Next Article in Journal
Effectiveness of the BNT162b2 (Pfizer-BioNTech) Vaccine in Children and Adolescents: A Systematic Review and Meta-Analysis
Next Article in Special Issue
Ocular Vascular Events following COVID-19 Vaccines: A Systematic Review
Previous Article in Journal
BNT162b2 (Pfizer/BioNTech) COVID-19 Vaccination Was Not Associated with the Progression of Activity of the Exudative Form of Age-Related Macular Degeneration during Anti-VEGF Therapy
Previous Article in Special Issue
Recurrent Multiple Evanescent White Dot Syndrome (MEWDS) Following First Dose and Booster of the mRNA-1273 COVID-19 Vaccine: Case Report and Review of Literature
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

COVID-19 Vaccine-Associated Ocular Adverse Effects: An Overview

Department of Ophthalmology, Government Medical College and Hospital, Sector-32, Chandigarh 160030, India
*
Author to whom correspondence should be addressed.
Submission received: 6 October 2022 / Revised: 24 October 2022 / Accepted: 1 November 2022 / Published: 7 November 2022
(This article belongs to the Special Issue Ophthalmic Adverse Events following SARS-CoV-2 Vaccination)

Abstract

:
Background: To address the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination efforts were initiated across the globe in December 2020 and are continuing. We report the onset interval and clinical presentations of ocular adverse effects following SARS-CoV-2 vaccination. Methods: For this narrative review, articles in the English language, published between 1 January 2020 to 1 September 2022, were included to formulate a list of the reported ocular adverse effects of different COVID-19 vaccines. Results: During this period, ocular adverse effects have been reported with BNT162b2 (Pfizer), mRNA-1273 (Moderna), AZD-1222 (AstraZeneca), and Ad26.COV2.S (Johnson & Johnson) vaccines. Endothelial graft rejection, herpes simplex virus keratitis, herpes zoster ophthalmicus, anterior uveitis, eyelid edema, purpuric rashes, ischemic optic neuropathy, and cranial nerve palsies were the most reported with BNT163b2. Retinal hemorrhages, vascular occlusions, and angle closure glaucoma were the most reported with AZD-1222. Most of the ocular adverse effects reported in the literature had a good to fair prognosis with appropriate management. Conclusions: Evidence regarding the ocular adverse effects does not outweigh the benefits of SARS-CoV-2 vaccination in patients with pre-existing systemic or ophthalmic diseases. This review provides insights into the possible temporal association between reported ocular adverse events and SARS-CoV-2 vaccines; however, further investigations are required to identify the link between potential causality and pathological mechanisms.

1. Introduction:

The coronaviruses are positive sense, single-stranded ribonucleic acid (RNA), enveloped medium-sized viruses. Coronaviruses are classified as a family within the order Nidovirales with a spike (S) glycoprotein which mediates receptor binding and cell entry. S protein is the site of the major antigens that stimulate neutralizing antibodies and target cytotoxic lymphocytes, thus making it an important vaccine antigen. Seven different strains of coronaviruses that infect humans include the common cold coronavirus strains; 229E, NL63, OC43, and HKU1 and the more pathogenic strains include Middle East respiratory syndrome (MERS)-CoV, severe acute respiratory syndrome (SARS)-CoV, and SARS-CoV-2. Since the structure and function of pathogenic strains of coronaviruses causing diseases like SARS and MERS were known it helped in the early development of various vaccine platforms across the globe.
A stepwise approach for developing any new vaccine involves vaccine development, clinical trials, U.S. Food and Drug Administration (FDA) approval or authorization, manufacturing, and distribution. The COVID-19 vaccines were developed at an unprecedented pace and were given Emergency Use Authorizations (EUAs) [1]. As of 19 September 2022, a total of 12,640,866,343 vaccine doses have been administered. COVID-19 vaccines and updated/bivalent COVID-19 boosters are effective at protecting people from being hospitalized, serious illness, and death [2].
Currently, 11 COVID-19 vaccines have been approved for EUA, which can be subdivided into four types: mRNA vaccines (BNT162b2, Pfizer-BioNTech14; mRNA-1273, Moderna15), protein subunit vaccines (NVX-CoV2373, Novavax16), vector vaccines (Ad26.COV2, Janssen Johnson & Johnson17; ChAdOx1 nCoV-19/AZD1222, Oxford-AstraZeneca18), and whole virus vaccines (PiCoVacc, Sinovac19; BBIBP-CorV, Sinopharm20) (Table 1) [3]. Individual vaccine trials report vaccine safety with rare ocular adverse effects but given the massive scale of the current vaccination drive, the possible adverse effects are a cause for concern. Since the widespread administration of COVID-19 vaccinations, multiple reports of ocular adverse effects after COVID-19 vaccinations and boosters have emerged [4,5].
To develop methods for closely observing ‘at risk’ patients, reporting of adverse effects must be conducted on a regular basis. This narrative review summarizes ocular adverse effects that are possibly associated with COVID-19 vaccination. The aim is to encourage early recognition of adverse effects not only by ophthalmologists but also by treating physicians.

2. Methodology

A literature search was performed in PubMed for ‘COVID-19 vaccine’, ‘ocular inflammation’, ‘ophthalmic manifestations’, ‘adverse effects’, ‘graft failure’, ‘retinal hemorrhage’, ‘uveitis’, ‘neuro-ophthalmology’, ‘nerve palsy’, and ‘vascular occlusion’. Articles of interest were searched using Boolean operators. Each synonymous word was separated by a Boolean operator, “OR”, phrases were enclosed within quotation marks, and groups of synonymous words were enclosed within parenthesis. Articles in the English language, published between 1 January 2020 to 1 September 2022, were included to formulate the list of the reported ocular adverse effects of different COVID-19 vaccines. The search, although not exhaustive, includes important and relevant articles. Search results were screened by two authors (PI and SD) for relevance. References cited within the identified articles were also used to further augment the search. We characterized our results into an anterior segment, posterior segment, and neurophthalmic adverse effects.

3. Results

Ocular complications reported post-COVID-19 vaccination included abducens nerve palsy, oculomotor nerve palsy, facial nerve palsy/Bell’s palsy, multiple cranial nerve palsies, acute macular neuroretinopathy (AMN), paracentral acute middle maculopathy (PAMM), superior ophthalmic vein thrombosis (SOVT), corneal graft rejection, anterior uveitis, panuveitis, central serous chorioretinopathy(CSCR), Vogt–Koyanagi–Harada (VKH) reactivation, acute zonal occult outer retinopathy (AZOOR) and multifocal choroiditis. The reported ocular adverse effects following vaccination appear to overlap with the ocular manifestations of COVID-19 itself, suggesting a common pathway between virus- and vaccine-mediated immune response in humans. Aggregated information on the reviewed cases is elucidated in Table 2 and Table 3.

4. Discussion

A new variant of CoV emerged in Wuhan, China in December 2019 that caused severe respiratory illness. The World Health Organization named this virus SARS-CoV-2 and the pandemic COVID-19. According to Li, Y.-D. [55], to address the global morbidity and mortality caused by COVID-19, the development process of COVID-19 vaccines was expedited by undertaking clinical trials in parallel rather than in a linear fashion. Multiple COVID-19 vaccines directly entered clinical trials on humans without preclinical testing in animal models. The COVID-19 vaccination drive has been carried out worldwide and the evidence is overwhelming that irrespective of the type(s) of vaccine taken, the vaccines offered safety and protection against becoming seriously ill or dying due to the different variants of CoV-2.
The Vaccine Adverse Event Reporting System (VAERS) was developed by the U.S. Food and Drug Administration (FDA) in 1990 as a national early monitoring system for vaccine safety. The commonly reported adverse effects of COVID-19 vaccinations consist of the injection site’s local reaction followed by several non-specific flu-like symptoms. However, several systemic and organ-specific (e.g., eye, heart) adverse effects have also been reported from across the globe. Therefore, it is imperative for ophthalmic health care providers to be familiar with the clinical presentations, pathophysiology, diagnostic criteria, and management of ocular adverse effects following COVID-19 vaccination. Early diagnosis and quick initiation of the treatment may help to provide patients with a more favorable outcome and rule out masquerading entities. With an increasing amount of literature in the form of isolated case-study reports, case series, and analysis of the VAERS database, an epidemiological montage has started to emerge [56].
A recent Lancet article questioned the effectiveness of COVID-19 vaccines and the waning of immunity over time, more pronounced in individuals with pre-existing conditions and elderly adults. According to Nordström, P. [57], in addition to the risk of infections owing to lowered immune function, the authors cited a possible risk of some organ damage caused by the vaccine that has remained somewhat sequestered in the circulatory system, without apparent clinical presentations. This can explain the slightly delayed presentation of some of the adverse effects.
Vaccines have added adjuvants within them to boost their efficacy; these adjuvants potentiate the innate and adaptive immune responses further, possibly leading to autoimmune or inflammatory conditions in some individuals. Although truncated and modified RNA traces may be present in BNT162b2 and mRNA-1273 vaccines, these aberrant proteins have a minuscule chance of eliciting allergic reactions. The active constituent of the vaccine is not always the culprit for causing adverse reactions. Excipients such as polyethylene glycol (PEG) used in the BNT162b2 and mRNA-1273 vaccines have been reported to have induced IgE-mediated allergic reactions [3].
Despite reports suggesting an association between ocular adverse effects and the vaccines due to a maladaptive immune response in susceptible individuals, the adverse issues are still considered ‘rare’ given the millions of people who have received either one or more vaccines or boosters.
The COVID-19 vaccines interact with the platelets or the platelet factor 4 (PF4) and this interaction results in vaccine-induced immune thrombotic thrombocytopenia (VITT). The proposed mechanisms suggest the formation of autoantibodies against PF4, antibodies induced by the free deoxyribonucleic acid (DNA) in the vaccine that cross-reacts with PF4, platelets, and adenovirus binds to the platelets causing platelet activation. VITT may explain vascular occlusions [58].
Endothelial graft rejection, herpes simplex virus (HSV) keratitis, herpes zoster ophthalmicus (HZO), anterior uveitis, eyelid edema, purpuric rashes, ischemic optic neuropathy, and cranial nerve palsies were the most reported with the BNT163b2 vaccine. Although both BNT162b2 and mRNA 1273 are mRNA vaccines, the ocular adverse effects have been relatively lesser with mRNA 1273 than those with BNT162b2.
Retinal hemorrhages (subretinal, subhyaloid, or intraretinal), vascular occlusions, and angle closure glaucoma have been the most reported with the AZD 1222 vaccine. No COVID-19 vaccine-associated adverse events have been reported in patients with age-related macular degeneration in the peer-reviewed literature to date.
The pathophysiological mechanisms underlying vaccine–corneal graft rejection are still poorly understood. However, cases of acute graft rejection have also been reported following influenza, hepatitis B, yellow fever, and tetanus toxoid vaccinations. Steinemann, T.L. and Wertheim, M.S. [59,60] proposed mechanisms for acute corneal allograft rejection include the reduction in the corneal immune privilege due to systemic immune dysregulation and activation of toll-like receptors on the ocular surface and CD4+ T helper-1 cell (Th1) immunity. Corneal edema was the leading clinical manifestation, followed by keratic precipitates in patients with corneal graft rejection. Most of the ocular adverse effects reported in the literature had a good to fair prognosis with appropriate management. Therefore, corneal graft recipients should not be discouraged from receiving COVID-19 vaccines or boosters. Additionally, the evidence is insufficient to suggest delaying keratoplasties or uptitrating topical steroid administration after a routine keratoplasty, following primary COVID vaccine or booster administration. In high-risk cases, increasing immunosuppressants in the peri-vaccination period may decrease the risk of immune reactions [9].
Studies suggest a link between COVID-19 vaccines and the reactivation of the varicella-zoster virus (VZV), resulting in vaccine-acquired immunodeficiency syndrome. Data from the works of Barda, N., Desai, H.D. and Seneff, S. [61,62,63] have shown that the population prevalence rates of post-vaccination ophthalmic HSV were ≤0.05 cases per million doses and for HZO were ≤0.5 cases per million doses. According to Wang, M.T.M. [64], there is no conclusive evidence to suggest the need for prophylactic antiviral treatment for patients with prior herpetic eye disease considering COVID-19 vaccination.
Regarding vaccine-associated uveitis (VAU), a recent VAERS review by Singh R B et al. reported a total of 1094 cases from 40 countries with an estimated crude reporting rate (per million doses) of 0.57, 0.44, and 0.35 for BNT162b2, mRNA-1273, and Ad26.COV2.S, respectively. More than two-thirds of cases were reported in patients who received BNT162b2. Additionally, the post hoc analysis showed a significantly shorter interval of onset for the first dose compared with the second dose and BNT162b2 compared with the mRNA 1273 vaccine. According to [65], other vaccines that have also triggered uveitis flare-ups include hepatitis A and B, influenza, Bacillus Calmette–Guérin, human papillomavirus, measles–mumps–rubella (MMR), and varicella zoster vaccines. According to Wang [64], De novo VKH cases can be the result of molecular mimicry between vaccine peptide fragments and uveal self-peptides, whereas, for cases with VKH reactivation, specific HLA haplotypes may account for the individual susceptibility of the autoimmune activation. Many patients who developed ocular adverse effects lacked medical comorbidities that may have predisposed them to the adverse effects, although a few patients were on hormone-based birth control [49,66].
Although clinical trials for all vaccines undergo rigorous safety monitoring prior to authorization for human use, some serious adverse events may not be identified in trials, especially if uncommon, because of the relatively small sample size, the selection of trial participants who may not represent the general population, restrictive eligibility criteria, and limited duration follow-up [67].
The data regarding ocular adverse effects with other approved vaccines, such as ZyCoV-D, Sputnik, Covidecia, Sputnik, Abdala, Zifivax, and Novavax are sparse. Despite the mandatory requirement by all nations to report any vaccine-associated adverse events, unreliable reporting, under-reporting, and/or delayed reporting are common. Additionally, the possibility of anti-vaccination fringe groups attempting to malign vaccines using VAERS data by adding misinformation about the safety of COVID-19 vaccinations must also be remembered.
To conclude, the scientific evidence regarding the ocular adverse effects does not outweigh the benefits of COVID immunization in patients with pre-existing systemic or ophthalmic conditions. However, patients must be counseled to seek prompt medical review for symptoms of post-vaccination deterioration of vision or primary ocular disease relapse.

Author Contributions

Conceptualization, P.I. and U.P.S.P.; methodology, S.D.; formal analysis, P.I., S.D. and U.P.S.P.; data curation, P.I., S.D. and U.P.S.P.; writing—original draft preparation, P.I., S.K. and U.P.S.P.; writing—review and editing, P.I. and S.K.; supervision, P.I.; project administration, U.P.S.P. and P.I. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Because the study includes publicly available deidentified anonymous data from, the Institute Research Ethics Committee exempted it from ethical review.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Marian, A.J. Current State of Vaccine Development and Targeted Therapies for COVID-19: Impact of Basic Science Discoveries. Cardiovasc. Pathol. 2020, 50, 107278. [Google Scholar] [CrossRef] [PubMed]
  2. WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/ (accessed on 24 September 2022).
  3. Forchette, L.; Sebastian, W.; Liu, T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Curr. Med. Sci. 2021, 41, 1037–1051. [Google Scholar] [CrossRef] [PubMed]
  4. Le Ng, X.; Betzler, B.K.; Testi, I.; Ho, S.L.; Tien, M.; Ngo, W.K.; Zierhut, M.; Chee, S.P.; Gupta, V.; Pavesio, C.E.; et al. Ocular Adverse Events After COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 1216–1224. [Google Scholar] [CrossRef]
  5. Eleiwa, T.K.; Gaier, E.D.; Haseeb, A.; ElSheikh, R.H.; Sallam, A.B.; Elhusseiny, A.M. Adverse Ocular Events Following COVID-19 Vaccination. Inflamm. Res. 2021, 70, 1005–1009. [Google Scholar] [CrossRef]
  6. Phylactou, M.; Li, J.-P.O.; Larkin, D.F.P. Characteristics of Endothelial Corneal Transplant Rejection Following Immunisation with SARS-CoV-2 Messenger RNA Vaccine. Br. J. Ophthalmol. 2021, 105, 893–896. [Google Scholar] [CrossRef] [PubMed]
  7. Crnej, A.; Khoueir, Z.; Cherfan, G.; Saad, A. Acute Corneal Endothelial Graft Rejection Following COVID-19 Vaccination. J. Fr. Ophtalmol. 2021, 44, e445–e447. [Google Scholar] [CrossRef] [PubMed]
  8. Forshaw, T.R.J.; Jørgensen, C.; Kyhn, M.C.; Cabrerizo, J. Acute Bilateral Descemet Membrane Endothelial Keratoplasty Graft Rejection After the BNT162b2 MRNA COVID-19 Vaccine. Int. Med. Case Rep. J. 2022, 15, 201–204. [Google Scholar] [CrossRef]
  9. Fujio, K.; Sung, J.; Nakatani, S.; Yamamoto, K.; Iwagami, M.; Fujimoto, K.; Shokirova, H.; Okumura, Y.; Akasaki, Y.; Nagino, K.; et al. Characteristics and Clinical Ocular Manifestations in Patients with Acute Corneal Graft Rejection after Receiving the COVID-19 Vaccine: A Systematic Review. J. Clin. Med. 2022, 11, 4500. [Google Scholar] [CrossRef]
  10. Molero-Senosiain, M.; Houben, I.; Savant, S.; Savant, V. Five Cases of Corneal Graft Rejection After Recent COVID-19 Vaccinations and a Review of the Literature. Cornea 2022, 41, 669–672. [Google Scholar] [CrossRef]
  11. Abousy, M.; Bohm, K.; Prescott, C.; Bonsack, J.M.; Rowhani-Farid, A.; Eghrari, A.O. Bilateral EK Rejection After COVID-19 Vaccine. Eye Contact Lens 2021, 47, 625–628. [Google Scholar] [CrossRef]
  12. Simão, M.F.; Kwitko, S. Corneal Graft Rejection After Inactivated SARS-CoV-2 Vaccine: Case Report. Cornea 2022, 41, 502–504. [Google Scholar] [CrossRef] [PubMed]
  13. Nahata, H.; Nagaraja, H.; Shetty, R. A Case of Acute Endothelial Corneal Transplant Rejection Following Immunization with ChAdOx1 NCoV-19 Coronavirus Vaccine. Indian J. Ophthalmol. 2022, 70, 1817–1818. [Google Scholar] [CrossRef] [PubMed]
  14. Shah, A.P.; Dzhaber, D.; Kenyon, K.R.; Riaz, K.M.; Ouano, D.P.; Koo, E.H. Acute Corneal Transplant Rejection After COVID-19 Vaccination. Cornea 2022, 41, 121–124. [Google Scholar] [CrossRef]
  15. Eid, E.; Abdullah, L.; Kurban, M.; Abbas, O. Herpes Zoster Emergence Following MRNA COVID-19 Vaccine. J. Med. Virol. 2021, 93, 5231–5232. [Google Scholar] [CrossRef] [PubMed]
  16. van Dam, C.S.; Lede, I.; Schaar, J.; Al-Dulaimy, M.; Rösken, R.; Smits, M. Herpes Zoster after COVID Vaccination. Int. J. Infect. Dis. 2021, 111, 169–171. [Google Scholar] [CrossRef]
  17. Arora, P.; Sardana, K.; Mathachan, S.R.; Malhotra, P. Herpes Zoster after Inactivated COVID-19 Vaccine: A Cutaneous Adverse Effect of the Vaccine. J. Cosmet. Dermatol. 2021, 20, 3389–3390. [Google Scholar] [CrossRef]
  18. Lee, C.; Cotter, D.; Basa, J.; Greenberg, H.L. 20 Post-COVID-19 Vaccine-Related Shingles Cases Seen at the Las Vegas Dermatology Clinic and Sent to Us via Social Media. J. Cosmet. Dermatol. 2021, 20, 1960–1964. [Google Scholar] [CrossRef]
  19. Rodríguez-Jiménez, P.; Chicharro, P.; Cabrera, L.-M.; Seguí, M.; Morales-Caballero, Á.; Llamas-Velasco, M.; Sánchez-Pérez, J. Varicella-Zoster Virus Reactivation after SARS-CoV-2 BNT162b2 MRNA Vaccination: Report of 5 Cases. JAAD Case Rep. 2021, 12, 58–59. [Google Scholar] [CrossRef]
  20. Bostan, E.; Yalici-Armagan, B. Herpes Zoster Following Inactivated COVID-19 Vaccine: A Coexistence or Coincidence? J. Cosmet. Dermatol. 2021, 20, 1566–1567. [Google Scholar] [CrossRef]
  21. Aksu, S.B.; Öztürk, G.Z. A Rare Case of Shingles after COVID-19 Vaccine: Is It a Possible Adverse Effect? Clin. Exp. Vaccine Res. 2021, 10, 198–201. [Google Scholar] [CrossRef]
  22. Psichogiou, M.; Samarkos, M.; Mikos, N.; Hatzakis, A. Reactivation of Varicella Zoster Virus after Vaccination for SARS-CoV-2. Vaccines 2021, 9, 572. [Google Scholar] [CrossRef] [PubMed]
  23. Richardson-May, J.; Rothwell, A.; Rashid, M. Reactivation of Herpes Simplex Keratitis Following Vaccination for COVID-19. BMJ Case Rep. 2021, 14, e245792. [Google Scholar] [CrossRef] [PubMed]
  24. Rallis, K.I.; Fausto, R.; Ting, D.S.J.; Al-Aqaba, M.A.; Said, D.G.; Dua, H.S. Manifestation of Herpetic Eye Disease after COVID-19 Vaccine: A UK Case Series. Ocul. Immunol. Inflamm. 2022, 30, 1–6. [Google Scholar] [CrossRef] [PubMed]
  25. Fard, A.M.; Desilets, J.; Patel, S. Recurrence of Herpetic Keratitis after COVID-19 Vaccination: A Report of Two Cases. Case Rep. Ophthalmol. Med. 2022, 2022, 7094893. [Google Scholar] [CrossRef]
  26. Alkwikbi, H.; Alenazi, M.; Alanazi, W.; Alruwaili, S. Herpetic Keratitis and Corneal Endothelitis Following COVID-19 Vaccination: A Case Series. Cureus 2022, 14, e20967. [Google Scholar] [CrossRef]
  27. Alkhalifah, M.I.; Alsobki, H.E.; Alwael, H.M.; al Fawaz, A.M.; Al-Mezaine, H.S. Herpes Simplex Virus Keratitis Reactivation after SARS-CoV-2 BNT162b2 MRNA Vaccination: A Report of Two Cases. Ocul. Immunol. Inflamm. 2021, 29, 1238–1240. [Google Scholar] [CrossRef]
  28. You, I.-C.; Ahn, M.; Cho, N.-C. A Case Report of Herpes Zoster Ophthalmicus and Meningitis After COVID-19 Vaccination. J. Korean Med. Sci. 2022, 37, e165. [Google Scholar] [CrossRef]
  29. Al-Dwairi, R.A.; Aleshawi, A.; Adi, S.; Abu-Zreig, L. Reactivation of Herpes Simplex Keratitis on a Corneal Graft Following SARS-CoV-2 MRNA Vaccination. Med. Arch. 2022, 76, 146–148. [Google Scholar] [CrossRef]
  30. Murgova, S.; Balchev, G. Ophthalmic Manifestation after SARS-CoV-2 Vaccination: A Case Series. J. Ophthalmic Inflamm. Infect. 2022, 12, 20. [Google Scholar] [CrossRef]
  31. Ryu, K.J.; Kim, D.H. Recurrence of Varicella-Zoster Virus Keratitis After SARS-CoV-2 Vaccination. Cornea 2022, 41, 649–650. [Google Scholar] [CrossRef]
  32. Song, M.Y.; Koh, K.M.; Hwang, K.Y.; Kwon, Y.A.; Kim, K.Y. Relapsed Disciform Stromal Herpetic Keratitis Following MRNA COVID-19 Vaccination: A Case Report. Korean J. Ophthalmol. 2022, 36, 80–82. [Google Scholar] [CrossRef] [PubMed]
  33. Bolletta, E.; Iannetta, D.; Mastrofilippo, V.; de Simone, L.; Gozzi, F.; Croci, S.; Bonacini, M.; Belloni, L.; Zerbini, A.; Adani, C.; et al. Uveitis and Other Ocular Complications Following COVID-19 Vaccination. J. Clin. Med. 2021, 10, 5960. [Google Scholar] [CrossRef] [PubMed]
  34. Renisi, G.; Lombardi, A.; Stanzione, M.; Invernizzi, A.; Bandera, A.; Gori, A. Anterior Uveitis Onset after Bnt162b2 Vaccination: Is This Just a Coincidence? Int. J. Infect. Dis. 2021, 110, 95–97. [Google Scholar] [CrossRef] [PubMed]
  35. ElSheikh, R.H.; Haseeb, A.; Eleiwa, T.K.; Elhusseiny, A.M. Acute Uveitis Following COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 1207–1209. [Google Scholar] [CrossRef]
  36. Al-Allaf, A.-W.; Razok, A.; Al-Allaf, Y.; Aker, L. Post-COVID-19 Vaccine Medium-Vessel Vasculitis and Acute Anterior Uveitis, Causation vs. Temporal Relation; Case Report and Literature Review. Ann. Med. Surg. 2022, 75, 103407. [Google Scholar] [CrossRef]
  37. Duran, M. Bilateral Anterior Uveitis after BNT162b2 MRNA Vaccine: Case Report. J. Fr. Ophtalmol. 2022, 45, e311–e313. [Google Scholar] [CrossRef]
  38. Alhamazani, M.A.; Alruwaili, W.S.; Alshammri, B.; Alrashidi, S.; Almasaud, J. A Case of Recurrent Acute Anterior Uveitis After the Administration of COVID-19 Vaccine. Cureus 2022, 14, e22911. [Google Scholar] [CrossRef]
  39. Ortiz-Egea, J.M.; Sánchez, C.G.; López-Jiménez, A.; Navarro, O.D. Herpetic Anterior Uveitis Following Pfizer-BioNTech Coronavirus Disease 2019 Vaccine: Two Case Reports. J. Med. Case Rep. 2022, 16, 127. [Google Scholar] [CrossRef]
  40. Hwang, J.H. Uveitis after COVID-19 Vaccination. Case Rep. Ophthalmol. 2022, 13, 124–127. [Google Scholar] [CrossRef]
  41. Choi, M.; Seo, M.-H.; Choi, K.-E.; Lee, S.; Choi, B.; Yun, C.; Kim, S.-W.; Kim, Y.Y. Vision-Threatening Ocular Adverse Events after Vaccination against Coronavirus Disease 2019. J. Clin. Med. 2022, 11, 3318. [Google Scholar] [CrossRef]
  42. Hernanz, I.; Arconada, C.; López Corral, A.; Sánchez-Pernaute, O.; Carreño, E. Recurrent Anterior Non-Necrotizing Scleritis as an Adverse Event of ChAdOx1 NCoV-19 (Vaxzevria) Vaccine. Ocul. Immunol. Inflamm. 2022, 30, 1–3. [Google Scholar] [CrossRef] [PubMed]
  43. Pichi, F.; Aljneibi, S.; Neri, P.; Hay, S.; Dackiw, C.; Ghazi, N.G. Association of Ocular Adverse Events With Inactivated COVID-19 Vaccination in Patients in Abu Dhabi. JAMA Ophthalmol. 2021, 139, 1131. [Google Scholar] [CrossRef] [PubMed]
  44. Austria, Q.M.; Lelli, G.J.; Segal, K.L.; Godfrey, K.J. Transient Eyelid Edema Following COVID-19 Vaccination. Ophthalmic Plast. Reconstr. Surg. 2021, 37, 501–502. [Google Scholar] [CrossRef] [PubMed]
  45. Mazzatenta, C.; Piccolo, V.; Pace, G.; Romano, I.; Argenziano, G.; Bassi, A. Purpuric Lesions on the Eyelids Developed after BNT162b2 MRNA COVID-19 Vaccine: Another Piece of SARS-CoV-2 Skin Puzzle? J. Eur. Acad. Dermatol. Venereol. 2021, 35, e543–e545. [Google Scholar] [CrossRef]
  46. Colella, G.; Orlandi, M.; Cirillo, N. Bell’s Palsy Following COVID-19 Vaccination. J. Neurol. 2021, 268, 3589–3591. [Google Scholar] [CrossRef]
  47. Book, B.A.J.; Schmidt, B.; Foerster, A.M.H. Bilateral Acute Macular Neuroretinopathy After Vaccination Against SARS-CoV-2. JAMA Ophthalmol. 2021, 139, e212471. [Google Scholar] [CrossRef]
  48. Mambretti, M.; Huemer, J.; Torregrossa, G.; Ullrich, M.; Findl, O.; Casalino, G. Acute Macular Neuroretinopathy Following Coronavirus Disease 2019 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 730–733. [Google Scholar] [CrossRef]
  49. Vinzamuri, S.; Pradeep, T.G.; Kotian, R. Bilateral Paracentral Acute Middle Maculopathy and Acute Macular Neuroretinopathy Following COVID-19 Vaccination. Indian J. Ophthalmol. 2021, 69, 2862–2864. [Google Scholar] [CrossRef]
  50. Goyal, M.; Murthy, S.I.; Annum, S. Bilateral Multifocal Choroiditis Following COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 753–757. [Google Scholar] [CrossRef]
  51. Mudie, L.I.; Zick, J.D.; Dacey, M.S.; Palestine, A.G. Panuveitis Following Vaccination for COVID-19. Ocul. Immunol. Inflamm. 2021, 29, 741–742. [Google Scholar] [CrossRef]
  52. Fowler, N.; Mendez Martinez, N.R.; Pallares, B.V.; Maldonado, R.S. Acute-Onset Central Serous Retinopathy after Immunization with COVID-19 MRNA Vaccine. Am. J. Ophthalmol. Case Rep. 2021, 23, 101136. [Google Scholar] [CrossRef] [PubMed]
  53. Maleki, A.; Look-Why, S.; Manhapra, A.; Foster, C.S. COVID-19 Recombinant MRNA Vaccines and Serious Ocular Inflammatory Side Effects: Real or Coincidence? J. Ophthalmic Vis. Res. 2021, 16, 490–501. [Google Scholar] [CrossRef] [PubMed]
  54. Testi, I.; Brandão-de-Resende, C.; Agrawal, R.; Pavesio, C. COVID-19 Vaccination Ocular Inflammatory Events Study Group Ocular Inflammatory Events Following COVID-19 Vaccination: A Multinational Case Series. J. Ophthalmic Inflamm. Infect. 2022, 12, 4. [Google Scholar] [CrossRef] [PubMed]
  55. Li, Y.-D.; Chi, W.-Y.; Su, J.-H.; Ferrall, L.; Hung, C.-F.; Wu, T.-C. Coronavirus Vaccine Development: From SARS and MERS to COVID-19. J. Biomed. Sci. 2020, 27, 104. [Google Scholar] [CrossRef] [PubMed]
  56. Nyankerh, C.N.A.; Boateng, A.K.; Appah, M. Ocular Complications after COVID-19 Vaccination, Vaccine Adverse Event Reporting System. Vaccines 2022, 10, 941. [Google Scholar] [CrossRef] [PubMed]
  57. Nordström, P.; Ballin, M.; Nordström, A. Risk of Infection, Hospitalisation, and Death up to 9 Months after a Second Dose of COVID-19 Vaccine: A Retrospective, Total Population Cohort Study in Sweden. Lancet 2022, 399, 814–823. [Google Scholar] [CrossRef]
  58. Lee, E.-J.; Cines, D.B.; Gernsheimer, T.; Kessler, C.; Michel, M.; Tarantino, M.D.; Semple, J.W.; Arnold, D.M.; Godeau, B.; Lambert, M.P.; et al. Thrombocytopenia Following Pfizer and Moderna SARS-CoV-2 Vaccination. Am. J. Hematol. 2021, 96, 534–537. [Google Scholar] [CrossRef]
  59. Steinemann, T.L.; Koffler, B.H.; Jennings, C.D. Corneal Allograft Rejection Following Immunization. Am. J. Ophthalmol. 1988, 106, 575–578. [Google Scholar] [CrossRef]
  60. Wertheim, M.S.; Keel, M.; Cook, S.D.; Tole, D.M. Corneal Transplant Rejection Following Influenza Vaccination. Br. J. Ophthalmol. 2006, 90, 925. [Google Scholar] [CrossRef] [Green Version]
  61. Barda, N.; Dagan, N.; Ben-Shlomo, Y.; Kepten, E.; Waxman, J.; Ohana, R.; Hernán, M.A.; Lipsitch, M.; Kohane, I.; Netzer, D.; et al. Safety of the BNT162b2 MRNA COVID-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2021, 385, 1078–1090. [Google Scholar] [CrossRef]
  62. Desai, H.D.; Sharma, K.; Shah, A.; Patoliya, J.; Patil, A.; Hooshanginezhad, Z.; Grabbe, S.; Goldust, M. Can SARS-CoV-2 Vaccine Increase the Risk of Reactivation of Varicella Zoster? A Systematic Review. J. Cosmet. Dermatol. 2021, 20, 3350–3361. [Google Scholar] [CrossRef] [PubMed]
  63. Seneff, S.; Nigh, G.; Kyriakopoulos, A.M.; McCullough, P.A. Innate Immune Suppression by SARS-CoV-2 MRNA Vaccinations: The Role of G-Quadruplexes, Exosomes, and MicroRNAs. Food Chem. Toxicol. 2022, 164, 113008. [Google Scholar] [CrossRef] [PubMed]
  64. Wang, M.T.M.; Niederer, R.L.; McGhee, C.N.J.; Danesh-Meyer, H.V. COVID-19 Vaccination and The Eye. Am. J. Ophthalmol. 2022, 240, 79–98. [Google Scholar] [CrossRef] [PubMed]
  65. Singh, R.B.; Singh Parmar, U.P.; Kahale, F.; Agarwal, A.; Tsui, E. Vaccine-Associated Uveitis Following SARS-CoV-2 Vaccination: A CDC-VAERS Database Analysis. Ophthalmology 2022. [Google Scholar] [CrossRef] [PubMed]
  66. Valenzuela, D.A.; Groth, S.; Taubenslag, K.J.; Gangaputra, S. Acute Macular Neuroretinopathy Following Pfizer-BioNTech COVID-19 Vaccination. Am. J. Ophthalmol. Case Rep. 2021, 24, 101200. [Google Scholar] [CrossRef] [PubMed]
  67. Haseeb, A.A.; Solyman, O.; Abushanab, M.M.; Abo Obaia, A.S.; Elhusseiny, A.M. Ocular Complications Following Vaccination for COVID-19: A One-Year Retrospective. Vaccines 2022, 10, 342. [Google Scholar] [CrossRef]
Table 1. List of WHO-approved vaccines for COVID-19.
Table 1. List of WHO-approved vaccines for COVID-19.
SNoNameType of VaccineCountry Where Vaccine Was DevelopedCountries That Have Used ItRoute of AdminVVMPreservativesDiluents
1Covovax (Novavax formulation)Protein Subunit
(Recombinant Nanoparticle)
India
(Serum Institute of India)
6 countriesIMN/AN/AN/A
2Nuvaxovid
(Novavax)
Protein SubunitCzech Republic40 countriesIMN/AN/AN/A
3mRNA-1273
Moderna: Spikevax
RNA
(modified nucleoside)
Spain (Moderna Biotech)88 countriesIMN/AN/AN/A
4BNT163b2
Pfizer BioNTech: Comirnaty
RNA
(Modified nucleoside)
Germany (BioNTech Manufacturing GmbH)149 countriesIMN/AN/ASodium Chloride Inj USP 0.9%
5Convidecia: CanSino
(Ad5.CoV2-S)
Non replicating viral vectorPeople’s Republic of China
(CanSino Biologics Inc.)
10 countriesIMNoneNoneNone
6Jcovden: Janssen
(Johnson & Johnson)
Non-replicating viral vectorBelgium (JCINV)113 countriesIMNoneNoneNone
7Vaxzevria (Oxford AstraZeneca)Non replicating viral vectorRepublic of Korea
(AstraZeneca/SK Bioscience Co., Ltd.)
149 countriesIMNoneNoneNone
8Covidshield
(ChAdOx1 nCoV-19 (AZD1222)
(Oxford AstraZeneca formulation)
Non-replicating viral vectorIndia
(Serum Institute of India)
49 countriesIMNoneNoneNone
9CovaxinInactivated
(Whole virion)
India
(Bharat Biotech)
14 countriesIMN/APhenoxy ethanolN/A
10Sinopharm: Covilo/BBIBP-CorVInactivated
(Antigen is purified and absorbed with aluminium hydroxide)
China (BIBP)93 countriesIMVVM7NoneN/A
11Sinovac: CoronavacInactivated
(Antigen is purified and absorbed with aluminium hydroxide)
China (Sinovac Biotech)56 countriesIMN/ANoneN/A
(IM: Intramuscular; RNA: Ribonucleic acid; VVM: Vaccine Vial Monitor Type).
Table 2. Anterior segment manifestations following COVID-19 vaccines.
Table 2. Anterior segment manifestations following COVID-19 vaccines.
Manifestation VaccineTime of OnsetSymptomsCase/Case Series
Age/Age Range
MechanismTreatment and OutcomeArticle Reference No.
Endothelial Graft Rejection1BNT163b27 days
3 weeks
Painless decrease in vision
Red eye
66 yrs
83 yrs
Case report
Allogenic response, generated by the host antibodies and immune systemTreated successfully with topical steroids (Phylactou, M et al., 2021) [6]
2BNT163b27 daysSudden painless decrease in vision, conjunctival injection;
diffuse corneal edema
71 yrs
Case report
Disruption of immune regulation and upregulation of cytokines like TNF α, chemokines, and pro inflammatory moleculesTreated with topical Dexamethasone sodium phosphate 1 mg/mL/2 hourly
Resolution after 2 weeks
(Crnej, A et al., 2021) [7]
3BNT163b214 daysPainless worsening of vision
Corneal thickness increased, OCT Descemet membrane folds
94 yrs
Case report
Changes in antibody-mediated immune signalling response following vaccinationDexamethasone/tobramycin
With hypertonic saline
(Forshaw, T et al., 2022) [8]
4BNT163b2
(8 patients)
17 days
3 weeks × 2
13 days
14 days
7 days
3 days
4 days
4 days
9 days
13 days
Conjunctival hyperemia, diffuse corneal edema, KPs, flare and cells, corneal thickness, stromal edema reported in 1 patientSystematic review
Median age 68 (27–83) IQR
Increased anti-spike-neutralizing antibodies, antigen-specific CD4+ T-cell responses, and inflammatory cytokines, including interferon (IFN)-γ and interleukin-2 IFN-γ plays a central role in the acute rejection process and the resultant T helper type 1-dominant immune response may have evoked corneal allograft rejectionDexamethasone eye drops 0.2% hourly, combined oral methyl prednisone, hypertonic saline, intracameral fortecortin injections(Fujio, K et al., 2022) [9]
mRNA-1273
(8 patients)
1 week
1 week
2 week
1 week
15 days
3 days
1 week
1 week
ChAdOx1
(4 patients)
5 days
10 days
2 days
6 weeks
CoronaVac1 day63 yrs
5BNT163b2
(3 cases)
16.86 ± 6.96 days (mean)Painless loss of VA and conjunctival suffusionCase seriesHyperstimulation of the immune systemTopical Steroids (Molero-Senosiain, M et al., 2022) [10]
AZD1222
(2 cases)
17 ± 11.89 days
6BNT163b22 weeksDecreased VA, ocular pain, photophobia73 yrs
Case report
Prednisone acetate every 1–2 h, with Muro ointment(Abousy, M et al., 2021) [11]
7CoronaVac Biotech24 h 63 yrs
Case report
Partially resolved by topical corticosteroids and polydimethylsiloxane(Simão, M.F et al., 2022) [12]
8ChAdOx1 COVIDSHIELD, AstraZeneca2 weeks Blurring of vision, stromal edema28 yrs
Case report
Hourly topical steroids, cycloplegics and oral steroids(Nahata, H et al., 2022) [13]
9mRNA-1273
(4 cases)
3 weeks
9 days
2 weeks
2 weeks
Case reportTopical steroids
Complete resolution
(Shah, A.P et al., 2022) [14]
Herpes zoster Ophthalmicus
(HZO)
1mRNA-12736 daysItchy tender lesions on the right thigh, eruption of vesicles with an erythematous base79 yrs
Case report
Lymphopenia along with any functional impairment of T lymphocytes could trigger herpes zoster reactivationComplete resolution after systemic antiviral treatment(Eid, E et al., 2021) [15]
2BNT163b2
(Tozinameran)
(2 cases)
15 days
13 days
Painful grouped vesicles in the left lateral of the ox coccyges (S3 dermatome)
Painful and swollen inguinal lymph nodes along with a rash on the right leg
29 yrs
34 yrs
Case report
Self-limiting
Valacyclovir 1 g 3×/day for 10 days, complete resolution
(van Dam, C.S et al., 2021) [16]
3AZD-1222 (Covidshield)4 daysMultiple grouped fluid filled lesions on an erythematous base, present on the knee and the anterior aspect of the thigh; biopsy showed acantholytic cells and dyskeratotic cells60 yrs
Case report
Valacyclovir 1 g 3×/day for 7 days
Topical Fusidic acid 2×/day
(Arora, P et al., 2021) [17]
4mRNA-1273
(14 cases)
2, 0, 4, 4, 14, 12, 2, 0, 12, 12, 26, 5, 4, 5–6 days, respectivelyUnilateral dermatological skin eruptions, with itching, pain, arm soreness, altered skin sensation77, 56, 54, 69, 42, 47, 39, 68, 60, 43, 65, 37, 69, 72 yrs,
respectively
Immunomodulation due to decrease in lymphocytes, monocytes, eosinophils, CD4/CD8 T cellsValacyclovir Gabapentin LMX,
Terrasil Shingles cream
(Lee, C et al., 2021) [18]
BNT163b2
(6 cases)
38, 5, 3, 12, 9, 5 days,
respectively
65, 43, 74, 48, 46, 44 yrs,
respectively
Case series
5BNT163b2
(5 cases)
1, 5, 3, 2, 16 days, respectivelyUmbilicated vesicles, lymphadenopathy, dysesthesias, fever, vesicles and rash in dermatomal pattern58, 47, 39, 56, 41 yrs,
respectively
Case series
Valacyclovir 1 g
3×/day for 7 days
(Rodríguez-Jiménez, P et al., 2021) [19]
6RNA vaccine5 daysPainful pimple-like lesions with stinging in the left mammary region, crusted haemorrhagic vesicles upon an erythematous base78 yrs
Case report
Valacyclovir 3×/day for 7 days (Bostan, E et al., 2021) [20]
7Inactivated COVID 19 vaccine5 daysMultiple pinhead vesicular lesions with an erythematous base occupying right mammary region and back along with stinging sensation and pain68 yrs
Case report
Valacyclovir 3×/day for 7 days
Codeine for pain management
(Aksu, S.B et al., 2021) [21]
8BNT163b2
(7 cases)
9, 14, 8, 7, 9, 7, 10Unilateral dermatomal rash in different dermatomes (lumbar, thoracic, 5th cranial nerve)
malaise, headache
51, 56, 89, 86, 90, 91, 94 yrs
Case series
Valacyclovir for 7 days after symptoms onset (Psichogiou, M et al., 2021) [22]
Herpes Simplex Virus (HSV) Keratitis1ChAdOx1n1 dayCorneal hyperaemia, reduced corneal sensation, multiple corneal dendrites, reduced VA (6/9)82 yrs
Case report
Molecular mimicry, autoinflammation triggered by the vaccine and lymphopeniaAcyclovir 5×/day, doxycycline 50 mg orally once a day, prednisone phosphate 0.5%
Atropine 1% 1×/day
(Richardson-May et al., 2021) [23]
2Sinovac
(2 cases)
2 days
4 days
Tearing, redness, photophobia, decreased visual acuity, dendritic lesions on slit lamp examination60 yrs
51 yrs
Case report
Lymphopenia, insufficient cellular immunityTopical steroids, topical and oral ganciclovir(Rallis et al., 2022) [24]
3BNT163b22 daysBlurry vision, 20/40 VA, patchy stromal haze and confluent punctate epithelial erosions along inferior cornea52 yrsActivation of the proinflammatory cytokines like INF gamma post vaccination, can have a role in reactivationAcyclovir 5×/day
Topical trifluride 5×/day
Prednisolone acetate 1% 5×/day
(Fard et al., 2022) [25]
mRNA-12732 weeksBlurry vision, redness, abnormal sensation in OS, corneal epithelial defect 67 yrsBandage contact lens,
Oral Valacyclovir 1 gm 2×/day
Ofloxacin 0.3% drops 4×/day
4BNT163b2
(3 cases)
1 week
1 week
1 week
Pain, Photophobia, Lacrimation
Typical dendritic ulcer of the peripheral cornea
Stromal infiltration and diffuse conjunctival injection
AC trace
18 yrs
40 yrs
29 yrs
Vaccine triggered cytokine release and upregulation of natural killer cells group D ligand, causing reactivationLubrication, ganciclovir ophthalmic gel 0.15% 5×/day
Oral acyclovir 400 mg 5×/day for 10 days
(Alkwikbi, H et al., 2022) [26]
AZD12221 weekPain, redness, blurry vision;
epithelial dendritic ulcers were noted on the cornea
32 yrs
Case report
Prednisone 1 mg/kg/day for 4 weeks
5BNT163b2
(2 cases)
4 days
4 weeks
Necrotizing stromal keratitis
Endothelitis and epithelial keratitis
42 yrs
29 yrs
Case report
Potential immunological dysregulationSystemic acyclovir(Alkhalifah, M.I et al., 2021) [27]
6BNT163b25 daysConjunctival hyperaemia, pseudodendrite in peripheral cornea
Along with vesicular skin rash on forehead, scalp, nose, eyelid,
meningitis
74 yrs
Case report
Temporal association due to immunological upregulation of cellular immunityTherapeutic contact lens, recombinant human epithelial growth factor,
Ofloxacin ointment
(You et al., 2022) [28]
7BNT163b22 daysOS redness, tearing, and pain50 yrs
Case report
mRNA vaccines dysregulate T cell latency mechanisms in the sensory nerve ganglion 400 mg oral acyclovir +
Topical fluorometholone
(Al-Dwairi et al., 2022) [29]
8ChAdOx1n7 daysPain, photophobia, blurred vision,
Examination—peri corneal injection, hazy cornea with paracentral thinning
56 yrs
Case report
Potential immune response triggered by molecular mimicryTopical and systemic acyclovir(Murgova et al., 2022) [30]
BNT163b2
(4 cases)
3 weeks
8 days
2 weeks
10 days
Blurred vision and irritation in OS, KPs seen in the anterior segment
Moderate vitritis and exudates
89 yrs
50 yrs
52 yrs
45 yrs
Acyclovir
Steroids (1 mg/kg methylprednisone)
9BNT163b22 daysSudden visual impairment, diffuse corneal stromal edema, nasal stromal infiltration87 yrs
Case report
T cells activation by the host cell response after vaccination may have caused the recurranceOral Valacyclovir and topical corticosteroids(Ryu et al., 2022) [31]
10BNT163b27 daysDecreased VA and foreign body sensation30 yrs
Case report
Unknown immunological response or general systemic reactogenicity to the vaccine-causing reactivationTopical eye drops (Ganciclovir 0.25%)
Loteprednol etabonate 0.5%
(Song et al., 2022) [32]
Anterior Uveitis1BNT163b2
(3 cases)
6 days
6 days
8 days
Photophobia
Blurred vision
44 yrs
47 yrs
44 yrs
Immunological hyperstimulation by the vaccineDexamethasone eye drops 2 mg/mL leading to complete resolution(Bolletta et al., 2022) [33]
AZD122230 daysRedness, pain, blurred vision66 yrs
mRNA-12731 dayRedness, pain, blurred vision35 yrs
Case report
2BNT163b214 daysPain, photophobia and red eye.
Conjunctival hyperaemia, posterior synechiae and AC cells, KPs in the lower quadrants
23 yrsMolecular mimicry10-day course of topical steroids and cycloplegics (Renisi et al., 2022) [34]
3Sinopharm5 daysReduced VA, hyperreflective dots in the AC, fine endothelial granularities18 yrs
Case report
Potential immunological mechanismsTopical steroids leading to complete resolution(ElSheikh et al., 2021) [35]
4BNT163b23 weeksAcute onset pain, photophobia, erythema, blurring of vision46 yrs
Case report
Autoantibodies production post vaccination as a component of the hyper-stimulated immune system reacting with self peptidesTopical triamcinolone drops, azathioprine 50mg once daily as a steroid-sparing agent(Al-Allaf et al., 2022) [36]
5BNT163b23 daysRedness, blurred vision, headache
Corneal epithelial edema, KPs in the lower quadrant
54 yrs
Case report
Secondary molecular mimicry due to similarity between the vaccine fragments and the peptides of the uvea, adjuvants such as aluminium cause inflammatory damage, delayed hypersensitivity response0.1% Dexamethasone, 1% Cycloplegic drugs, 0.1% dexamethasone ointment(Duran 2022) [37]
6BNT163b22 monthsPhotophobia, redness, decreased vision, pain
Intense ciliary flush and posterior synechiae
37 yrs
Case report
mRNA vaccine-induced cellular and humoral immune responses, which can lead to molecular mimicry and immunological cross-reactivityTopical prednisone acetate 1% and cyclopentolate(Alhamazani et al., 2022) [38]
7BNT163b23 days
3 days
Ocular pain, redness, hemicranial headache92 yrs
85 yrs
Case report
Molecular mimicry and antigen specific cell and antibody-mediated hypersensitivity reactionsCycloplegic every 8 h and moxifloxacin eye drops every 4 h (Ortiz Egea et al., 2022) [39]
8BNT163b22 daysDecreased VA and conjunctival injection
Hypopyon and flares in the AC
21 yrs
Case report
Vaccine-induced molecular mimicryTopical dexamethasone (0.1%) hourly and systemic prednisone (50 mg/day) for 7 days(Hwang JH. 2022) [40]
9AZD-12221 dayGreater vitreous opacity, KPs, increase in inflammatory cells in the AC62 yrsMolecular mimicry between vaccine and ocular structures leading to autoreactivityTopical steroids(Choi et al., 2022) [41]
BNT163b2
(2 cases)
3 days
2 days
79 yrs
55 yrs
Topical steroids
Episcleritis and Anterior Scleritis1AZD1222 Anterior non-necrotising scleritis (Hernanz I et al., 2022) [42]
2Sinopharm
(3 cases)
1 week
15 days
15 days
Diffuse scleral hyperemia33 to 55 yrs
Case series
Molecular mimicry and antigen-specific cell and antibody-mediated hypersensitivity reactionsResolved in 2 weeks after topical steroids(Pichi F et al., 2022) [43]
Angle closure glaucoma1AZD-12222 weeksOcular pain, acute visual loss, corneal microscopic cystic edema, conjunctival injection, shallow AC, peripheral AC collapse71 yrsSwelling of ciliary body after vaccination, that led to zonule laxity accompanied by phacodonesis, causing a closed-angle attackPhacoemulsification with goniosynechiolysis(Choi M et al., 2022) [41]
2AZD-1222 83 yrsTrabeculectomy with laser peripheral iridoplasty
3AZD-1222 59 yrsPhacoemulsification with posterior chamber lens implantation
4AZD-1222 64 yrsVitrectomy with IOL scleral fixation
5BNT163b23 daysBlurry vision, headache, corneal edema, 54 yrsNot mentioned 20% Mannitol, acetazolamide 250 mg, timolol, dorzolamide, 0.15% brimonidine(Duran M 2022) [37]
Eyelid edema1BNT162b21 dayTransient eyelid edema39.3 mean age (32–43)
Case series
Complement activation that increased complement mediators within the plasma and tear film, resulting in eyelid edemaObservation, Antihistamine, Corticosteroid(Austria QM et al., 2021) [44]
Purpuric eyelid rash1BNT162b2Median of 18 daysPurpuric rashes on the upper lids associated with mild itching44 yrs
63 yrs
67 yrs
Mild and localized form of vaccine-induced microangiopathySelf-resolving(Mazzatenta et al., 2021) [45]
Bell’s palsy1BNT162b23 daysLatero-cervical pain in left side, irradiating to the mastoid ipsilaterally, monolateral muscle weakness;
flattening of the forehead skin and nasolabial fold
37 yrsPossible autoimmune reactionCorticosteroids (prednisone, 50 mg/day), artificial tears eye drops and eye dressing at night
Helped resolve systemic symptoms, facial mobility partially improved and pain sensation still persists
(Colella et al., 2022) [46]
(AC: anterior chamber; KP: keratic precipitates; OCT: optical coherence tomography, OS: oculus sinistrum; VA: visual acuity).
Table 3. Posterior segment and neurophthalmic manifestations following COVID-19 vaccines.
Table 3. Posterior segment and neurophthalmic manifestations following COVID-19 vaccines.
ManifestationVaccineTime of Onset
(Days)
SymptomsCase/Case Series
Age/Age Range
MechanismVisual PrognosisArticle Reference No.
Vitreo-Retina:
  • Acute Macular Neuroretinopathy (AMN)
AZD12223 daysBilateral paracentral
scotomas with underlying bilateral circumscribed paracentral dark lesions on ophthalmoscopy, OCT
with outer plexiform layer thickening and discontinuity
21 yrsHypoperfusion of the retina might account for the peripheral visual loss, which self-corrected rapidly. Reduction in central acuity is
less straight forward to explain, but can result from transient
hypoperfusion of retina, optic nerves, or any part of the
visual pathways extending to the visual cortices. [7]
Self-limiting(Book et al., 2021) [47]
AZD12222 daysUnilateral paracentral
scotoma with a teardrop-shaped macular lesion nasal to the fovea
27 yrsSymptoms only lasted for 24 h(Mambretti et al., 2022) [48]
AZD1222 2 daysUnilateral presentation with paracentral scotoma22 yrsSelf-limiting(Mambretti et al., 2021) [48]
AZD1222 2 daysUnilateral presentation with paracentral scotoma28 yrs(Mambretti et al., 2021) [48]
BBIBP-CorV Sinopharm 5.2 days (range, 1–10 days)Previous ocular history of CSCR
in both eyes with a chronic serous PED in the OS. BCVA of 20/25 at previous visits.
Vital parameters were within normal limits, but the BCVA in OS dropped to 20/400.
41.4 (9.3) yrs (range: 30–55
yrs)
Can be associated with anemia, hypertension or
hypotension, hypoxia, and other systemic morbidities, which can contribute to nerve fiber layer
infarcts, haemorrhages, or microaneurysms. Vasculitis and
thromboembolism also can contribute to retinal ischemia.
Patient was closely observed, and at 2-month follow-
up, the tomographic picture had resolved and
BCVA was back to 20/30.
(Pichi et al., 2021) [43]
2.
Paracentral acute middle maculopathy (PAMM)
AZD1222
2nd dose
30 daysReduced brightness sensitivity in both eyes progressed further, black spots in his central field. OCT macula revealed a significant reduction in the number and size of the hyperreflective lesions noted in the nerve fibre and ganglion cell layers. There was also a reduction in the thickness of the outer nuclear layer in both eyes.35 yrsPossible microvascular pathology affecting the deep capillary plexus. It is possible that small vessel vasculitis induced by vaccination resulted in these findings. It is hypothesized that the vasculitis changes may have led to the ischemia of the deep capillary plexus presenting as PAMM and AMN in the patient.On re-examining the patient after 3 weeks he reported slight improvement of brightness sensitivity
but still complained of black spots in his central field of
vision. On examination, his vision was 6/6 in both eyes. His Amsler’s grid charting was also normal. The OCT macula revealed a significant reduction in the number and size of the hyperreflective lesions noted in the NFL and GCL. There was also a reduction in the thickness of the outer nuclear layer in OU.
(Vinzamuri et al., 2021) [49]
BBIBP-CorV Sinopharm5.2 days
(1–10 days)
20 min after receiving Sinopharm,
they developed persistent tachycardia and raised
blood pressure.
Noticed inferior scotoma in OS. BCVA at presentation was 20/30 OS, with a dot hemorrhage superior to the fovea.
41.4 (9.3) yrs (30–55
yrs)
Molecular mimicry and
antigen-specific cell and antibody-mediated hypersensitivity
reactions may be involved.
BP was nonresponsive to treatment for 3 weeks(Pichi et al., 2021) [43]
3.
Multifocal choroiditis
AZD12227 daysPatient had a large unilateral serous macular detachment and severe choroidal thickening bilaterally. BCVA was 6/36, N60, and 6/6, N6 in OD and OS, respectively.34 yrsAutoimmunity triggered by the vaccines. Mechanisms include cytokine production, expression of human
histocompatibility leukocyte antigens, modification of surface antigens, induction of novel antigens, molecular mimicry,
bystander activation, epitope spreading, polyclonal activation of B cells, and an immune reaction to vaccination adjuvants known collectively as Shoenfeld syndrome are often associated
with constitutional symptoms such as arthralgia, myalgia, and fatigue.
On oral prednisolone 100 mg daily (1 mg/kg
body weight) tapering by 10 mg/week after 11 days the patient reported significant improvement in vision. UCVA improved to 6/6, N6.
Significant resolution of choroiditis with trace residual subretinal fluid. B-scan showed significant reduction in CT.
(Goyal et al., 2021) [50]
4.
Panuveitis
BNT162b23 daysPatient presented with a visual acuity of 20/500 in both eyes, eye pain, eye redness, and sensitivity to light having
3–4+ anterior chamber cell with 2–3+ vitreous cell with significant choroidal thickening.
43 yrsDirect infection of ocular structures by live strain (the COVID-19 vaccine is not a live strain
* Additive-induced immune-related uveitis (which are not present in the Pfizer-Biontech vaccine)
* Molecular
mimicry between the vaccine and ocular structures, driving the adaptive immune system to create autoimmunity.
Within 10 days of starting oral prednisone pain resolved, her VA improved to 20/20 OU,
there was no inflammation, and the choroidal thickening
resolved.
(Mudie et al., 2021) [51]
5.
Central serous chorioretinopathy
(CSCR)
BNT162b2 3 daysUnilateral blurry vision. BCVA OD: 20/63; OS: 20/25 with metamorphopsia33 yrsPossibly due to increased serum cortisol, free extracellular mRNA, and polyethlene glycol.At the 2-month visit, BCVA:20/40; CFT:
325 μm.
At the 3-month visit, BCVA: 20/20; CFT: 211 μm. OCT showed complete resolution of subretinal fluid
(Fowler at al., 2021) [52]
6.
Acute Zonal Occult Outer Retinopathy (AZOOR)
mRNA-127310 daysBilateral presentation
with progressive unilateral nasal defect and bilateral flashes. At presentation, had 20/20 vision in
both eyes with a yellow-white reflex in the temporal macula
of her left eye.
33 yrsPossible mechanisms include:
(i) molecular mimicry, where the vaccine
triggers an immune response to self-antigens;
(ii) bystander activation of sequestered self-antigens from the host that can activate antigen-presenting
cells and T-helper cells;
(iii) cytokines secretion from macrophages that recruit additional T-helper cells;
(iv) genetic
polymorphisms related to the aberrant
regulation of the IL-4 expression or activity, which may over-stimulate
inflammatory responses
Patient was recommended a combination therapy
of azathioprine and cyclosporine. Patient consulted her gynecologist prior to starting therapy as she was nursing a baby.
(Maleki et al., 2021.) [53]
7.
Posterior Uveitis
BNT162b2
(4 cases)
AZD1222
(4 cases)
mRNA-1273
(1 case)
6.5 [1,2,3,4,5,6,7,8,9,10,11,12,13,14] after first dose
8 [2,3,4,5,6,7,8,9]
after second dose
Unilateral in 8, bilateral in 1.
2 (22.2%) had history of ocular toxoplasmosis,
1 (11.1%) of AZOOR. Patients with history of ocular toxoplasmosis
presented with recurrence of lesions and the patient with AZOOR had a different presentation from previous events with multifocal choroiditis.
3 (33.3%) presented with ocular toxoplasmosis, 2
(22.2%) presented with retinal vasculitis, and 1 (11.1%)
presented with choroiditis for the first time.
40 yrsOut of 3 with previous history of posterior uveitis, 2 had history of previous similar event.
* Molecular mimicry secondary to resemblance between
uveal peptides and vaccine peptide fragments.
* Antigen-specific cell and antibody-mediated hypersensitivit.
Reactions
* Inflammatory damage induced by adjuvants
included the vaccines stimulating innate
immunity through endosolic or cytoplasmic nucleic acid
receptors.
VA unaffected in 7 (77.8%)
VA reduced > 3 lines in 2 (22.2%)
Macular Scarring in 2 (22.2%)
On being treated by topical corticosteroid in 6 and systemic corticosteroid in 3.
One patient
with ocular toxoplasmosis, and 1 with
occlusive retinal vasculitis had persistent vision loss on the last follow-up due to macular scarring.
(Testi et al., 2021) [54]
(BCVA: Best-corrected visual acuity; CSCR: central serous chorioretinopathy; GCL: ganglion cell layer; mRNA: messenger ribonucleic acid; NFL: nerve fiber layer; OS: oculus sinistrum; PED: pigment epithelial detachment).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ichhpujani, P.; Parmar, U.P.S.; Duggal, S.; Kumar, S. COVID-19 Vaccine-Associated Ocular Adverse Effects: An Overview. Vaccines 2022, 10, 1879. https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines10111879

AMA Style

Ichhpujani P, Parmar UPS, Duggal S, Kumar S. COVID-19 Vaccine-Associated Ocular Adverse Effects: An Overview. Vaccines. 2022; 10(11):1879. https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines10111879

Chicago/Turabian Style

Ichhpujani, Parul, Uday Pratap Singh Parmar, Siddharth Duggal, and Suresh Kumar. 2022. "COVID-19 Vaccine-Associated Ocular Adverse Effects: An Overview" Vaccines 10, no. 11: 1879. https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines10111879

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop