonempty and finite set of objects and I = [ 0 , 1 ] . A fuzzy set is a map from U to I. The set of all fuzzy sets on U is denoted by I U . R is a fuzzy binary relation on U, i.e., R ( x , y ) [ 0 , 1 ] for any x , y U . The set of all fuzzy binary relations on U is denoted by I U × U .
Definition 1
([30]). Let U and V be two arbitrary sets. A double fuzzy relation on U × V is a pair ( R , R * ) of maps R , R * : U × V I such that R ( x , y ) 1 R * ( x , y ) for all ( x , y ) U × V . If R , R * : U × U I , then ( R , R * ) is called a double fuzzy relation on U. R ( x , y ) (resp. R * ( x , y ) ), referred to as the degree of relation (resp. non-relation) between x and y.
Definition 2
([30]). Let U be an arbitrary universal set and ( R , R * ) a double fuzzy relation on U. Then, for each fuzzy set λ on U , the pairs ( R ̲ R λ , R ̲ R * * λ ) , ( R ¯ R λ , R ¯ R * * λ ) of maps R ̲ R λ , R ̲ R * * λ , R ¯ R λ , R ¯ R * * λ : U I are called double fuzzy lower approximation and double fuzzy upper approximation of a fuzzy set λ , respectively, and are defined as follows: For all x U ,
( R ̲ R λ ) ( x ) = y U ( ( 1 R ( x , y ) ) λ ( y ) ) , ( R ̲ R * * λ ) ( x ) = y U ( ( 1 R * ( x , y ) ) ( 1 λ ( y ) ) )
( R ¯ R λ ) ( x ) = y U ( R ( x , y ) λ ( y ) ) , ( R ¯ R * * λ ) ( x ) = y U ( R * ( x , y ) ( 1 λ ( y ) ) ) .
The quaternary ( R ̲ R λ , R ̲ R * * λ , R ¯ R λ , R ¯ R * * λ ) is called double fuzzy rough set of λ. The pairs ( R ̲ R , R ̲ R * * ) , ( R ¯ R , R ¯ R * * ) of operators R ̲ R , R ̲ R * * , R ¯ R , R ¯ R * * : I U I U are called double fuzzy lower approximation and double fuzzy upper approximation operators, respectively.
Definition 3
([30]). For all x , y U , a double fuzzy relation ( R , R * ) on U is called as follows:
(1) Double fuzzy reflexive if R ( x , x ) = 1 and R * ( x , x ) = 0 .
(2) Double fuzzy transitive if R ( x , z ) y U ( R ( x , y ) R ( y , z ) ) and R * ( x , z ) y U ( R * ( x , y ) R * ( y , z ) ) z U .
(3) Double fuzzy symmetric if R ( x , y ) = R ( y , x ) and R * ( x , y ) = R * ( y , x ) .

2. Optimistic Multi-Granulation Double Fuzzy Rough Sets

In this section, we provide some concepts along with an example and discuss the optimistic multi-granulation double fuzzy rough sets based on multiple double fuzzy relations.
Definition 4.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. Then, for each fuzzy set λ on U , the pairs ( OR R 1 + R 2 ̲ λ , OR R 1 * + R 2 * * ̲ λ ) and ( OR R 1 + R 2 ¯ λ , OR R 1 * + R 2 * * ¯ λ ) of maps OR R 1 + R 2 ̲ λ , OR R 1 * + R 2 * * ̲ λ , OR R 1 + R 2 ¯ λ , OR R 1 * + R 2 * * ¯ λ : U I are called optimistic two-granulation double fuzzy lower approximation and optimistic two-granulation double fuzzy upper approximation of a fuzzy set λ , respectively, and are defined as follows: For all x U ,
( OR R 1 + R 2 ̲ λ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) λ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) λ ( y ) ) ;
( OR R 1 * + R 2 * * ̲ λ ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 λ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 λ ( y ) ) ;
( OR R 1 + R 2 ¯ λ ) ( x ) = y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) ;
( OR R 1 * + R 2 * * ¯ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) .
The quaternary ( OR R 1 + R 2 ̲ λ , OR R 1 * + R 2 * * ̲ λ , OR R 1 + R 2 ¯ λ , OR R 1 * + R 2 * * ¯ λ ) is called optimistic two- granulation double fuzzy rough set of λ (in short, OTGDFRS). The pairs ( OR R 1 + R 2 ̲ , OR R 1 * + R 2 * * ̲ ) and ( OR R 1 + R 2 ¯ , OR R 1 * + R 2 * * ¯ ) of operators OR R 1 + R 2 ̲ , OR R 1 * + R 2 * * ̲ , OR R 1 + R 2 ¯ , OR R 1 * + R 2 * * ¯ : U I are called optimistic two-granulation double fuzzy lower approximation and optimistic two-granulation double fuzzy upper approximation operators, respectively.
The OTGDFRS approximations are defined by many separate pairs of double fuzzy relations, whereas the normal double fuzzy rough approximations are represented by those produced by only one pair of double fuzzy relations, as can be seen from the preceding definition. In fact, when ( R 1 , R 1 * ) = ( R 2 , R 2 * ) , the OTGDFRS degenerates into a double fuzzy rough set. Put another way, a double fuzzy rough set model is a subset of the OTGDFRS.
Proposition 1.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. For each λ I U , the following apply:
(1) OR R 1 + R 2 ̲ λ = R R 1 ̲ λ R R 2 ̲ λ , and OR R 1 * + R 2 * * ̲ λ = R R 1 * * ̲ λ R R 2 * * ̲ λ .
(2) OR R 1 + R 2 ¯ λ = R R 1 ¯ λ R R 2 ¯ λ , and OR R 1 * + R 2 * * ¯ λ = R R 1 * * ¯ λ R R 2 * * ¯ λ .
Proof. 
The proofs follow directly from Definitions 2 and 4. □
From Definition 4, it is possible to determine the properties of the optimistic multi-granulation double fuzzy rough sets, as in the following.
Theorem 1.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. For each λ I U , the following apply:
 (1)
OR R 1 + R 2 ¯ λ 1 ˜ OR R 1 * + R 2 * * ¯ λ , and OR R 1 + R 2 ̲ λ 1 ˜ OR R 1 * + R 2 * * ̲ λ .
 (2)
OR R 1 + R 2 ̲ 1 ˜ = 1 ˜ , and OR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
 (3)
OR R 1 + R 2 ¯ 0 ˜ = 0 ˜ , and OR R 1 * + R 2 * * ¯ 0 ˜ = 1 ˜ .
 (4)
OR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 + R 2 ̲ λ , and OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 * + R 2 * * ̲ λ .
 (5)
OR R 1 + R 2 ̲ ( 1 ˜ λ ) = 1 ˜ OR R 1 + R 2 ¯ λ , and OR R 1 * + R 2 * * ̲ ( 1 ˜ λ ) = 1 ˜ OR R 1 * + R 2 * * ¯ λ .
Proof. 
(1) For each x U , λ I U , we have
( 1 ˜ ( OR R 1 * + R 2 * * ¯ λ ) ) ( x ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( R 2 * ( x , y ) 1 λ ( y ) ) = y U 1 R 1 * ( x , y ) 1 λ ( y ) y U 1 R 2 * ( x , y ) 1 λ ( y ) = y U 1 R 1 * ( x , y ) λ ( y ) y U 1 R 2 * ( x , y ) λ ( y ) y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) = ( OR R 1 + R 2 ¯ λ ) ( x ) for all x U .
Hence, OR R 1 + R 2 ¯ λ 1 ˜ OR R 1 * + R 2 * * ¯ λ . Similarly, OR R 1 + R 2 ̲ λ 1 ˜ OR R 1 * + R 2 * * ̲ λ .
(2) Since, for each x U , 1 ˜ ( x ) = 1 , we obtain
( OR R 1 + R 2 ̲ 1 ˜ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) 1 ˜ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) 1 ˜ ( y ) ) = 1 = 1 ˜ ( x ) ,
and
( OR R 1 * + R 2 * * ̲ 1 ˜ ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 1 ˜ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 1 ˜ ( y ) ) = 0 = 0 ˜ ( x ) .
Therefore, we obtain OR R 1 + R 2 ̲ 1 ˜ = 1 ˜ and OR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
(3) The proof is similar to the proof of (2).
(4) For each x U , we have
OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 ( 1 λ ( y ) ) ) y U ( R 2 * ( x , y ) 1 ( 1 λ ( y ) ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 OR R 1 * + R 2 * * ̲ λ ( x ) .
Thus, we obtain OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 * + R 2 * * ̲ λ . Similarly, we can prove that OR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 + R 2 ̲ λ
(5) The proof is similar to the proof of (4). □
Theorem 2.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. For each λ , μ I U , the following apply:
 (1)
OR R 1 + R 2 ̲ ( λ μ ) OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ , and
OR R 1 * + R 2 * * ̲ ( λ μ ) OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
 (2)
OR R 1 + R 2 ¯ ( λ μ ) OR R 1 + R 2 ¯ λ OR R 1 + R 2 ¯ μ , and
OR R 1 * + R 2 * * ¯ ( λ μ ) OR R 1 * + R 2 * * ¯ λ OR R 1 * + R 2 * * ¯ μ .
 (3)
If λ μ , then OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ , and OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
 (4)
If λ μ , then OR R 1 + R 2 ¯ λ OR R 1 + R 2 ¯ μ , and OR R 1 * + R 2 * * ¯ λ OR R 1 * + R 2 * * ¯ μ .
 (5)
OR R 1 + R 2 ̲ ( λ μ ) OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ , and
OR R 1 * + R 2 * * ̲ ( λ μ ) OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
 (6)
OR R 1 + R 2 ¯ ( λ μ ) OR R 1 + R 2 ¯ λ OR R 1 + R 2 ¯ μ , and
OR R 1 * + R 2 * * ¯ ( λ μ ) OR R 1 * + R 2 * * ¯ λ OR R 1 * + R 2 * * ¯ μ .
Proof. 
(1) For each x U and λ , μ I U , we have
( OR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) ( λ μ ) ( y ) ) y U ( ( 1 R 2 ( x , y ) ) ( λ μ ) ( y ) ) = y U ( ( 1 R 1 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 1 ( x , y ) ) ( μ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( μ ) ( y )
= ( R R 1 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 2 ̲ μ ) ( x ) ( R R 1 ̲ λ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ μ ) ( x ) = ( OR R 1 + R 2 ̲ λ ) ( x ) ( OR R 1 + R 2 ̲ μ ) ( x ) .
Also, for each x U , we have
( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 ( λ μ ) ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 ( λ μ ) ( y ) ) = y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) = y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 1 * ( x , y ) ) ( 1 μ ( y )
y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 μ ( y ) = ( R R 1 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) ( R R 1 * * ̲ λ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) = ( OR R 1 * + R 2 * * ̲ λ ) ( x ) ( OR R 1 * + R 2 * * ̲ μ ) ( x )
(2) The proof is similar to the proof of (1).
(3) If λ μ , then for all y U , λ ( y ) μ ( y ) , we get
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) )
and
y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) ) .
From Equations (1) and (2), we have
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) ) .
Therefore, OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ . Also,
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) )
and
y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) ) .
From Equations (3) and (4), we have
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) )
Hence, OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
(4) The proof is similar to the proof of (3).
(5) Since λ λ μ and μ λ μ , from (3), we have
OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ ( λ μ ) and OR R 1 + R 2 ̲ μ OR R 1 + R 2 ̲ ( λ μ ) .
Therefore, OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ OR R 1 + R 2 ̲ ( λ μ ) . Also, we have
OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ ( λ μ ) and OR R 1 * + R 2 * * ̲ μ OR R 1 * + R 2 * * ̲ ( λ μ ) .
This implies that OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ OR R 1 * + R 2 * * ̲ ( λ μ ) .
(6) The proof is similar to the proof of (5). □
In the following example, we demonstrate that the converse of Theorem 2 (1) is not true.
Example 1.
Let U = { x , y , z } . Define R 1 , R 1 * , R 2 , R 2 * : U × U I as follows:
R 1 = 0.2 0.4 0.7 0.9 0.3 0.7 0.6 0.3 0.2 R 1 * = 0.1 0.6 0.2 0.0 0.6 0.2 0.3 0.0 0.7
R 2 = 0.1 0.5 0.6 0.4 0.3 0.8 0.7 0.2 0.3 R 2 * = 0.2 0.3 0.4 0.1 0.6 0.1 0.3 0.6 0.6
Define λ , μ I U as follows:
λ = { ( x , 0.5 ) , ( y , 0.7 ) , ( z , 0.1 ) } ,
μ = { ( x , 0.4 ) , ( y , 0.2 ) , ( z , 0.8 ) } ,
λ μ = { ( x , 0.4 ) , ( y , 0.2 ) , ( z , 0.1 ) } .
Then,
( OR R 1 + R 2 ̲ λ ) ( x ) = 0.4 , ( OR R 1 + R 2 ̲ λ ) ( y ) = 0.3 , ( OR R 1 + R 2 ̲ λ ) ( z ) = 0.5
( OR R 1 + R 2 ̲ μ ) ( x ) = 0.6 , ( OR R 1 + R 2 ̲ μ ) ( y ) = 0.6 , ( OR R 1 + R 2 ̲ μ ) ( z ) = 0.4
( OR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = 0.4 , ( OR R 1 + R 2 ̲ ( λ μ ) ) ( y ) = 0.2 , ( OR R 1 + R 2 ̲ ( λ μ ) ) ( z ) = 0.4
Therefore, OR R 1 + R 2 ̲ ( λ μ ) OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ .
( OR R 1 * + R 2 * * ̲ λ ) ( x ) = 0.6 , ( OR R 1 * + R 2 * * ̲ λ ) ( y ) = 0.8 , ( OR R 1 * + R 2 * * ̲ λ ) ( z ) = 0.5
( OR R 1 * + R 2 * * ̲ μ ) ( x ) = 0.6 , ( OR R 1 * + R 2 * * ̲ μ ) ( y ) = 0.6 , ( OR R 1 * + R 2 * * ̲ μ ) ( z ) = 0.6
( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = 0.7 , ( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( y ) = 0.8 , ( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( z ) = 0.6 .
Therefore, OR R 1 * + R 2 * * ̲ ( λ μ ) OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
Theorem 3.
Let ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on an universal set U. Then, the following statements are equivalent:
 (1)
( R 1 , R 1 * ) and ( R 2 , R 2 * ) are double fuzzy reflexive relations.
 (2)
λ OR R 1 + R 2 ¯ λ , and 1 ˜ λ OR R 1 * + R 2 * * ¯ λ .
 (3)
OR R 1 + R 2 ̲ λ λ , and OR R 1 * + R 2 * * ̲ λ 1 ˜ λ .
Proof. 
( 1 ) ( 2 ) Let ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy reflexive relations. Then, R i ( x , x ) = 1 , and R i * ( x , x ) = 0 for all i { 1 , 2 } and x U . Therefore,
λ ( x ) = 1 λ ( x ) = R 1 ( x , x ) λ ( x ) R 2 ( x , x ) λ ( x ) y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) = OR R 1 + R 2 ¯ λ
and
1 ˜ λ ( x ) = 0 1 ˜ λ ( x ) = R 1 * ( x , x ) 1 ˜ λ ( x ) R 2 * ( x , x ) 1 ˜ λ ( x ) y U ( R 1 * ( x , y ) 1 ˜ λ ( y ) ) y U ( R 2 * ( x , y ) 1 ˜ λ ( y ) ) = OR R 1 * + R 2 * * ¯ λ .
( 2 ) ( 1 ) Suppose that there exist some x U such that R i ( x , x ) = a i 1 and R i * ( x , x ) = b i 0 for all i { 1 , 2 } ; then, we can define fuzzy set δ x : U I as
δ x ( y ) = 1 , if y = x 0 , if y x .
Then,
OR R 1 + R 2 ¯ δ x ( x ) = y U ( R 1 ( x , y ) δ x ( y ) ) y U ( R 2 ( x , y ) δ x ( y ) ) = R 1 ( x , x ) R 2 ( x , x ) = a 1 a 2 1 = δ x ( x )
and
OR R 1 * + R 2 * * ¯ δ x ( x ) = y U ( R 1 * ( x , y ) 1 δ x ( y ) ) y U ( R 2 * ( x , y ) 1 δ x ( y ) ) = R 1 * ( x , x ) R 2 * ( x , x ) = b 1 b 2 0 = 1 δ x ( x ) .
Therefore δ x OR R 1 + R 2 ¯ δ x and 1 ˜ δ x OR R 1 * + R 2 * * ¯ δ x . This is a contradiction. Hence, R i ( x , x ) = 1 , and R i * ( x , x ) = 0 for all i { 1 , 2 } and x U . ( 2 ) ( 3 ) It is easy to show this from Theorem 1 ((4) and (5)). □
Theorem 4.
Let ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on an universal set U. Then, the following statements are equivalent:
 (1)
( R 1 , R 1 * ) and ( R 2 , R 2 * ) are double fuzzy transitive relations.
 (2)
OR R 1 + R 2 ¯ ( OR R 1 + R 2 ¯ λ ) OR R 1 + R 2 ¯ λ , and
OR R 1 * + R 2 * * ¯ ( 1 ˜ OR R 1 * + R 2 * * ¯ λ ) OR R 1 * + R 2 * * ¯ λ .
 (3)
OR R 1 + R 2 ̲ ( OR R 1 + R 2 ̲ λ ) OR R 1 + R 2 ̲ λ , and
OR R 1 * + R 2 * * ̲ ( 1 ˜ OR R 1 * + R 2 * * ̲ ) OR R 1 * + R 2 * * ̲ λ .
Proof. 
( 1 ) ( 2 ) For each λ I U ,
OR R 1 + R 2 ¯ ( OR R 1 + R 2 ¯ λ ) ( x ) = y U ( R 1 ( x , y ) ( OR R 1 + R 2 ¯ ) ( y ) y U ( R 2 ( x , y ) ( OR R 1 + R 2 ¯ ) ( y ) = b 1 b 2 0 = 1 δ x ( x ) .
As part of the extension of the optimistic two-granulation double fuzzy rough set, we will introduce the optimistic multi-granulation double fuzzy rough set (in short, OMGDFRS) and its associated properties.
Definition 5.
Let U be an arbitrary set and the pairs ( R i , R i * ) , such that 1 i m , double fuzzy relations on U. Then, ( U , R , R * ) is called the multi-granulation double fuzzy approximation space (in short, MGDFAS), where R = { R 1 , R 2 , R i } and R * = { R 1 * , R 2 * , R i * } .
Definition 6.
Let ( U , R , R * ) be an MGDFAS. Then, for each fuzzy set λ on U , the pairs ( OR Σ m i = 1 R i ̲ λ , OR Σ m i = 1 R i * * ̲ λ ) and ( OR Σ m i = 1 R i ¯ λ , OR Σ m i = 1 R i * * ¯ λ ) of maps OR Σ m i = 1 R i ̲ λ , OR Σ m i = 1 R i * * ̲ λ ,   OR Σ m i = 1 R i ¯ λ , OR Σ m i = 1 R i * * ¯ λ : U I are called optimistic multi-granulation double fuzzy lower approximation and optimistic multi-granulation double fuzzy upper approximation of a fuzzy set λ , respectively, and are defined as follows: For all x U ,
( OR Σ m i = 1 R i ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i ( x , y ) ) λ ( y ) ) ,
( OR Σ m i = 1 R i * * ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i * ( x , y ) ) 1 λ ( y ) ) ,
( OR Σ m i = 1 R i ¯ λ ) ( x ) = m i = 1 y U ( R i ( x , y ) λ ( y ) ) ,
( OR Σ m i = 1 R i * * ¯ λ ) ( x ) = m i = 1 y U ( R i * ( x , y ) 1 λ ( y ) ) .
The quaternary ( OR Σ m i = 1 R i ̲ λ , OR Σ m i = 1 R i * * ̲ λ , OR Σ m i = 1 R i ¯ λ , OR Σ m i = 1 R i * * ¯ λ ) is called optimistic multi- granulation double fuzzy rough set of λ (in short, OMGDFRS).
The pairs ( OR Σ m i = 1 R i ̲ , OR Σ m i = 1 R i * * ̲ ) and ( OR Σ m i = 1 R i ¯ , OR Σ m i = 1 R i * * ¯ ) of operators OR Σ m i = 1 R i ̲ , OR Σ m i = 1 R i * * ̲ , OR Σ m i = 1 R i ¯ , OR Σ m i = 1 R i * * ¯ : I U I U are called optimistic multi-granulation double fuzzy lower approximation and optimistic multi-granulation double fuzzy upper approximation operators, respectively.
Proposition 2.
Let ( U , R , R * ) be an MGDFAS. For each λ I U , the following apply:
(1) OR Σ m i = 1 R i ̲ λ = i = 1 m R R i ̲ λ , and OR Σ m i = 1 R i * * ̲ λ = i = 1 m R R i * * ̲ λ .
(2) OR Σ m i = 1 R i ¯ λ = i = 1 m R R i ¯ λ , and OR Σ i = 1 m R i * * ¯ λ = m i = 1 R R i * * ¯ λ .
Proof. 
The proof is similar to the proof of Proposition 1. □
Theorem 5.
Let ( U , R , R * ) be an MGDFAS. For each λ I U , the following apply:
(1) OR Σ m i = 1 R i ¯ λ 1 ˜ OR Σ m i = 1 R i * * ¯ λ , and OR Σ m i = 1 R i ̲ λ 1 ˜ OR Σ m i = 1 R i * * ̲ λ .
(2) OR Σ m i = 1 R i ̲ 1 ˜ = 1 ˜ , and OR Σ m i = 1 R i * * ̲ 1 ˜ = 0 ˜ .
(3) OR Σ m i = 1 R i ¯ 0 ˜ = 0 ˜ , and OR Σ m i = 1 R i * * ¯ 0 ˜ = 1 ˜ .
(4) OR Σ m i = 1 R i ¯ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i ̲ λ , and OR Σ m i = 1 R i * * ¯ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i * * ̲ λ .
(5) OR Σ m i = 1 R i ̲ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i ¯ λ , and OR Σ m i = 1 R i * * ̲ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i * * ¯ λ .
Proof. 
The proof is similar to the proof of Theorem 1. □
Theorem 6.
Let ( U , R , R * ) be an MGDFAS. For each λ , μ I U , the following apply:
 (1)
OR Σ m i = 1 R i ̲ ( λ μ ) OR Σ m i = 1 R i ̲ λ OR Σ m i = 1 R i ̲ μ , and
OR Σ m i = 1 R i * * ̲ ( λ μ ) OR Σ m i = 1 R i * * ̲ λ OR Σ m i = 1 R i * * ̲ μ .
 (2)
OR Σ m i = 1 R i ¯ ( λ μ ) OR Σ m i = 1 R i ¯ λ OR Σ m i = 1 R i ¯ μ , and
OR Σ m i = 1 R i * * ¯ ( λ μ ) OR Σ m i = 1 R i * * ¯ λ OR Σ m i = 1 R i * * ¯ μ .
 (3)
If λ μ , then OR Σ m i = 1 R i ̲ λ OR Σ m i = 1 R i ̲ μ , and OR Σ m i = 1 R i * * ̲ λ OR Σ m i = 1 R i * * ̲ μ .
 (4)
If λ μ , then OR Σ m i = 1 R i ¯ λ OR Σ m i = 1 R i ¯ μ , and OR Σ m i = 1 R i * * ¯ λ OR Σ m i = 1 R i * * ¯ μ .
 (5)
OR Σ m i = 1 R i ̲ ( λ μ ) OR Σ m i = 1 R i ̲ λ OR Σ m i = 1 R i ̲ μ , and
OR Σ m i = 1 R i * * ̲ ( λ μ ) OR Σ m i = 1 R i * * ̲ λ OR Σ m i = 1 R i * * ̲ μ .
 (6)
OR Σ m i = 1 R i ¯ ( λ μ ) OR Σ m i = 1 R i ¯ λ OR Σ m i = 1 R i ¯ μ , and
OR Σ m i = 1 R i * * ¯ ( λ μ ) OR Σ m i = 1 R i * * ¯ λ OR Σ m i = 1 R i * * ¯ μ .
Proof. 
The proof is similar to the proof of Theorem 2. □

3. Pessimistic Multi-Granulation Double Fuzzy Rough Sets

In this section, we provide the pessimistic multi-granulation double fuzzy rough sets based on multiple double fuzzy relations and discuss the relationship between optimistic multi-granulation double fuzzy rough sets and pessimistic multi-granulation double fuzzy rough sets.
Definition 7.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. Then, for each fuzzy set λ on U , the pairs ( PR R 1 + R 2 ̲ λ , PR R 1 * + R 2 * * ̲ λ ) and ( PR R 1 + R 2 ¯ λ , PR R 1 * + R 2 * * ¯ λ ) of maps PR R 1 + R 2 ̲ λ , PR R 1 * + R 2 * * ̲ λ , PR R 1 + R 2 ¯ λ , PR R 1 * + R 2 * * ¯ λ : U I are called pessimistic two-granulation double fuzzy lower approximation and pessimistic two-granulation double fuzzy upper approximation of a fuzzy set λ , respectively, and are defined as follows: For all x U ,
( PR R 1 + R 2 ̲ λ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) λ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) λ ( y ) ) ;
( PR R 1 * + R 2 * * ̲ λ ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 λ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 λ ( y ) ) ;
( PR R 1 + R 2 ¯ λ ) ( x ) = y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) ;
( PR R 1 * + R 2 * * ¯ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) .
The quaternary ( PR R 1 + R 2 ̲ λ , PR R 1 * + R 2 * * ̲ λ , PR R 1 + R 2 ¯ λ , PR R 1 * + R 2 * * ¯ λ ) is called pessimistic two-granulation double fuzzy rough set of λ (in short, PTGDFRS). The pairs ( PR R 1 + R 2 ̲ , PR R 1 * + R 2 * * ̲ ) and ( PR R 1 + R 2 ¯ , PR R 1 * + R 2 * * ¯ ) of operators PR R 1 + R 2 ̲ , PR R 1 * + R 2 * * ̲ , PR R 1 + R 2 ¯ , PR R 1 * + R 2 * * ¯ : U I are called pessimistic two-granulation double fuzzy lower approximation and pessimistic two-granulation double fuzzy upper approximation operators, respectively.
The PTGDFRS approximations are defined by many separate pairs of double fuzzy relations, whereas the normal double fuzzy rough approximations are represented by only one pair of double fuzzy relations. This can be observed from the above definition. In fact, when ( R 1 , R 1 * ) = ( R 2 , R 2 * ) , the PTGDFRS degenerates into a double fuzzy rough set. This means that a double fuzzy rough set is a subset of the PTGDFRS.
Proposition 3.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. For each λ I U , the following apply:
 (1)
PR R 1 + R 2 ̲ λ = R R 1 ̲ λ R R 2 ̲ λ , and PR R 1 * + R 2 * * ̲ λ = R R 1 * * ̲ λ R R 2 * * ̲ λ .
 (2)
PR R 1 + R 2 ¯ λ = R R 1 ¯ λ R R 2 ¯ λ , and PR R 1 * + R 2 * * ¯ λ = R R 1 * * ¯ λ R R 2 * * ¯ λ .
Proof. 
They can be proved using Definition 2 and Definition 7. □
From Definition 7, we can obtain the following result for the pessimistic multi-granulation double fuzzy rough sets.
Theorem 7.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. For each λ I U , the following apply:
 (1)
PR R 1 + R 2 ¯ λ 1 ˜ PR R 1 * + R 2 * * ¯ λ , and PR R 1 + R 2 ̲ λ 1 ˜ PR R 1 * + R 2 * * ̲ λ .
 (2)
PR R 1 + R 2 ̲ 1 ˜ = 1 ˜ , and PR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
 (3)
PR R 1 + R 2 ¯ 0 ˜ = 0 ˜ , and PR R 1 * + R 2 * * ¯ 0 ˜ = 1 ˜ .
 (4)
PR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 + R 2 ̲ λ , and PR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 * + R 2 * * ̲ λ .
 (5)
PR R 1 + R 2 ̲ ( 1 ˜ λ ) = 1 ˜ PR R 1 + R 2 ¯ λ , and PR R 1 * + R 2 * * ̲ ( 1 ˜ λ ) = 1 ˜ PR R 1 * + R 2 * * ¯ λ .
Proof. 
(1) For each x U , λ I U , we have
( 1 ˜ ( PR R 1 * + R 2 * * ¯ λ ) ) ( x ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( R 2 * ( x , y ) 1 λ ( y ) ) = y U 1 R 1 * ( x , y ) 1 λ ( y ) y U 1 R 2 * ( x , y ) 1 λ ( y )
= y U 1 R 1 * ( x , y ) λ ( y ) y U { 1 R 2 * ( x , y ) λ ( y ) } y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) = ( PR R 1 + R 2 ¯ λ ) ( x ) for all x U .
Hence, PR R 1 + R 2 ¯ λ 1 ˜ PR R 1 * + R 2 * * ¯ λ . Similarly, we have
PR R 1 + R 2 ̲ λ 1 ˜ PR R 1 * + R 2 * * ̲ λ .
(2) Since, for each x U , 1 ˜ ( x ) = 1 , we obtain
( PR R 1 + R 2 ̲ 1 ˜ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) 1 ˜ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) 1 ˜ ( y ) ) = 1 = 1 ˜ ( x ) ,
and
( PR R 1 * + R 2 * * ̲ 1 ˜ ) ( x ) = y U ( ( 1 R i ( x , y ) ) 1 1 ˜ ( y ) ) y U ( ( 1 R i ( x , y ) ) 1 1 ˜ ( y ) ) = 0 = 0 ˜ ( x ) .
Therefore, we obtain PR R 1 + R 2 ̲ 1 ˜ = 1 ˜ and PR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
(3) The proof follows steps similar to those of the proof of (2).
(4) For each x U , we have
OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 ( 1 λ ( y ) ) ) y U ( R 2 * ( x , y ) 1 ( 1 λ ( y ) ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 PR R 1 * + R 2 * * ̲ λ ( x ) .
Thus, we obtain PR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 * + R 2 * * ̲ λ . Similarly, we can prove PR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 + R 2 ̲ λ .
(5) The proof follows steps similar to those of the proof of (4). □
Theorem 8.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. For each λ , μ I U , the following hold:
 (1)
PR R 1 + R 2 ̲ ( λ μ ) = PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ , and
PR R 1 * + R 2 * * ̲ ( λ μ ) = PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
 (2)
PR R 1 + R 2 ¯ ( λ μ ) = PR R 1 + R 2 ¯ λ PR R 1 + R 2 ¯ μ , and
PR R 1 * + R 2 * * ¯ ( λ μ ) = PR R 1 * + R 2 * * ¯ λ PR R 1 * + R 2 * * ¯ μ .
 (3)
If λ μ , then PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ , and PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
 (4)
If λ μ , then PR R 1 + R 2 ¯ λ PR R 1 + R 2 ¯ μ , and PR R 1 * + R 2 * * ¯ λ PR R 1 * + R 2 * * ¯ μ .
 (5)
PR R 1 + R 2 ̲ ( λ μ ) PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ , and
PR R 1 * + R 2 * * ̲ ( λ μ ) PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
 (6)
PR R 1 + R 2 ¯ ( λ μ ) PR R 1 + R 2 ¯ λ PR R 1 + R 2 ¯ μ , and
PR R 1 * + R 2 * * ¯ ( λ μ ) PR R 1 * + R 2 * * ¯ λ PR R 1 * + R 2 * * ¯ μ .
Proof. 
(1) For each x U , λ , μ I U ,
( PR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) ( λ μ ) ( y ) ) y U ( ( 1 R 2 ( x , y ) ) ( λ μ ) ( y ) ) = y U ( ( 1 R 1 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 1 ( x , y ) ) ( μ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( μ ) ( y ) = ( R R 1 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 2 ̲ μ ) ( x ) = ( R R 1 ̲ λ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ μ ) ( x ) = ( PR R 1 + R 2 ̲ λ ) ( x ) ( PR R 1 + R 2 ̲ μ ) ( x ) .
Also, for each x U ,
( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 ( λ μ ) ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 ( λ μ ) ( y ) )
= y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) = y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 1 * ( x , y ) ) ( 1 μ ( y ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 μ ( y ) = ( R R 1 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) = ( R R 1 * * ̲ λ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) = ( PR R 1 * + R 2 * * ̲ λ ) ( x ) ( PR R 1 * + R 2 * * ̲ μ ) ( x )
(2) The proof follows steps similar to those of the proof of (1).
(3) If λ μ , then for all y U , λ ( y ) μ ( y ) . Therefore, we have
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) )
and
y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) ) .
From Equations (5) and (6), we have
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) )
Thus, PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ , also,
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) )
and
y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) ) .
From Equations (7) and (8), we have
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) )
Thus, PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
(4) The proof follows steps similar to those of the proof of (3).
(5) Since λ λ μ and μ λ μ , by (3), we have
PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ ( λ μ ) and PR R 1 + R 2 ̲ μ PR R 1 + R 2 ̲ ( λ μ ) .
Therefore, PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ PR R 1 + R 2 ̲ ( λ μ ) . Also, we have
PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ ( λ μ ) and PR R 1 * + R 2 * * ̲ μ PR R 1 * + R 2 * * ̲ ( λ μ ) .
This implies that PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ PR R 1 * + R 2 * * ̲ ( λ μ ) .(6) The proof follows steps similar to those of the proof of (5). □
In the following example, we show that the converse of Theorem 8 (5) does not hold true.
Example 2.
Let U = { x , y , z } . Define R 1 , R 1 * , R 2 , R 2 * : U × U I as in Example 1 and λ , μ I U as in Example 1. Then,
( PR R 1 + R 2 ̲ λ ) ( x ) = 0.3 , ( PR R 1 + R 2 ̲ λ ) ( y ) = 0.2 , ( PR R 1 + R 2 ̲ λ ) ( z ) = 0.5 ,
( PR R 1 + R 2 ̲ μ ) ( x ) = 0.5 , ( PR R 1 + R 2 ̲ μ ) ( y ) = 0.4 , ( PR R 1 + R 2 ̲ μ ) ( z ) = 0.4 ,
( PR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = 0.7 , ( PR R 1 + R 2 ̲ ( λ μ ) ) ( y ) = 0.5 , ( PR R 1 + R 2 ̲ ( λ μ ) ) ( z ) = 0.5 ,
Therefore, PR R 1 + R 2 ̲ ( λ μ ) PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ .
( PR R 1 * + R 2 * * ̲ λ ) ( x ) = 0.8 , ( PR R 1 * + R 2 * * ̲ λ ) ( y ) = 0.9 , ( PR R 1 * + R 2 * * ̲ λ ) ( z ) = 0.5 ,
( PR R 1 * + R 2 * * ̲ μ ) ( x ) = 0.7 , ( PR R 1 * + R 2 * * ̲ μ ) ( y ) = 0.6 , ( PR R 1 * + R 2 * * ̲ μ ) ( z ) = 0.8 ,
( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = 0.5 , ( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( y ) = 0.5 , ( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( z ) = 0.5 .
Therefore, PR R 1 * + R 2 * * ̲ ( λ μ ) PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
We are now extending the pessimistic two-granulation double fuzzy rough set. We present the pessimistic multi-granulation double fuzzy rough set (in short, PMGDFRS) and its properties.
Definition 8.
Let ( U , R , R * ) be an MGDFAS such that 1 i m . Then, for each fuzzy set λ on U , the pairs ( PR Σ m i = 1 R i ̲ λ , PR Σ m i = 1 R i * * ̲ λ ) and ( PR Σ m i = 1 R i ¯ λ , PR Σ m i = 1 R i * * ¯ λ ) of maps PR Σ m i = 1 R i ̲ λ , PR Σ m i = 1 R i * * ̲ λ ,   PR Σ m i = 1 R i ¯ λ , PR Σ m i = 1 R i * * ¯ λ : U I are called pessimistic multi-granulation double fuzzy lower approximation and pessimistic multi-granulation double fuzzy upper approximation of a fuzzy set λ , respectively, and are defined as follows: For all x U ,
( PR Σ m i = 1 R i ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i ( x , y ) ) λ ( y ) )
( PR Σ m i = 1 R i * * ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i * ( x , y ) ) 1 λ ( y ) )
( PR Σ m i = 1 R i ¯ λ ) ( x ) = m i = 1 y U ( R i ( x , y ) λ ( y ) )
( PR Σ m i = 1 R i * * ¯ λ ) ( x ) = m i = 1 y U ( R i * ( x , y ) 1 λ ( y ) ) .
The quaternary ( PR Σ m i = 1 R i ̲ λ , PR Σ m i = 1 R i * * ̲ λ , PR Σ m i = 1 R i ¯ λ , PR Σ m i = 1 R i * * ¯ λ ) is called pessimistic multi- granulation double fuzzy rough set of λ (in short, PMGDFRS).
The pairs ( PR Σ m i = 1 R i ̲ , PR Σ m i = 1 R i * * ̲ ) and ( PR Σ m i = 1 R i ¯ , PR Σ m i = 1 R i * * ¯ ) of operators PR Σ m i = 1 R i ̲ , PR Σ m i = 1 R i * * ̲ , PR Σ m i = 1 R i ¯ , PR Σ m i = 1 R i * * ¯ : I U I U are called pessimistic multi-granulation double fuzzy lower approximation and pessimistic multi-granulation double fuzzy upper approximation operators, respectively.
Proposition 4.
Let ( U , R , R * ) be an MGDFAS. For each λ I U , the following hold:
 (1)
PR Σ m i = 1 R i ̲ λ = i = 1 m R R i ̲ λ , and PR Σ m i = 1 R i * * ̲ λ = i = 1 m R R i * * ̲ λ .
 (2)
PR Σ m i = 1 R i ¯ λ = i = 1 m R R i ¯ λ , and PR Σ i = 1 m R i * * ¯ λ = m i = 1 R R i * * ¯ λ .
Proof. 
The proof follows steps similar to those of the proof of Proposition 3. □
Theorem 9.
Let ( U , R , R * ) be an MGDFAS. For each λ I U , the following apply:
 (1)
PR Σ m i = 1 R i ¯ λ 1 ˜ PR Σ m i = 1 R i * * ¯ λ , and PR Σ m i = 1 R i ̲ λ 1 ˜ PR Σ m i = 1 R i * * ̲ λ .
 (2)
PR Σ m i = 1 R i ̲ 1 ˜ = 1 ˜ , and PR Σ m i = 1 R i * * ̲ 1 ˜ = 0 ˜ .
 (3)
PR Σ m i = 1 R i ¯ 0 ˜ = 0 ˜ , and PR Σ m i = 1 R i * * ¯ 0 ˜ = 1 ˜ .
 (4)
PR Σ m i = 1 R i ¯ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i ̲ λ , and PR Σ m i = 1 R i * * ¯ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i * * ̲ λ .
 (5)
PR Σ m i = 1 R i ̲ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i ¯ λ , and PR Σ m i = 1 R i * * ̲ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i * * ¯ λ .
Proof. 
The proof follows steps similar to those of the proof of Theorem 7. □
Theorem 10.
Let ( U , R , R * ) be an MGDFAS. For each λ , μ I U , the following apply:
 (1)
PR Σ m i = 1 R i ̲ ( λ μ ) = PR Σ m i = 1 R i ̲ λ PR Σ m i = 1 R i ̲ μ , and
PR Σ m i = 1 R i * * ̲ ( λ μ ) = PR Σ m i = 1 R i * * ̲ λ PR Σ m i = 1 R i * * ̲ μ .
 (2)
PR Σ m i = 1 R i ¯ ( λ μ ) = PR Σ m i = 1 R i ¯ λ PR Σ m i = 1 R i ¯ μ , and
PR Σ m i = 1 R i * * ¯ ( λ μ ) = PR Σ m i = 1 R i * * ¯ λ PR Σ m i = 1 R i * * ¯ μ .
 (3)
If λ μ , then PR Σ m i = 1 R i ̲ λ PR Σ m i = 1 R i ̲ μ , and PR Σ m i = 1 R i * * ̲ λ PR Σ m i = 1 R i * * ̲ μ .
 (4)
If λ μ , then PR Σ m i = 1 R i ¯ λ PR Σ m i = 1 R i ¯ μ , and PR Σ m i = 1 R i * * ¯ λ PR Σ m i = 1 R i * * ¯ μ .
 (5)
PR Σ m i = 1 R i ̲ ( λ μ ) PR Σ m i = 1 R i ̲ λ PR Σ m i = 1 R i ̲ μ , and
PR Σ m i = 1 R i * * ̲ ( λ μ ) PR Σ m i = 1 R i * * ̲ λ PR Σ m i = 1 R i * * ̲ μ .
 (6)
PR Σ m i = 1 R i ¯ ( λ μ ) PR Σ m i = 1 R i ¯ λ PR Σ m i = 1 R i ¯ μ , and
PR Σ m i = 1 R i * * ¯ ( λ μ ) PR Σ m i = 1 R i * * ¯ λ PR Σ m i = 1 R i * * ¯ μ .
Proof. 
The proof follows steps similar to those of the proof of Theorem 8. □
The following propositions show the relationship between optimistic multi-granulation double fuzzy rough sets and pessimistic multi-granulation double fuzzy rough sets.
Proposition 5.
Let U be an arbitrary universal set, and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be double fuzzy relations on U. For each i { 1 , 2 } and λ I U , the following hold:
(1) PR R 1 + R 2 ̲ λ R R i ̲ λ OR R 1 + R 2 ̲ λ , and PR R 1 * + R 2 * * ̲ λ R R i * * ̲ λ OR R 1 * + R 2 * * ̲ λ .
(2) PR R 1 + R 2 ¯ λ R R i ¯ λ OR R 1 + R 2 ¯ λ , and PR R 1 * + R 2 * * ¯ λ R R i * * ¯ λ OR R 1 * + R 2 * * ¯ λ .
Proof. 
Based on Proposition 1 and Proposition 3, we can prove this. □
Proposition 6.
Let ( U , R , R * ) be an MGDFAS. For each λ I U and 1 i m , the following apply:
(1) PR Σ m i = 1 R i ̲ λ R R i ̲ λ OR Σ m i = 1 R i ̲ λ , and PR Σ m i = 1 R i * * ̲ λ R R i * * ̲ λ OR Σ m i = 1 R i * * ̲ λ .
(2) PR Σ m i = 1 R i ¯ λ R R i ¯ λ PR Σ m i = 1 R i ¯ λ , and PR Σ m i = 1 R i * * ¯ λ R R i * * ¯ λ OR Σ m i = 1 R i * * ¯ λ .
Proof. 
Based on Proposition 2 and Proposition 4, we can prove this. □

4. Conclusions

In this article, we discover that rough set theory is a potent theory with numerous applications in the artificial intelligence fields of pattern recognition, machine learning, and automated knowledge acquisition. In this study, the idea of double fuzzy rough sets, which are seen as a generalization of fuzzy rough sets, is introduced. The contribution of this paper is that it has constructed two different types of multi-granulation double fuzzy rough sets associated with granular computing, in which double approximation operators are based on multiple double fuzzy relations.
Additionally, we draw the conclusion that rough sets, multi-granulation fuzzy rough sets models, double fuzzy rough sets models, and multi-granulation rough set models are special cases of the two types of multi-granulation double fuzzy rough sets by analyzing their definitions.
The conclusion of the construction of the new types of multi-granulation double fuzzy rough set models is an extension of granular computing and is meaningful compared with the generalization of rough set theory.

Author Contributions

Methodology, O.R.S.; Validation, E.E.-S.; Formal analysis, Y.H.R.S. and M.N.A.; Investigation, O.R.S.; Resources, E.E.-S. and M.N.A.; Writing—original draft, A.A.A.; Writing—review and editing, S.; Visualization, Y.H.R.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data sets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that there are no conflict of interest regarding the publication of the paper.

References

  1. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
  2. Pawlak, Z. Rough Sets. Theoretical Aspects of Reasoning about Data; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 1991. [Google Scholar]
  3. Chen, J.K.; Li, J.J. An application of rough sets to graph theory. Inf. Sci. 2012, 201, 114–127. [Google Scholar] [CrossRef]
  4. Chen, H.; Li, T.; Luo, C.; Horng, S.-J.; Wang, G. A decision-theoretic rough set approach for dynamic data mining. IEEE Trans. Fuzzy Syst. 2015, 23, 1958–1970. [Google Scholar] [CrossRef]
  5. Estaji, A.A.; Hooshmandasl, M.R.; Davvaz, B. Rough set theory applied to lattice theory. Inf. Sci. 2020, 200, 108–122. [Google Scholar] [CrossRef]
  6. Pawlak, Z. Rough sets, decision algorithms and Bayes’s theorem. Eur. J. Oper. Res. 2002, 136, 181–189. [Google Scholar] [CrossRef]
  7. Pedrycz, W. Granular Computing: An Analysis and Design of Intelligent Systems; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
  8. Swiniarski, R.W.; Skowron, A. Rough set method in feature selection and recognition. Pattern Recognit. Lett. 2003, 24, 833–849. [Google Scholar] [CrossRef]
  9. Qian, Y.H.; Liang, J.Y. Rough Set Method Based on Multi-granulations. In Proceedings of the 5th IEEE International Conference on Cognitive Informatics, Beijing, China, 17–19 July 2006; pp. 297–304. [Google Scholar]
  10. Qian, Y.H.; Liang, J.Y.; Yao, Y.Y.; Dang, C.Y. MGRS a multi-granulation rough set. Inf. Sci. 2010, 180, 949–970. [Google Scholar] [CrossRef]
  11. Liang, J.Y.; Wang, F.; Dang, C.Y.; Qian, Y.H. An efficient rough feature selection algorithm with a multi-granulation view. Int. J. Approx. Reason. 2012, 53, 912–926. [Google Scholar] [CrossRef]
  12. Lin, G.P.; Qian, Y.H.; Li, J.J. NMGRS-neighbourhood-based multi-granulation rough sets. Int. J. Approx. Reason. 2012, 53, 1080–1093. [Google Scholar] [CrossRef]
  13. Liu, C.H.; Wang, M.Z. Covering fuzzy rough set based on multi-granulations. In Proceedings of the International Conference on Uncertainty Reasoning and Knowledge Engineering, Bali, Indonesia, 4–7 August 2011; pp. 146–149. [Google Scholar]
  14. Liu, C.H.; Miao, D.Q.; Qian, J. On multi-granulation covering rough sets. Int. J. Approx. Reason. 2014, 55, 1404–1418. [Google Scholar] [CrossRef]
  15. Ma, J.M.; Zhang, W.X.; Leung, Y.; Song, X.X. Granular computing and dual Galois connection. Inf. Sci. 2007, 177, 5365–5377. [Google Scholar] [CrossRef]
  16. She, Y.H.; He, X.L. On the structure of the multi-granulation rough set model. Knowl.-Based Syst. 2012, 36, 81–92. [Google Scholar] [CrossRef]
  17. Yang, X.; Zhang, S.; Zhang, X.; Yu, F. Polynomial fuzzy information granule-based time series prediction. Mathematics 2022, 10, 4495. [Google Scholar] [CrossRef]
  18. Wang, Y.; Yu, F.; Homenda, W.; Pedrycz, W.; Tang, Y.; Jastrzebska, A.; Li, F. The trend-fuzzy granulation-based adaptive fuzzy cognitive map for long-term time series forecasting. IEEE Trans. Fuzzy Syst. 2022, 30, 5166–5180. [Google Scholar] [CrossRef]
  19. Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–208. [Google Scholar] [CrossRef]
  20. Dubois, D.; Prade, H. Putting rough sets and fuzzy sets together. In Intelligent Decision Support: Handbook of Applications and Advances of the Sets Theory; Slowinski, R., Ed.; Kluwer: Dordrecht, The Netherlands, 1992; pp. 203–232. [Google Scholar]
  21. Allam, A.A.; Bakier, M.Y.; Abd-Allah, S.S. Rough fuzzy sets via multifunction. Ann. Fuzzy Math. Inform. 2020, 19, 89–94. [Google Scholar] [CrossRef]
  22. Ghroutkhar, A.M.; Nahi, H.M. Fuzzy–rough set models and fuzzy-rough data reduction. Croat. Oper. Res. Rev. 2020, 11, 67–80. [Google Scholar] [CrossRef]
  23. Ismail, I.; Abbas, S.E. Fuzzy rough sets with a fuzzy ideal. J. Egypt. Math. Soc. 2020, 28, 36. [Google Scholar]
  24. Mi, J.S.; Leung, Y.; Zhao, H.Y.; Feng, T. Generalized fuzzy rough sets determined by a triangular norm. Inf. Sci. 2008, 178, 3203–3213. [Google Scholar] [CrossRef]
  25. Ouyang, Y.; Wang, Z.D.; Zhang, H.P. On fuzzy rough sets based on tolerance relations. Inf. Sci. 2010, 180, 532–542. [Google Scholar] [CrossRef]
  26. Wu, W.Z.; Mi, J.S.; Zhang, W.X. Generalized fuzzy rough sets. Inf. Sci. 2003, 151, 263–282. [Google Scholar] [CrossRef]
  27. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  28. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  29. Garcia, J.G.; Rodabaugh, S.E. Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fuzzy sets and topologies. Fuzzy Sets Syst. 2005, 156, 445–484. [Google Scholar] [CrossRef]
  30. Abd El-Latif, A.A.; Ramadan, A.A. On L-double fuzzy rough sets. Iran. J. Fuzzy Syst. 2016, 13, 125–142. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Abdallah, A.A.; Sayed, O.R.; El-Sanousy, E.; Ragheb Sayed, Y.H.; Abu_Shugair, M.N.; Salahuddin. Multi-Granulation Double Fuzzy Rough Sets. Symmetry 2023, 15, 1926. https://0-doi-org.brum.beds.ac.uk/10.3390/sym15101926

AMA Style

Abdallah AA, Sayed OR, El-Sanousy E, Ragheb Sayed YH, Abu_Shugair MN, Salahuddin. Multi-Granulation Double Fuzzy Rough Sets. Symmetry. 2023; 15(10):1926. https://0-doi-org.brum.beds.ac.uk/10.3390/sym15101926

Chicago/Turabian Style

Abdallah, A. A., O. R. Sayed, E. El-Sanousy, Y. H. Ragheb Sayed, M. N. Abu_Shugair, and Salahuddin. 2023. "Multi-Granulation Double Fuzzy Rough Sets" Symmetry 15, no. 10: 1926. https://0-doi-org.brum.beds.ac.uk/10.3390/sym15101926

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop