Next Article in Journal
Novel Role of Ghrelin Receptor in Gut Dysbiosis and Experimental Colitis in Aging
Next Article in Special Issue
Function of Nuclear Pore Complexes in Regulation of Plant Defense Signaling
Previous Article in Journal
A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes

1
Indian Institute of Pulses Research, Kanpur 208024, India
2
Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur 176062, India
3
Department of Botany, Panjab University, Chandigarh 0172, India
4
National Institute of Plant Genome Research (NIPGR), New Delhi 110001, India
5
The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2022, 23(4), 2217; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23042217
Submission received: 25 January 2022 / Revised: 11 February 2022 / Accepted: 14 February 2022 / Published: 17 February 2022

Abstract

:
Grain legumes are a key food source for ensuring global food security and sustaining agriculture. However, grain legume production is challenged by growing disease incidence due to global climate change. Ascochyta blight (AB) is a major disease, causing substantial yield losses in grain legumes worldwide. Harnessing the untapped reserve of global grain legume germplasm, landraces, and crop wild relatives (CWRs) could help minimize yield losses caused by AB infection in grain legumes. Several genetic determinants controlling AB resistance in various grain legumes have been identified following classical genetic and conventional breeding approaches. However, the advent of molecular markers, biparental quantitative trait loci (QTL) mapping, genome-wide association studies, genomic resources developed from various genome sequence assemblies, and whole-genome resequencing of global germplasm has revealed AB-resistant gene(s)/QTL/genomic regions/haplotypes on various linkage groups. These genomics resources allow plant breeders to embrace genomics-assisted selection for developing/transferring AB-resistant genomic regions to elite cultivars with great precision. Likewise, advances in functional genomics, especially transcriptomics and proteomics, have assisted in discovering possible candidate gene(s) and proteins and the underlying molecular mechanisms of AB resistance in various grain legumes. We discuss how emerging cutting-edge next-generation breeding tools, such as rapid generation advancement, field-based high-throughput phenotyping tools, genomic selection, and CRISPR/Cas9, could be used for fast-tracking AB-resistant grain legumes to meet the increasing demand for grain legume-based protein diets and thus ensuring global food security.

Graphical Abstract

1. Introduction

Grain legumes are a cheap source of plant-based dietary protein and vital micronutrients and vitamins for the human population, lowering the risk of heart-related diseases and type 2 diabetes, and thus playing a crucial role in reducing global food insecurity and eradicating malnutrition-related problems [1,2,3]. However, various biotic stresses, including Ascochyta blight (AB), a fungal foliar disease belonging to the class Dothideomycetes, order Pleosporales, and family Didymellaceae [4], cause significant yield losses in various grain legumes across the globe [5,6,7,8,9,10,11]. The blight disease in legumes is caused by the fungal species of genus Didymella (anamorph stage: Ascochyta) belonging to the class Dothideomycetes, order Pleosporales, and family Didymellaceae [4]. Furthermore, various virulent pathotypes or races of AB are becoming a serious concern for sustaining global grain legume yield. AB is a soil-borne disease, and AB pathogens perpetuate on plant inoculum and infected debris of the previous crop [8]. The AB pathogens invade the host and stomata by their appressoria or penetration peg [12,13,14]. Thereafter, the AB pathogen secretes carbohydrate active enzymes, such as glycoside hydrolases, glycosyl transferases, and secretome, that degrade cell celluloses, hemicelluloses, and chitin, spreading the infection inside host plant cells and ultimately causing cell death [15,16]. In response to AB attack, host plants well equipped with sophisticated immune system recruit a two-tier defense system, involving PAMP-triggered immunity (PTI) [17] and effector-triggered immunity (ETI) [18] to restrict entry of the invading AB pathogen. Several approaches have been used to minimize AB-infection losses, including developing AB-resistant cultivars using conventional and modern breeding tools. By relying on Mendelian genetics, several genetic determinants conferring AB resistance have been reported in various legumes [19,20,21,22,23,24,25,26,27]. Since, AB resistance in several crops is polygenic in nature, the advent of molecular marker technology has enabled the identification and location of quantitative trait loci (QTL) conferring AB resistance in grain legume crops using biparental mapping and genome-wide association studies (GWAS). Subsequent advances in next-generation sequencing enabled the construction of the genome assemblies of various grain legumes and the AB-causal organism and thus the exploration of AB-resistant genomic regions in plants and pathogenicity/virulence regions in the AB pathogens. In parallel, whole-genome resequencing (WGRS) and pan-genome assembly have underpinned structural genomic regions conferring AB resistance at the whole-genome level and across plant species. Likewise, the advent of RNA-seq has assisted in uncovering AB-resistant candidate gene(s) and their plausible functions. Proteomics has been instrumental in unveiling various candidate proteins conferring AB resistance and various AB proteins mediating pathogenicity in the host plant. Emerging innovative breeding approaches, such as high-throughput phenotyping, genomic selection, rapid generation advancement, and CRISPR/Cas9 based genome editing technology, will enhance the development of AB-resistant climate-resilient grain legumes for sustaining global legume yields.

2. Causal Organism of AB in Various Legumes, Symptoms, and Negative Impact

2.1. Causal Organism of AB in Chickpea, Symptoms, and Negative Impact

AB disease in chickpea is caused by Ascochyta rabiei (Pass.) Labr. (teleomorph: Didymella rabiei (Kovacheski)), a necrotopic fungus belonging to the class Dothideomycetes, order Pleosporales, and family Didymellaceae [4]. AB can cause up to 100% yield loss in chickpea under severe infection [6,10]. According to Murray and Brennan [28], AB infection causes chickpea yield losses of $4.8 million annually in Australia. Based on AB disease severity, existence of three pathotypes [29,30,31,32], five pathotypes [6], and 10 pathotypes [33] have been reported (see Table 1). Aggressiveness of AB-causing pathotypes may greatly change depending on geographical distribution and pedoclimatic conditions [31].
AB is a seed-borne disease, with infected chickpea seed acting as the source of primary inoculum for disease infection [8]. AB completes its sexual cycle on infected chickpea debris over winter [49]; the ascospores produced on the crop residue persist on the soil surface over winter [5,50,51,52]. After disease establishment in the field, asexual spores (pycniospores) serve as an important source of secondary spread of AB [52].

2.2. Causal Organism of AB in Faba Bean, Symptoms, and Negative Impact

AB disease in faba bean is caused by Ascochyta fabae Speg. (teleomorph Didymella fabae), significantly reducing yield [53] by up to 90% in susceptible cultivars under wet and congenial conditions [7,54]. The existence of the physiological race of Ascochyta fabae has been reported [7,35]. Yield losses ranging from 35 and 90% due to infection caused by A. fabae have been reported in winter and early spring grown crops in Middle East, Europe, Canada, and Australia [55,56]. The disease is prevalent in crops grown during winter, spreading widely during spring [55,57] (see Table 1). As AB is a seed-borne disease, infected seeds and crop debris serve as the main inoculum for disease infection on leaves, stems, and pods, resulting in lodging, stem girdling, and pod and seed abortion in faba bean [36]. Multiple environment testing for AB resistance revealed high G×E interactions for AB severity [58].

2.3. Causal Organism of AB in Pea, Symptoms, and Negative Impact

AB in pea, also known as ‘black spot’ disease, is caused by a complex of three pathogens Mycosphaerella pinodes (the teleomorph of Didymella pinodes), Ascochyta pisi, and Phoma medicaginis var. pinodella [41,59,60]. The disease is prevalent in all pea-growing regions, including Europe, Mediterranean basin, North America, and Australia, causing significant yield losses [8,9,11,45,61]. For example, annual yield losses caused by AB in pea are 10–60% in Australia [45], 40% in France [62], 50% in Canada [63], and 10–30% in China [64]. AB infection starts at the seedling stage and spreads across aerial parts; visual symptoms include necrotic leaf spots, chlorotic halos in leaves, stem and pod lesions, and dark brown discoloration of seeds [44,64,65,66] (see Table 1).

2.4. Causal Organism of AB in Lentil, Symptoms, and Negative Impact

AB in lentil is caused by Ascochyta lentis Vassiljevsky (teleomorph: Didymella lentis, syn. Ascochyta fabae f. sp. lentis) [37]. This disease is found in all major lentil-producing countries, including Canada, Australia, India, and New Zealand [67,68]. Ascochyta lentis is host-specific, so it does not show any disease symptoms on host species other than lentil [37]. AB disease symptoms appear as necrotic lesions on leaves, stems, and pods, inhibiting photosynthesis and causing up to 70% seed yield losses [5]. Infected seed or pycniospores left in soil from previous lentil crops act as the main inoculum for onset of disease infection [8,9,69].

2.5. Causal Organism of AB in Grasspea, Symptoms, and Negative Impact

AB in lathyrus, caused by A. lentis var. lathyri, significantly reduces seed yield. The disease symptoms are characterized by necrotic lesions on the stems and leaves [39].

3. Ascochyta Blight Infection and Underlying Host Plant Resistance Mechanism

AB pathogens penetrate the first layer of the plant defense system conferred by host cuticle and epidermal cells using penetration pegs [12,13,14,15,70]. The pathogen spores land on the surface of the host and germinate to form germ tubes that bear appressoria and penetration pegs. The pathogens also secrete carbohydrate active enzymes, including glycoside hydrolases, glycosyl transferases, and carbohydrate esterases, to degrade cellulose, hemicellulose, and chitin and spread infection inside host plant cells [15,16]. Following penetration, the pathogen establishes organic relationships with the host cell, hyphae multiply and spread infection in the host. In retaliation to pathogen attack, the host generates oxidative stress to kill or damage the pathogen hyphae. At least one AB pathogen, A. rabiei, possesses genes to overcome oxidative stress and survive under oxidative stress generated by the host during the pathogen invasion. A transcriptome analysis of A. rabiei under oxidative stress and control indicated involvement of genes viz., ST47_g10291, ST47_g9396, ST47_g10294, ST47_g4395, and ST47_g7191 surviving under the oxidative stress and enhancing pathogenicity [71]. To establish successful infection, AB pathogens have to overcome the host’s PTI- and ETI-mediated defense mechanisms.
In response to AB attack, the host plant recruits two lines of defense (1) PTI, or basal defense mechanism [17,72] and (2) ETI [18]. During PTI, the host plant recognizes microbial elicitors/PAMPs [73] using pattern recognition receptors embedded in the cell membrane, activating the plant defense mechanism [73] (see Figure 1). After perceiving the PAMP signal, the pattern recognition receptors (e.g., receptor-like protein kinases [80,81] and brassinosteroid insensitive 1-associated kinase 1 [82] induce reactive oxygen species that enhance the influx of cytosolic Ca2+ and trigger mitogen-activated protein kinase signal cascades [74]. Subsequently, various host phytohormones (e.g., jasmonate, ethylene, ABA) are induced to activate various downstream target transcription factors (TFs), such as WRKY and ERF, and switch on downstream transcriptionally active genes encoding defense-related proteins (e.g., pathogenesis-related proteins, osmotins providing plant protection against the invading AB pathogens) [75,76,77,78]. During ETI—the second tier of defense mediated by host disease resistance(R) gene(s)—the effector molecules secreted by the AB pathogen are recognized by host plasma membrane-based nucleotide-binding/leucine-rich repeat (NLR) receptors with CC-domain NLRs (CNL) and HeLo-domain RNLs that form Ca2+-permeable channels [18,79] (see Figure 1). The subsequent enhanced influx of cytosolic Ca2+ renders enhanced pattern recognition receptor immunity mediating pathogen and host cell death due to a hypersensitive response [79]. PTI and ETI interconnect through signaling networks and downstream responses [80].
To avert ascochyta blight (AB) pathogen intrusion, host plant employs two types of defenses. First tier basal defense mechanism is pathogen-associated molecular pattern (PAMP) triggered immunity (PTI). Pattern recognition receptors embedded in host cell (cell membrane) sense the PAMP molecules of the pathogen [17] followed by activation of complex circuit of signal transduction involving reactive oxygen species (ROS), mitogen activated protein kinases, Ca+2 [74] and phytohormones viz., abscisic acid, salicylic acid and jasmonate [75,76,77]. The signal molecules activate transcription factor (ERF and WRKY) genes [75,76,77] leading to generation of transcription factors that eventually switch on the downstream gene(s) encoding chitin, osmotin and pathogenesis related proteins that restrict the AB infection [78]. If PTI mechanism of host defense fails to restrict AB pathogen attack, plant deploys second tier of defense system known as effector triggered immunity (ETI) [18]. In this mechanism host plant senses the effector molecules secreted by attacking AB pathogen [39] through intracellular nucleotide-binding/leucine-rich repeat (NLR) receptors and activate host plant resistance (R) genes encoding nucleotide-binding/leucine-rich repeats that ultimately lead to hypersensitive response and host cell death [75,79]. Both PTI and ETI mechanisms are interconnected with signaling networks and downstream responses [80]. ETI in association with Ca+2 signaling boosts host PTI [77,79].

4. Genetics of AB Resistance

Classical genetic studies have revealed the genetics of AB resistance in various grain legumes, evidenced by monogenic inheritance controlled by a single dominant gene [19,20,23,83], single recessive gene [21,22,23,24,84], or digenic inheritance [25,26,27]. There are also reports of quantitative inheritance for AB resistance [27,85].
The inheritance pattern of AB resistance in chickpea I-13 variety is controlled by a single dominant gene based on an analysis of three cross combinations and their reciprocal crosses by assessing them in an Aschochyta infected sick plot [86]. Likewise, a preliminary screening of F1 and F2 populations of crosses between five resistant and 11 susceptible parents, [84] advocated that AB resistance is inherited as a single dominant gene in ILC 72, ILC 183, ILC 200, and ILC 4935 and a single recessive gene in ILC191. The authors also proposed rar1 as a gene symbol for recessive genes and rar2 for dominant genes controlling AB resistance in chickpea. Screening F2 and F3 populations derived from crosses of resistant (ILC 72, ILC 202, ILC 2956, and ILC 3279) and susceptible chickpea parents in epiphytotic condition revealed that resistance against Ascochyta blight causing race 3 is governed by a single dominant gene [19]. An allelic test confirmed that the resistant gene in the four resistant parents is the same [19]. Similarly, Tewari and Pandey [87] reported that genetic inheritance of AB resistance is controlled by a single dominant gene after screening F2, BC1, BC2, and F3 crosses between six resistant and four susceptible parents under field and glasshouse conditions. The allelic test confirmed the presence of three independent genes controlling AB resistance, one dominant gene in P 1215-1 and another in EC 26,446; and PG 82-1; and one recessive gene in BRG 8 [87]. Dey and Singh [25] proposed two dominant complementary genes from the GLG 84,038 and GL 84,099 genotypes and one dominant and one independent recessive gene from the ICC1468 genotype. The identified genes were symbolized as Arc1, Arc2 (GLG 84038), Arc3, Arc4 (GL 84099), and Arc5(3,4) (ICC1468). A generation mean analysis confirmed that additive gene action conferred the resistance by GLG 84,038 and GL 84099, and dominance and dominance × dominance interaction was present in ICC1468 [25]. Danehloueipour et al. [88] scored the disease resistance reaction of 5 × 5 half-diallel chickpea crosses under field conditions to reveal quantitative control (additive and dominance gene action) of AB resistance.
In lentil, studies have shown that genetic control of AB resistance is governed by a single dominant gene [20,21,23,26,83,89,90], single recessive gene [21,22,23,24], two dominant genes [22], two dominant complementary genes [26,91], or two additive recessive genes, and two duplicated recessive genes [23,89].
In faba bean, one study reported that genetic inheritance of AB resistance is controlled by a major dominant gene in ILB752 and minor genes in NEB463 [92]. Earlier, Maurin and Tivoli [93] reported AB resistance in a 29H genotype based on its low disease index scores tested for two consecutive years (1985–1986 and 1986–1987) in the field. Maurin et al. [94] also reported AB resistance in a 29H genotype by recording its hypersensitive reaction in a histopathological test resulting in flecking lesions on the host plant.
An AB resistance study in pea found Rmp1 and Rmp2 genes controlling stem resistance and Rmp3 and Rmp4 genes controlling leaf resistance based on the segregating pattern of crosses between resistant lines (JI 97 and JI 1089) and a susceptible line [13]. Subsequently, Rastogi and Saini [27] reported that AB resistance is governed by two independent dominant genes using segregating population (F1, F2, and F3) data from Kinnauri (resistant) crossed with Bonneville, Lincoln, GC 141, and Selection 18 (susceptible) genotypes. However, Wroth [95] reported quantitative inheritance of AB-disease response in nine pea genotypes using diallel analysis. Other studies have also reported additive and dominant effects for conferring AB resistance in pea [85,96].

5. Legume Crop Diversity and Genetic Resource: Economic and Sustainable Approach for Developing AB Resistance

Among the various approaches for controlling AB infection and minimizing yield losses caused by AB, using genetic resources in cultivated and crop wild relatives (CWRs) remain the most effective, environmentally friendly, resource-saving, and economically profitable approach for developing AB-resistant legumes [13,97,98,99,100]. An abundance of genetic variability for AB resistance has been reported in cultivated chickpea [101,102,103,104,105]. The ILC482 genotype, with slow blighting and partial AB resistance, was released in eight countries [101]. An evaluation of 36 chickpea lines at two locations in Kenya identified ICC7052, ICC4463, ICC4363, ICC2884, and ICC7150 as AB resistant under field conditions [102] (see Table 2). A multi-environment screening identified IC275447, IC117744, EC267301, IC248147, and EC220109 with AB resistance under field conditions [105].
Unlike cultigen, CWRs of legume crops are rich in allelic diversity for resistance to various biotic and abiotic stress tolerances, including AB resistance in legume crops [99,106,114]. Various studies have identified CWR potential donors for AB resistance in chickpea: C. echinospermum [122], C. reticulatum [99], and C. judaicum and C. pinnatifidum [106,129]. A screening of 201 accessions of eight annual wild Cicer species identified C. judaicum and C. pinnatifidum accessions as sources of AB resistance [106]. Another study identified C. echinospermum and C. reticulatum accessions as sources of AB resistance [99]. Newman et al. [114] reported AB resistance in C. echinospermum and C. reticulatum accessions collected from southeastern Turkey.
Lentil has a substantial amount of genetic variability for AB resistance. Several donors of cultivated species confer AB resistance in lentil, including Indian head [89], Laird [21], ILL5588 [20,24,83,130], and ILL5684 [21,22]. Targeting novel sources for AB resistance in lentil, a focused identification of germplasm strategy assisted in identifying 87 landraces, including IC207, as AB resistant after assessing 4567 accessions against A. lentis FT13037 isolate in the field [124]. Likewise, potential of lentil CWRs conferring AB resistance has been reported in lentil [98,131].
Among the various lentil CWRs, Lentis orientalis, Lentis odemensis, Lentis nigricans, and Lentis ervoides accessions are promising sources of AB resistance in lentil [123,126,131]. Accessions W63241 and W63261 (L. orientalis [23,26,83,90], W63192 (L. ervoides; [26,132], W63222 (L. odemensis; [26], and ILWL235 (L. odemensis; [133] have been used to determine the genetics of AB resistance and hence could be used as donor parents for developing AB-resistant lentil cultivars.
Infection caused by A. fabae reduced faba bean yields by 35–90% in winter and early spring grown crops in the Middle East, Europe, Canada, and Australia [55,56]. In 1975 in Cambridgeshire, a field study on AB infection in faba bean identified several tolerant genotypes (IB19, Bulldog, Banner, Buccaneer, IB7CS, IB18, and Maris Beagle) [53]. A thorough screening of 672 faba bean accessions across Syria, England, Canada, Poland, France, and Tunisia over three years (1983–1985) identified BPL 471, 460, 646, 74, and 2485 genotypes as AB resistant across all the tested locations [7]. Likewise, a field assessment of 752 faba bean germplasm identified 34 lines with low severity against AB that could be used to develop AB-resistant faba bean varieties [118]. Multi-environment testing of 484 faba bean accessions across two seasons in the Czech Republic, Estonia, Germany, and Spain revealed L-831818, V-26, and V-958 as the most stable and resistant across all locations [58].
Several sources of AB resistance in pea have also been identified. Kraft et al. [61] examined 2936 pea accessions for AB resistance in the year 1991, 1992, and 1994; 157 accessions were further tested for AB resistance in 1995 at Carlow in Ireland and Gore in New Zealand. Five genotypes (PI 142441, PI 142442, PI 381132, PI 404221, and PI 413691) were identified as AB resistant. Field screening of 500 pea lines tested for AB resistance in Ethiopia in 1998 identified 40 lines with partial resistance [134]. A thorough assessment of 335 pea lines during the years 1994 and 1995 in an AB-inoculated field revealed seven pea genotypes with AB tolerance [135]. Further, these lines were tested for partial resistance against AB during the years 1996–1998, of which, Baccara and Yellowhead had small yield reductions of 10 and 17%, respectively, under AB infection [135]. Based on a detached leaf assay for AB resistance, Zhang et al. [136] recorded substantial genetic variability for AB resistance in 558 pea genotypes tested in the field for two years. Wild relatives of pea are also important sources of resistance to AB. A high degree of resistance against AB was reported in wild Pisum species, P. fulvum, P. sativum ssp. elatius and P. sativum ssp. syriacum [13,100,127] (see Table 2). These CWRs could serve as important donors of AB resistance for development of prebreeding material for transfer of resistance to elite cultivars of pea.

6. Identification of AB-Resistant QTL Using Biparental Mapping and Genome-Wide Association Studies

Advances in molecular marker technologies including development of several types of markers such as random amplified polymorphic DNA (RAPD), sequence-tagged sites (STSs), simple sequence repeats (SSRs), and single nucleotide polymorphisms (SNP), have led to the identification of QTLs/genomic regions governing AB resistance by using a biparental mapping approach in various legumes [128,137,138,139,140,141,142,143].
Using a biparental mapping approach, incorporating cultivated and wild cross Lasseter × C. echinospermum, Collard et al. [144] mapped one QTL contributing to AB resistance on LG4. Likewise, Cobos et al. [140] mapped one QTL on LG2 from a Cicer arietinum (ILC72) × Cicer reticulatum (Cr5-10) cross using RAPD, ISSR, STMS, and isozyme markers. Three QTL (ar1, ar2a, ar2b) were mapped on LG2 and LG4 [145] whereas three AB resistant QTLs, two on LG4 and one on LG8 were identified by genotyping of RIL derived from kabuli × desi cross with SSR markers [146] (see Table 3). Irulea et al. [149] mapped one QTL QTLAR3 on LG2. This QTLAR3 was further fine mapped on Ca2 with physical position 32–33 Mb, containing 42 candidate genes including genes Ein3, Avr9/Cf9 and Argonaute 4 genes participating in disease resistance mechanism [156]. Likewise, EIN4-like sequence (CaETR-1) was uncovered in QTL(AR1) (obtained from WR315 × ILC3279 mapping population) on LGIVa flanked by NCPGR91 and GAA47 SSR marker explaining 33.8%PV [139]. Five major QTLs explaining 14–56% phenotypic variation on LG2, LG3, LG4, LG6, and LG8 were discovered from four segregating mapping populations [151]. Furthermore, three QTLs were reported on LG3 and LG4, explaining 49% PV [153]. An SNP marker in chickpea was used to discover qABR4.1, qABR4.2, and qABR4.3 QTLs and a CaAHL18 candidate gene on Ca4 explaining 42% PV using two recombinant inbred lines developed from interspecific and intraspecific crosses using multiple quantitative trait loci sequencing (mQTL-seq) [142]. The authors further narrowed the qABR4.1 genomic region from 4.476 to 4.675 Mb (~200 kb), flanked by CaNIP18 and CaNIP12 markers on Ca4, corresponding to previously identified AB resistant QTLs QTLAR1 and QTL1 [139,181] and suggesting its conservation across different chickpea genotypes. A next generation sequencing-based bulk segregant analysis (BSA) in two populations, CPR-01 and CPR-02, recovered 11 AB-resistant QTLs from CPR-01 and six AB-resistant QTLs from CPR-02 on Ca1, Ca2, Ca4, Ca6, and Ca7, explaining 13–19% PV [162]. Notably, among these QTLs, QTL CPR01-qAB1.1 showed overlap with the AB-resistant QTL on the same genomic region previously reported by Daba et al. (2016) [158] from a CPR-01 population using a conventional mapping approach.
Deokar et al. [161] uncovered eight QTLs conferring AB resistance by genotyping RIL developed from Amit × ICCV96029 using Illumina® GoldenGate array on LG2, 3, 4, 5, and 6, explaining up to 70% PV. Recently, two Cicer echinospernum QTLs AB_echino_2014 and AB_echino_2015, for AB resistance were reported on LG4 using interspecific mapping populations derived from C. arietinum × Cicer echinospernum [115]. Two AB-resistant QTLs, qab-4.2 on LG4 explaining 10.6% PV and qab-7.1 on LG7 explaining 8.2% PV were detected consistently in the same genomic region of a GPF2 × ILWC292 mapping population screened over two consecutive years [163].
Similar to chickpea, several studies were conducted to identify AB-resistant QTLs in lentil [20,120,170,171,172]. Using RAPD, AFLP, and ISSR markers, Tar’an et al. [171] mapped two AB-resistant QTL on LG4. Similarly, six QTL explaining up to 69% PV were reported on LG1, 2, 4, and 5 [120]. QTL-5 on LG1 and QTL-3 on LG4 obtained by Rubeena et al. [120] overlapped QTL-1 and QTL-5, respectively, reported by Gupta et al. [173]. Another AB-resistant QTL, mapped on LG6, explained 41% PV [172]. Screening a population derived from Indianhead × Northfield using SNP and SSR markers identified four resistant QTLs, AB_IH1, AB_IH1.2, AB_NF1, and AB_IH1.3 QTL on LG2, 3, and 6 [138] (see Table 3). Of these four QTL, AB_NF1 shared a common genomic region and AB-resistant candidate gene with three major QTL on LG6, explaining up to 27% PV, from an interspecific cross of L. culinaris × L odomensis [133]. Subsequent genotyping of an ILWL 180 × ILL6002 population using GBS-derived SNP markers uncovered one major QTL along with three minor QTL for AB resistance on LG5 explaining 9.5–11.5%PV, and one QTL on LG2 explaining 9.6% PV [126]. Notable candidate genes underlying the QTL, including cinnamoyl-CoA reductase 1, phenylalanine-tRNA ligase, and ferredoxin-dependent glutamate synthase were uncovered [126].
Using RAPD, STS, STMS, and CAPS markers, used in a ATC80878 × ATC 80,407 backcross mapping population of faba bean, identified two QTL (QTL1 and QTL2) contributing to AB resistance on LG1 and LG2, explaining 9–12% PV [169]. Screening of an F2-based mapping population in faba bean identified six AB-resistant QTL, with Af3 and Af4 showing resistance against CO99-01 and LO98-01 isolates of AB, while, Af5 exhibiting resistance against isolate CO99-01, and Af6, Af7, and Af8 showing resistance against isolate LO98-01 [165].
Likewise, based on disease severity on stems and leaves, two putative QTL (Af1 and Af2) on LG2 and LG3 were reported in the Vf6 × Vf136 RIL-based mapping population [166]. Atienza et al. [57] confirmed Af2 on chromosome 2, but Af3 on chromosome 3 did not coincide with Af1 reported by other researchers investigating AB-resistant QTL in the 29H × Vf136 mapping population. Gutierrez and Torres [143] identified three Af2 QTL on chromosome 2, two Af3 QTL on chromosome 3, and F_DSP1, F_DSP2 and DSL_Lo98 three QTL on chromosome VI, with Af2 consistently observed in field and growth chamber experiments over three years. There were 748 underlying candidate genes were predicted in the Af2 QTL interval [56] (see Table 3), of which Medtr3g099380 encoding 14-3-3 like protein and Vf_Medtr3g099010 encoding HVA22-like protein were involved in conferring disease resistance [56]. Likewise, QTLs obtained on chromosome VI by Gutierrez and Torres [143] coincided with QTL reported by Ocaña-Moral et al. [56]. The possible candidate genes underlying these QTL were Medtr8g095030 and Medtr4g087620 encoding leucine-rich repeat receptor-like serine/threonine protein kinase [143]. In a study to validate these QTL from 29H × Vf136 mapping, Gutierrez and Torres [143] recorded two Af2 on chromosome 2 and two Af1 QTL on chromosome 3 for disease resistance in stems and leaves in the Vf6 × Vf136 population. These QTL remained in the same regions reported by Díaz-Ruiz et al. [166]. Gutierrez and Torres [143] also reported that an important candidate gene Vf_Medtr3g102180 underlying Af2 QTL encoded inactive receptor kinase mediating plant immunity in response to disease and Medtr1g106005 gene underlying Af1_DSS QTL encoded α-tubulin contributing to stress response signaling.
Several QTLs associated with AB resistance were also identified in pea, however, the number of QTLs was higher than that in other legume crops included in this study. In a study mapping AB-resistant QTL in pea, Timmerman-Vaughan et al. [174] mapped 13 QTL on seven linkage maps for AB resistance from a F2:3 population developed from 3148-A88 × Rovar. Of these QTL, eight were identified under multiple environments. Similarly, phenotypic evaluation of RILs developed from Carnival × MP1401 cross and genotyping with RAPD, AFLP, and STS markers identified three AB-resistant QTL on LGII, IV, and VI, explaining 36% PV [154] (see Table 3). QTL on LGIV shared the same region for AB resistance reported by Timmerman-Vaughan et al. [174]. Further phenotypic screening and genotyping of two mapping populations developed from A26 × Rovar and A88 × Rovar identified 11 and 14 QTL on all LG groups explaining 4.6–37.4% PV [176]. Of the QTL identified from these two populations, six shared a common genomic region for AB resistance. The QTL identified from A26 × Rovar coincided on the same genomic region as QTL Asc2.1, Asc3.1, Asc5.1, and Asc7.1 in the A88 × Rovar population reported by Timmerman-Vaughan et al. [174]. Aiming at mapping QTL for partial AB resistance at seedling and adult plant stage, a total of six QTLs on LGII, Va, VI, and VII were identified on stipules and stems at the seedling stage under controlled conditions explaining upto 20% phenotypic variation from the JI296 × DP, RIL mapping population [137]. From the same study another 10 QTLs on LGII, III, Va, and VII were identified on stipules, stems, or for both organ in adult plants under field conditions explaining 6–42% PV [137]. The QTL on LGIII coincided with the AB-resistant QTL Asc3.1 already reported by Timmerman-Vaughan et al. [176]. Likewise, Fondevilla et al. [175] reported six QTL on LGII, LGIII, LGIV, and LGV, explaining 31–75% PV. Furthermore, three new AB-resistant QTL on LGIII and LGVI were uncovered [178]. Considering various plausible AB-resistant candidate genes, Prioul-Gervais et al. [177] underpinned candidate genes PsDof1 and DRR230-b coinciding with QTL mpIII-1 and mpIII-4 on LGIII reported by Prioul et al. [137]. Moreover, this genomic region on LGIII controlling AB resistance was colocalized with QTL Asc3.1 [174] and QTL MpIII.1 [175] governing AB resistance. Another colocalization of the AB-resistant genomic region occurred on LGVII, where Prioul-Gervais et al. [177] found some important resistance gene analogs (RGA2, RGA3, RGA-G3A, IJB174, and IJB91) coinciding with QTL mpVII-1 [137]. In this context, Jha et al. [182] found significant SNPs within PsDof1 (PsDof1p308) and RGA-G3A (RGA-G3Ap103) candidate genes. Of the four new AB-resistant QTL (MpII.1, MpIII.5, MpV.2, and MpV.3) identified by Carrillo et al. [183], MpIII.5 coincided with QTL mpIII.2 reported by Prioul et al. [137]. Moreover, the authors unveiled candidate gene ArfB3, residing into MpV.1_DRseedl (encoding auxin response factor B3 domain), and CE007J22 (encoding hypersensitive-induced reaction protein 4) coinciding with QTL MpVI.1. Subsequently, Jha et al. [128] mapped nine AB-resistant QTL explaining 7.5–28% PV from a P651 (P. fulvum) and Alfetta (Pisum sativum L.) interspecific RIL-based mapping population. Of these QTL, two abIII-1 and abI-IV-2 were consistent across the tested locations and years and later fine mapped using GBS-derived SNP markers by genotyping heterogeneous inbred family (HIF)-224 and HIF-173 derived from F6 RILs of PR-19-224 and PR-19-173 [141]. Two new QTL, abI-IV-2.1 and abI-IV-2.2, explaining 5.5–14% PV, were discovered within QTL abI-IV-2. Ten of 12 SNPs derived from GBS were mapped within QTL abI-IV-2; three markers (Sc34405_60551, Sc33468_44352, and Sc12023_67096) resided within the nearest markers PsC6805p316 and PsC19558p107 [141]. Numerous AB-resistant QTL have been reported in various legumes; however, few have been cloned to decipher specific candidate gene(s) and their function controlling AB resistance [142]. Thus, future studies should focus on fine mapping/cloning the identified AB-resistant QTL to underpin candidate genes conferring AB resistance in grain legumes.

7. From Marker Assisted Selection to Genomic Selection Developing AB-Resistant Grain Legumes

Practice of marker assisted selection is primarily successful for transferring of major gene(s)/major QTL/large effect QTL [184]. Introduction of quantitative resistance genes/minor genes through MAS is challenging because of high impact of genotype × environment effect on these minor gene(s)/QTLs [185,186]. Abundance of high-throughput molecular markers owing to advances in genomic research and availability of genome sequence assembly in various legumes have allowed embracing genomic selection (GS) [187]. Thus for complex traits, to predict genetic merit of selection candidate/to select potential progeny having high resistance to AB in grain legumes without testing under field condition, genomic selection (GS)/genomic prediction could be a new avenue to develop AB resistant grain legume [188].
The accuracy of GS for predicting AB resistance in pea based on Ascochyta blight disease score (ASC) was recorded for two consecutive years in a training population of 215 lines using SNP markers derived from GBS—the GBLUP analysis produced the best prediction accuracy for ASC (0.56) [186].

8. Genome-Wide Association Mapping for Uncovering AB-Resistant Genomic Regions across the Whole Genome in Grain Legume

Genomewide association study (GWAS) is a powerful genomic approach for uncovering genetic variants across the whole genome in a large panel of global plant population to identify genotype-phenotype association [189]. Substantial efforts have been devoted for investigating AB-resistant genomic determinants in various legumes [114,159,168]. In parallel, high throughput markers developed from whole genome resequencing efforts further facilitated in conducting GWAS for elucidating AB-resistant novel genomics region. Aiming at this, combined efforts of WGRS and GWAS identified an AB-resistant genomic region (QTL AB4.1 on LG4) and narrowed the region that overlapped the AB-resistant genomic regions obtained from Hadas × ICC5810 [146], C 214 × ILC 3279 [155], and Lasseter × ICC3996 [157] RIL populations from 7 Mb, 13 Mb, and 30 Mb to 100 kb [159]. The study also identified 12 candidate genes, including Ca_05515 encoding LRR receptor-like kinase, Ca_05520 encoding wall-associated kinase, Ca_05511 encoding zinc finger protein, Ca_05516 encoding cysteine-rich receptor-like kinase, and Ca_05517, Ca_05521, Ca_05522, and Ca_05523 encoding serine/threonine protein kinases [159]. A GWAS on 149 accessions of C. reticulatum using RAD-seq data underpinned four significant candidate genes—Cr_ 02657.1 encoding WRKY transcription factor on LG1, Cr_09847.1 encoding auxin response factor on LG4, Cr_16402.1 encoding sugar transporter on LG6, and Cr_08467.1 encoding spermatogenesis-associated protein 20 on LG3 [114]. The SNP identified on C. reticulatum on chromosome 4 corresponded to C. arietinum chromosome 4 that colocalized with the AB-resistant QTLAR5 identified by Deokar et al. [161] and Sabbavarapu et al. [155]. In addition, the SNP identified on chromosome 3 corresponded to C. arietinum chromosome 3 that overlapped QTLAR4 reported by Tar’an et al. [150]. Faridi et al. [168] conducted GWAS in 188 inbred faba bean lines using 1829 AFLP and 229 SNP markers and reported 12 significant MTAs (explaining 5.6–21.7% PV) associated with six AB-related traits. One significant SNP (Vf_Mt1g014230_001) on chromosome 3 overlapped a previously reported AB-resistant QTLAf1 [190].

9. Functional Genomics

Several microarrays and DeepsuperSAGE analyses have been undertaken to gain insights into the role of gene(s) contributing to AB resistance in legumes [191,192,193].
A cDNA library constructed from leaf and stem tissue of AB-resistant ATC 80,878 lathyrus genotype infected with AB at 48 and 72 h post-infection revealed 818 AB-responsive ESTs, of which 50 were related to the AB-disease response, and their predicted functions were related to pathogenesis-related proteins, phenylpropanoid pathway, and defense mechanisms against disease [192]. Coram and Pang (2005a) [191] conducted a microarray study in two contrasting chickpea parents—ICC3996 (AB-resistant) and Lasseter (AB susceptible)—to gain insights into the expression of 20 defense-related ESTs, revealing upregulatory action of “leucine zipper protein”, “SNAKIN2 antimicrobial peptide precursor”, and “elicitor-induced receptor protein” genes in ICC3996. Subsequently, Coram and Pang [193] undertook a large-scale gene expression analysis of AB-resistant, susceptible, and moderately resistant chickpea lines and wild species using a microarray study. Of the 756 microarrays, 97 genes were differentially expressed in at least one genotype at one time-point. The genes involved in conferring AB resistance were “pathogenesis-related proteins”, “proline-rich protein”, SNAKIN2 antimicrobial peptide, leucine zipper protein, and Ca-binding protein [193] (see Table 4).
Functional analysis of AB-inoculated and control leaves of grasspea using deepSuperSAGE revealed 14,387 UniTags, of which 738 were differentially expressed between inoculated and control leaves [197]. Defense-related genes revealed upregulatory action controlled by the ethylene pathway [197]. The study also revealed overexpression of cellulose synthase and lignin biosynthesis genes contributing to cell wall metabolism, upregulation of chitinase A (PR-3) restricting fungal hyphal growth, and upregulation of glutathione S-transferase, phytoene synthase involved in ROS detoxification [197]. To understand the genic bases of AB resistance in pea, microarray analysis of AB-inoculated resistant (P665) and susceptible (Messire) accessions revealed differential expression of genes such as phenylpropanoid and phytoalexins metabolism, pathogenesis-related (PR) proteins and those involved in jasmonic acid (JA) and ethylene signal transduction in response to pathogen infection [196]. Subsequent validation of ten differentially expressed genes using qRT-PCR revealed enhanced expression of defense-related genes (glutathione S-transferase, peroxidases, and 6a-hydroxymaackiain methyltransferase) in P665 [196] (see Table 4).
Unprecedented advances in functional genomics fueled by RNA-seq based technologies have elucidated candidate gene(s) with plausible functions related to various biotic stress resistance, including AB resistance in legumes [70,75,76]. RNA-seq analysis of two contrasting lentil genotypes—ILL7537 (resistant) and ILL6002 (susceptible)—in response to AB revealed upregulatory and downregulatory activity of myriad of genes, including pathogen recognition signaling molecules (LRR receptor-like kinase, Calmodulin domain protein kinase-like), pathogenesis-related and anti-fungal compounds (polygalacturonase inhibitor, superoxide dismutase, PR protein 2—O-glycosyl hydrolase), defense-related transcripts (ethylene response factor), and hypersensitive response (gibberellin signaling DELLA protein, gibberellin receptor) at different time scales post-AB infection [70]. Sari et al. [122] also reported differential expression of various genes in contrasting lentil genotypes subjecting AB infection, such as those involved in pathogen recognition, nucleotide-binding site leucine-rich repeat (NBS-LRR) receptors, phytohormone signaling, pathogenesis-related proteins, cell wall enforcement, and cell death. Similarly, García-García et al. [195] also elucidated the inductive role of chitin, salicylic acid, auxin, and JA signaling pathways in response to AB infection in a resistant lentil cultivar at the transcriptomic level using the massive analysis of cDNA ends (MACE) technique in AB-resistant and AB-susceptible lentil genotypes.
With the aim to study role of chickpea NBS-LRR resistance genes in AB resistance, expression of 121 NBS-LRR genes distributed across the whole genome was examined in resistant CDC Corinne and CDC Luna genotypes and one susceptible ICC96029 genotype at different time point subjecting AB infection [75]. Five NBS-LRR genes exhibited genotype-specific expression, with LOC101509145 and LOC101498915 upregulated in CDC Corinne at 48 and 72 h post-infection (hpi) and downregulated or not regulated in ICCV 96,029 and CDC Luna at all time points and LOC101512894, LOC101513745, and LOC101497042 upregulated in ICCV 96,029 and CDC Luna and downregulated or not regulated in CDC Corinne [75]. In addition to RNA-seq, candidate genes situated in AB-resistant QTL regions were also studied for their role in AB resistance. Of the four candidate genes identified as underlying in qABR4.1 (AB-resistant QTL region) in chickpea [142], the transcripts of one gene, CaAHL18 gene (belonging to ‘AT-hook motif containing nuclear localized (AHL)’) were induced at higher levels in AB-resistant chickpea accession at 12 hpi and 72 hpi [142]. To obtain insights into the AB infection and AB-resistance mechanisms in chickpea, transcriptome, small RNA sequencing, and degradome sequencing of two AB-resistant and two AB-susceptible chickpea genotypes under control and stress conditions was performed [76]. Garg et al. [76] undertook transcriptome, small RNA, and degradome sequencing of two AB-resistant and two AB-susceptible chickpea genotypes exposed to AB infection, uncovering 6767 DEGs ranging from pathogenesis-related protein encoding genes, NBS-LRR genes, and cell wall biosynthesis genes. Small RNA sequencing identified 297 differentially expressed miRNAs (e.g., nov_miR3a, nov_miR64, nov_miR171, miR3627b, miR2111l, miR2111-3p) involved in controlling AB-resistance in chickpea [76]. Degradome sequencing identified the target genes of these miRNAs [NBS-LRR (Ca_08122), Dof zinc finger (Ca_19433), and ERF (Ca_00359)] contributing to AB resistance [76]. Functional genomics approaches, such as RNA-seq and MACE, have provided novel insights into AB-pathogenicity factors that enable host intrusion/infection in chickpea [15]. Following AB-pathogen invasion, plants generate reactive oxygen species to damage the pathogen propagules. For successful invasion, AB pathogens must overcome oxidative stress generated by the host [198]. Chickpea blight pathogen possess genes to overcome host-induced oxidative stress-mediated injury following host infection [198]. In a nutshell, functional genomics has offered significant advances in discovering candidate gene(s) for AB resistance in legume crops with their possible function in host defense and a few pathogen genes with a putative role in pathogenicity and in overcoming host defenses [75,76].

10. Proteomics Approach for Uncovering Key Proteins Contributing to AB Resistance

The proteomics approach is one of the powerful ‘omics’ approaches for increasing our understanding of various proteins and post translational modifications of proteins participating in conferring plant immune responses and disease resistance mechanisms [199]. Hence, quantifying the proteins that render AB resistance could be important for identifying AB-resistant lines. To gain better understanding of the host defense against pathogen attack, Castillejo et al. [200] used shotgun proteomics and data-independent acquisition analysis to identify 83 proteins responding to AB infection in P665, a resistant pea genotype. Of these identified proteins, caffeic acid O-methyltransferase (participates in lignin synthesis and thus strengthens cell walls in response to pathogen attack), 14-3-3-like protein (involved in binding pathogen effectors), and TIC110 defense protein play major roles in mediating AB resistance in pea [200].

11. Host Plant Legume Genome Sequences and AB Pathogen Genome Sequence: Exploring Host–Pathogen Co-Evolution and Understanding AB Resistance

Advances in next-generation-based genome sequencing technologies have led to the elucidation of complete genome sequence information for chickpea and pea, enabling the exploration of key genomic regions conferring AB resistance [201,202]. Likewise, genome assemblies of AB-causing pathogens [A. rabiei (ITCC No. 4638) [16] and A. lentis for the Australian isolate Al4 [203] have been constructed to obtain novel insights into pathogen effector encoding gene(s), pathogenicity gene(s), carbohydrate active enzymes, and secondary metabolite synthesis gene(s). Comparative genomic analysis of the genome sequences of AB-causing pathogen could reveal genome synteny or conserved regions among these species. Lee et al. [203] reported the presence of highly conserved synteny of genomic regions along with several chromosomal rearrangements between A. lentis and A. rabiei genomes. The authors also uncovered genome homology between A. lentis and A. rabiei for secondary metabolite gene clusters and effector genes with 40% amino acid similarity in proteins of these genes [203]. More affordable genome sequencing has offered greater opportunities to perform WGRS for elucidating genomic regions conferring disease resistance and other traits across the whole genome in large sets of global germplasm in various legume crops [202,204,205]. Resequencing of 429 global chickpea germplasm [204] and sequencing of 3366 chickpea germplasm [205] uncovered untapped useful allelic variations for various traits of agronomic importance, including various biotic stresses in chickpea. WGRS of 69 chickpea genotypes revealed 12 candidate genes on AB4.1 QTL, encoding NBS-LRR receptor-like kinase, wall-associated kinase, and zinc finger protein [159]. Similarly, pangenome assembly of host plant [205] and AB-causing fungus [206] could lead to identify host plant structural variants (that exist in the accessory genome) contributing towards disease resistance and pathogenesis gene/effector gene(s) of causative fungal pathogen [205,206]. Thus, pangenome of both the legume crops and AB-causing pathogens will provide great insights in the AB-resistance genes in host and as the pathogenesis genes in pathogens for designing AB-resistant grain legumes.

12. Phenomics: High-Throughput Phenotyping Approach for Capturing Plant and AB Disease Interaction Dynamics at the Multidimensional Level

Despite unprecedented advancements in genome sequencing technologies especially next generation sequencing coupled with bioinformatics technologies that facilitate access to gene sequences and gene functions; the information on mechanisms of pathogenicity and host resistance are far from understood. Phenotype information can fill this gap in our understanding of host pathogen interactions and bases of host resistance. Capturing phenotypic information at a large scale still remains a daunting task for crop breeding studies.
The traditional phenotyping approach for quantifying disease reactions of host plants including symptoms and biochemical changes is labor intensive, costly, and time-consuming, thus, limiting precise phenotyping for disease resistance. However, plant phenomics have evolved due to the recent advent of sophisticated sensor-based technologies, advanced imaging technologies, unmanned aerial vehicles (UAV) equipped with advanced sensors, artificial intelligence, and other advanced phenotyping platforms, enabling high-capacity computing to measure plant phenotyping data in multidimensions and at multiscales [207,208,209,210]. These emerging automated platforms have alleviated the ‘micro-phenotyping’ bottleneck and facilitated the capture of host plant and disease reactions at spatial and temporal levels with higher precision [207,210,211]. For example, UAV has been used to monitor disease severity in the field in rice for sheath blight [212], potato for late blight [213], and soybean for powdery mildew [214]. A study phenotyping AB-disease severity in chickpea using an unmanned aircraft system in association with various multispectral cameras captured images of crop canopy area; the vegetation indices revealed significant associations between these images and crop yield and disease severity based on visual ratings [209]. Thus, remote sensing based high-throughput phenotyping can predict AB-disease severity in chickpea and help with the timely application of disease management approaches thereby minimizing yield losses. Likewise, emerging next-generation artificial intelligence, including machine learning, convolutional networks, support vector machines, and deep learning, have been used for field phenomics, including disease detection, and disease symptom characterization [215,216,217,218]. These approaches could facilitate the early detection of various diseases, including AB in grain legumes, for implementing appropriate disease management practices to minimize disease-related losses.

13. Conclusions and Future Prospects

Given global climate change and deployment of resistant host cultivars, plant pathogens including AB pathogens are evolving, leading to new virulences and thus leading to the breakdown of host resistance and increased yield losses in grain legume. To minimize AB-caused yield loss in grain legumes, breeders aim to identify new sources of resistance across various gene pools and transfer those to elite cultivars with the objective of having an economical, sustainable, and environment friendly disease management approach rather than that based on the use of fungicides. Since, resistance to AB is partial and rare in cultigens, CWRs are important sources of AB-resistant gene(s) in breeding programmes. Current advances in genome assembly of various legumes including CWRs and AB pathogens have provided opportunities to identify AB resistance and pathogenicity gene(s) to gain better understanding of host pathogen interactions, isolate resistance genes and develop AB-resistant grain legumes. Likewise, WGRS and pangenome approaches could harness novel structural genomic variants and R gene(s) contributing to AB resistance across the whole-genome/species level in host plants [159] and key information on pathogen effector encoding genomic regions or pathogenicity gene(s) in the AB pathogen. Likewise, rapid advances in functional genomics, especially RNA-seq, has facilitated the discovery of AB-resistant candidate gene(s) and their functions and enriched our understanding of the complex molecular mechanisms of host plant interactions, disease development, and host plant resistance mechanisms. Proteomics offers insight into various host proteins contributing to mediating AB resistance and AB-pathogen toxins responsible for disease development. Phenomics facilitates scoring of diseases at a large scale. To score disease in a large area, quantify AB-disease reaction at multidimensional levels, forecast onset of epidemics and minimize yield losses, high throughput phenotyping approaches including sensor-based technologies and UAVs have revolutionized disease phenotyping including AB under field conditions. The next challenge is integrating the large-scale genomic data obtained through next generation sequencing and phenotypic data obtained through phenomics approaches. Powerful next-generation AI could be used to integrate these ‘big data’ to accelerate the development of climate-resilient crop cultivars [218].
Emerging novel breeding technologies, viz., marker assisted selection, genomic selection, and speed breeding, could be used to select superior recombinants/progenies with high breeding value and AB resistance. Notable instances of these novel techniques have been reported in chickpea [219,220,221] and pea [186] for developing AB-resistant cultivars. However, development of AB resistance employing these novel techniques in other legumes needs more attention. Similarly, CRISPR/Cas9-based genome editing tools that can mutate AB-susceptibility gene(s) in high yielding but AB-sensitive genotypes is another approach to develop AB-resistant grain legume cultivars to ensure global food security.

Author Contributions

Conceptualization, U.C.J. and K.H.M.S.; writing—original draft preparation, U.C.J., H.N., S.K.P. and K.D.S.; Editing the manuscript, K.H.M.S and K.D.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in the article.

Acknowledgments

U.C.J. acknowledge support from ICAR, New Delhi, India. We also thank BioRender for using open access template of cell for drawing Figure 1.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Polak, R.; Phillips, E.M.; Campbell, A. Legumes: Health benefits and culinary approaches to increase intake. Clin. Diabetes 2015, 33, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
  3. Considine, M.J.; Siddique, K.H.; Foyer, C.H. Nature’s pulse power: Legumes, food security and climate change. J. Expt. Bot. 2017, 68, 1815–1818. [Google Scholar] [CrossRef] [PubMed]
  4. Akamatsu, H.O.; Chilvers, M.I.; Kaiser, W.J.; Peever, T.L. Karyotype polymorphism and chromosomal rearrangement in populations of the phytopathogenic fungus, Ascochyta rabiei. Fungal Biol. 2012, 116, 1119–1133. [Google Scholar] [CrossRef]
  5. Gossen, B.D.; Morrall, R. Effect of ascochyta blight on seed yield and quality of lentils. Can. J. Plant Pathol. 1983, 5, 168–173. [Google Scholar] [CrossRef]
  6. Nene, Y.L.; Reddy, M.V. Chickpea diseases and their control. In The Chickpea; Saxena, M.C., Singh, K.B., Eds.; CABI: Oxon, UK, 1987; pp. 233–270. [Google Scholar]
  7. Hanounik, S.B.; Robertson, L.D. Resistance in Vicia faba germ plasm to blight caused by Ascochyta fabae. Plant Dis. 1989, 73, 202–205. [Google Scholar] [CrossRef]
  8. Tivoli, B.; Banniza, S. Comparison of the epidemiology of ascochyta blights on grain legumes. Eur. J. Plant Pathol. 2007, 119, 59–76. [Google Scholar] [CrossRef]
  9. Tivoli, B.; Banniza, S. Comparison of the epidemiology of ascochyta blights on grain legumes. In Ascochyta Blights of Grain Legumes; Tivoli, B., Baranger, A., Muehlbauer, F.J., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 59–76. [Google Scholar]
  10. Shahid, A.A.; Husnain, T.; Riazuddin, S. Ascochyta blight of chickpea: Production of phytotoxins and disease management. Biotechnol. Adv. 2008, 26, 511–515. [Google Scholar] [CrossRef]
  11. Khan, T.N.; Timmerman-Vaughan, G.M.; Rubiales, D.; Warkentin, T.D.; Siddique, K.H.M.; Erskine, W.; Barbetti, M.J. Didymella pinodes and its management in eld pea: Challenges and opportunities. Field Crops Res. 2013, 148, 61–77. [Google Scholar] [CrossRef] [Green Version]
  12. Clulow, S.A.; Lewis, B.G.; Parker, M.L.; Matthews, P. Infection of pea epicotyls by Mycosphaerella pinodes. Mycol. Res. 1991, 95, 817–820. [Google Scholar] [CrossRef]
  13. Clulow, S.A.; Matthews, P.; Lewis, B.G. Genetic-analysis of resistance to Mycosphaerella-pinodes in pea-seedlings. Euphytica 1991, 58, 183–189. [Google Scholar] [CrossRef]
  14. Carrillo, E.; Rubiales, D.; Peŕez-de-Luque, A.; Fondevilla, S. Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur. J. Plant Pathol. 2013, 135, 761–769. [Google Scholar] [CrossRef]
  15. Fondevilla, S.; Krezdorn, N.; Rotter, B.; Kahl, G.; Winter, P. In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends. Front. Microbiol. 2015, 6, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Verma, S.; Gazara, R.K.; Nizam, S.; Parween, S.; Chattopadhyay, D.; Verma, P.K. Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta rabiei provides insight into the necrotrophic effector repertoire. Sci. Rep. 2016, 6, 24638. [Google Scholar] [CrossRef] [PubMed]
  17. Zipfel, C.; Robatzek, S. Pathogen-associated molecular pattern triggered immunity: Veni, vidi...? Plant Physiol. 2010, 154, 551–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef]
  19. Singh, K.B.; Reddy, M.V. Genetics of Resistance to Ascochyta Blight in Four Chickpea Lines. Crop Sci. 1989, 29, 657–659. [Google Scholar] [CrossRef]
  20. Ford, R.; Pang, E.C.K.; Taylor, P.W.J. Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor. Appl. Genet. 1999, 98, 93–98. [Google Scholar] [CrossRef]
  21. Tay, J.; Slinkard, A.E. Transgressive segregation for Ascochyta resistance in lentil. Can. J. Plant Sci. 1989, 69, 547. [Google Scholar]
  22. Tay, J. Inheritance of Resistance to Ascochyta Blight of Lentil. MSc Thesis, Dept of Crop Science and Plant Ecology, Univ. of Saskatchewan, Saskatoon, SK, Canada, 1989. [Google Scholar]
  23. Ye, G.; McNeil, D.L.; Hill, G.D. Inheritance of resistance to Ascochyta blight in lentil. N. Z. Plant Prot. 2001, 54, 198–201. [Google Scholar] [CrossRef] [Green Version]
  24. Sakr, B. Inheritance and Linkzage of Morphological Markers and Resistance to Ascochyta Blight in Lentil. Ph.D. Thesis, Washington State Univ., Pullman, WA, USA, 1994. [Google Scholar]
  25. Dey, S.K.; Singh, G. Resistance to Ascochyta blight in chickpea-Genetic basis. Euphytica 1993, 68, 147–153. [Google Scholar] [CrossRef]
  26. Ahmad, M.; Fautrier, A.G.; McNeil, D.L. Identification and genetic characterization of different resistance sources to Ascochyta blight within the genus Lens. Euphytica 1996, 97, 311–315. [Google Scholar] [CrossRef]
  27. Rastogi, K.B.; Saini, S.S. Inheritance of seed shape and resistance to Ascochyta blight in pea (Pisum sativum L.). J. Agric. Sci. 1984, 103, 523–525. [Google Scholar] [CrossRef]
  28. Murray, G.; Brennan, J. The Current and Potential Costs from Diseases of Pulse Crops in Australia; GRDC Research Code: CER00002; Grains Research and Development Corporation: Barton, Australia, 2012. [Google Scholar]
  29. Udupa, S.M.; Weigand, F.; Saxena, M.C.; Kahl, G. Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the Ascochyta blight pathogen of chickpea. Theor. Appl. Genet. 1998, 97, 299–307. [Google Scholar] [CrossRef]
  30. Jamil, F.F.; Sarvar, N.; Sarvar, M.; Khan, J.A.; Geistlinger, J.; Kahl, G. Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol. Mol. Plant Pathol. 2000, 57, 243–254. [Google Scholar] [CrossRef]
  31. Bencheqroun, S.K.; Ahmed, S.; Imtiaz, M.; Hamwieh, A.; Udupa, S.M.; Sahri, A.; Aouzal, S.; Kehel, Z. Pathogen diversity and mating types of Didymella rabiei isolates collected from Morocco. Curr. Plant Biol. 2022, 29, 100231. [Google Scholar] [CrossRef]
  32. Imtiaz, M.; Abang, M.M.; Malhotra, R.S.; Ahmed, S.; Bayaa, B.; Udupa, S.M.; Baum, M. Pathotype IV, a new and highly virulent pathotype of Didymella rabiei, causing Ascochyta blight in chickpea in Syria. Plant Dis. 2011, 95, 1192. [Google Scholar] [CrossRef]
  33. Vir, S.; Grewal, J.S. Physiological specialization in Ascochyta rabiei, the causal organism of gram blight. Indian Phytopathol. 1974, 27, 265–266. [Google Scholar]
  34. Pande, S.; Siddique, K.H.M.; Kishore, G.K.; Bayaa, B.; Gaur, P.M.; Gowda, C.L.L.; Bretag, T.W.; Crouch, J.H. Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology, pathogenicity, and disease management. Austr. J. Agric. Res. 2005, 56, 317–332. [Google Scholar] [CrossRef]
  35. Rashid, K.; Bernier, C.C.; Conner, R.L. Evaluation of fava bean for resistance to Ascochyta fabae and development of host differentials for race identification. Plant Dis. 1991, 75, 852–855. [Google Scholar] [CrossRef]
  36. Sprague, R. Host range and life history studies of some leguminous Ascochytae. Phytopathol. 1929, 19, 917–932. [Google Scholar]
  37. Kaiser, W.J.; Wang, B.C.; Rogers, J.D. Ascochyta fabae and A. lentis: Host specificity, teleomorphs (Didymella), hybrid analysis, and taxonomic status. Plant Dis. 1997, 81, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Ahmed, S.; Morrall, R.A.A.; Sheard, J.W. Distribution of mating types of Ascochyta fabae f. sp. lentis. Can. J. Plant Pathol. 1996, 18, 347–353. [Google Scholar] [CrossRef]
  39. Masi, M.; Nocera, P.; Boari, A.; Cimmino, A.; Zonno, M.C.; Infantino, A.; Vurro, M.; Evidente, A. Lathyroxins A and B, phytotoxic monosubstituted phenols isolated from Ascochyta lentis var. lathyri, a fungal pathogen of grass pea (Lathyrus sativus). J. Nat. Prod. 2018, 81, 1093–1097. [Google Scholar] [CrossRef]
  40. Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W. Highlights of the didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010, 65, 1–60. [Google Scholar] [CrossRef]
  41. Barilli, E.; Cobos, M.J.; Rubiales, D. Clarification on host range of Didymella pinodes the causal agent of pea Ascochyta blight. Front. Plant Sci. 2016, 7, 592. [Google Scholar] [CrossRef]
  42. Davidson, J.A.; Hartley, D.; Priest, M.; Krysinska-Kaczmarek, M.; McKay, H.A.; Scott, E.S. A new species of Phoma causes Ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 2009, 101, 120–128. [Google Scholar] [CrossRef]
  43. Li, Y.P.; You, M.P.; Khan, T.N.; Finnegan, P.M.; Barbetti, M.J. First report of Phoma herbarum on dry peas (Pisum sativum) in Australia. Plant Dis. 2011, 95, 1590. [Google Scholar] [CrossRef]
  44. Tran, H.S.; You, M.P.; Lanoiselet, V.; Khan, T.N.; Barbetti, M.J. First report of Phoma glomerata associated with the Ascochyta blight complex on field pea (Pisum sativum) in Australia. Plant Dis. 2014, 98, 427. [Google Scholar] [CrossRef]
  45. Bretag, T.W.; Keane, P.J.; Price, T.V. The epidemiology and control of ascochyta blight in field peas: A review. Aust. J. Agr. Res. 2006, 57, 883–902. [Google Scholar] [CrossRef]
  46. Salam, M.U.; Galloway, J.; MacLeod, W.J.; Davidson, J.A.; Seymour, M.; Pritchard, I.; Salam, K.P.; Diggle, A.J.; Maling, T. G1 Blackspot Manager model predicts the maturity and release of ascospores in relation to Ascochyta blight on field pea. Austr. Plant Pathol. 2011, 40, 621–631. [Google Scholar] [CrossRef]
  47. Bretag, T.W.; Ramsey, M.D. Foliar Diseases Caused by Fungi: Ascochyta spp. In Compendium of Pea Diseases and Pests; Kraft, J.M., Pfleger, F.L., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2001; pp. 24–28. [Google Scholar]
  48. Tran, H.S.; You, M.P.; Khan, T.N.; Barbetti, M.J. Relative host resistance to black spot disease in field pea (Pisum sativum) is determined by individual pathogens. Plant Dis. 2015, 99, 580–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Trapero-Casas, A.; Navas-Cortes, J.A.; Jimenez-Diaz, R.M. Airborne ascospores of Didymella rabiei as a major primary inoculum for Ascochyta blight epidemics in chickpea crops in southern Spain. Eur. J. Plant Pathol. 1996, 102, 237–245. [Google Scholar] [CrossRef]
  50. Armstrong, C.L.; Chongo, G.; Gossen, B.D.; Duczek, L.J. Mating type distribution and incidence of the teleomorph of Ascochyta rabiei (Didymella rabiei) in Canada. Canad. J. Plant Pathol. 2001, 23, 110–113. [Google Scholar] [CrossRef]
  51. Ahmad, S.; Khan, M.A.; Sahi, S.T.; Ahmad, R. Identification of resistant sources in chickpea against chickpea blight disease. Arch. Phytopathol. Plant Prot. 2014, 47, 1885–1892. [Google Scholar] [CrossRef]
  52. Bahr, L.; Castelli, M.V.; Barolo, M.I.; Mostacero, N.R.; Tosello, M.E.; López, S.N. Ascochyta blight: Isolation, characterization, and development of a rapid method to detect inhibitors of the chickpea fungal pathogen Ascochyta rabiei. Fungal Biol. 2016, 120, 424–432. [Google Scholar] [CrossRef]
  53. Bond, D.A.; Pope, M. Ascochyta fabae on winter beans (Vicia faba): Pathogen spread and variation in host resistance. Plant Pathol. 1980, 29, 59–65. [Google Scholar] [CrossRef]
  54. Omeri, B.N.; Le May, C.; Mlayeh, O.; Kharrat, M. First report of Didymella fabae, teleomorph of Ascochyta fabae, on faba bean crop debris in Tunisia. Phytopathol. Mediterr. 2012, 51, 369–373. [Google Scholar]
  55. Tivoli, B.; Baranger, A.; Avila, C.M.; Banniza, S.; Barbetti, M.; Chen, W.; Davidson, J.; Lindeck, K.; Kharrat, M.; Rubiales, D.; et al. Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 2006, 147, 223–253. [Google Scholar] [CrossRef]
  56. Ocaña-Moral, S.; Gutiérrez, N.; Torres, A.M.; Madrid, E. Saturation mapping of regions determining resistance to Ascochyta blight and broomrape in faba bean using transcriptome-based SNP genotyping. Theor. Appl. Genet. 2017, 130, 2271–2282. [Google Scholar] [CrossRef]
  57. Atienza, S.G.; Palomino, C.; Gutiérrez, N.; Alfaro, C.M.; Rubiales, D.; Torres, A.M.; Ávila, C.M. QTLs for ascochyta blight resistance in faba bean (Vicia faba L.): Validation in field and controlled conditions. Crop Pasture Sci. 2016, 67, 216–224. [Google Scholar] [CrossRef]
  58. Rubiales, D.; Avila, C.M.; Sillero, J.C.; Hybl, M.; Narits, L.; Sass, O.; Flores, F. Identification and multi-environment validation of resistance to Ascochyta fabae in faba bean (Vicia faba). Field Crops Res. 2012, 126, 165–170. [Google Scholar] [CrossRef] [Green Version]
  59. Šišić, A.; Oberhänsli, T.; Baćanović-Šišić, J.; Hohmann, P.; Finckh, M.R. A Novel Real Time PCR Method for the Detection and Quantification of Didymella pinodella in Symptomatic and Asymptomatic Plant Hosts. J. Fungi 2022, 8, 41. [Google Scholar] [CrossRef] [PubMed]
  60. Owati, A.; Agindotan, B.; Burrows, M. Characterization of Fungal Species Associated with Ascochyta Blight of Dry Pea in Montana and North America and Development of a Differential Medium for Their Detection. Plant Health Prog. 2020, 21, 262–271. [Google Scholar] [CrossRef]
  61. Kraft, J.M.; Dunne, B.; Goulden, D.; Armstrong, S. A search for resistance in peas to Mycosphaerella pinodes. Plant Dis. 1998, 82, 251–253. [Google Scholar] [CrossRef] [Green Version]
  62. Tivoli, B.; Beasse, C.; Lemarchand, E.; Masson, E. Effect of Ascochyta blight (Mycosphaerella pinodes) on yield components of single pea (Pisum sativum) plants under field conditions. Ann. Appl. Biol. 1996, 129, 207–216. [Google Scholar] [CrossRef]
  63. Xue, A.G.; Warkentin, T.D.; Kenaschuk, E.O. Mycosphaerella blight of field pea-potential damage and fungicide control. In Proceedings of the 3rd Manitoba Agri-Forum, Winnipeg, MB, Canada, 18 February 1996; pp. 5–6. [Google Scholar]
  64. Liu, N.; Xu, S.; Yao, X.; Zhang, G.; Mao, W.; Hu, Q.; Feng, Z.; Gong, Y. Studies on the Control of Ascochyta Blight in Field Peas (Pisum sativum L.) Caused by Ascochyta pinodes in Zhejiang Province, China. Front. Microbiol. 2016, 7, 481. [Google Scholar] [CrossRef] [Green Version]
  65. Beasse, C.; Ney, B.; Tivoli, B. Effects of pod infection by Mycosphaerella pinodes on yield components of pea. Ann. Appl. Biol. 1999, 135, 359–367. [Google Scholar] [CrossRef]
  66. Skoglund, L.G.; Harveson, R.M.; Chen, W.; Dugan, F.; Schwartz, H.F.; Markell, S.G.; Porter, L.; Burrows, M.L.; Goswami, R. Ascochyta blight of peas. Plant Health Prog. 2011, 12, 1. [Google Scholar] [CrossRef] [Green Version]
  67. Erskine, W.; Tufail, M.; Russell, A.; Tyagi, M.C.; Rahman, M.M.; Saxena, M.C. Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 1994, 73, 127–135. [Google Scholar] [CrossRef]
  68. Ye, G.; McNeil, D.L.; Hill, G.D. Breeding for resistance to lentil Ascochyta blight. Plant Breed. 2002, 121, 185–191. [Google Scholar] [CrossRef] [Green Version]
  69. Gossen, B.D.; Sheppard, J.W.; Beauchamp, C.J.; Morrall, R.A.A. Ascochyta lentis renamed Ascochyta fabae f. sp. lentis. Can. J. Plant Pathol. 1986, 8, 154–160. [Google Scholar] [CrossRef]
  70. Khorramdelazad, M.; Bar, I.; Whatmore, P.; Smetham, G.; Bhaaskaria, V.; Yang, Y.; Bai, S.H.; Mantri, N.; Zhou, Y.; Ford, R.; et al. Transcriptome proling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genom. 2018, 19, 108. [Google Scholar] [CrossRef]
  71. Maurya, R.; Singh, Y.; Sinha, M.; Singh, K.; Mishra, P.; Singh, S.K.; Verma, S.; Prabha, K.; Kumar, K.; Verma, P.K. Transcript profiling reveals potential regulators for oxidative stress response of a necrotrophic chickpea pathogen Ascochyta rabiei. 3 Biotech. 2020, 10, 1–4. [Google Scholar] [CrossRef] [PubMed]
  72. Zhang, J.; Zhou, J.M. Plant immunity triggered by microbial molecular signatures. Mol. Plant. 2010, 3, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Boller, T.; He, S.Y. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009, 324, 742–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Nakagami, H.; Pitzschke, A.; Hirt, H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 2005, 10, 339–346. [Google Scholar] [CrossRef]
  75. Sagi, M.S.; Deokar, A.A.; Tar’an, B. Genetic Analysis of NBS-LRR Gene Family in Chickpea and Their Expression Profiles in Response to Ascochyta Blight Infection. Front. Plant Sci. 2017, 8, 838. [Google Scholar] [CrossRef] [Green Version]
  76. Garg, V.; Khan, A.W.; Kudapa, H.; Kale, S.M.; Chitikineni, A.; Qiwei, S.; Sharma, M.; Li, C.; Zhang, B.; Xin, L.; et al. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol. J. 2019, 17, 914–931. [Google Scholar] [CrossRef] [Green Version]
  77. Yuan, M.H.; Ngou, B.P.M.; Ding, P.T.; Xiu-Fan, X. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
  78. Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 2018, 212, 29–37. [Google Scholar] [CrossRef]
  79. Parker, J.E.; Hessler, G.; Cui, H. A new biochemistry connecting pathogen detection to induced defense in plants. New Phytol. 2022; early view. [Google Scholar]
  80. Naveed, Z.A.; Wei, X.; Chen, J.; Mubeen, H.; Ali, G.S. The PTI to ETI Continuum in Phytophthora-Plant Interactions. Front. Plant Sci. 2020, 11, 593905. [Google Scholar] [CrossRef] [PubMed]
  81. Wan, J.; Zhang, X.C.; Neece, D.; Ramonell, K.M.; Clough, S.; Kim, S.; Stacey, M.G.; Stacey, G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 2008, 20, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  82. Chinchilla, D.; Zipfel, C.; Robatzek, S.; Kemmerling, B.; Nürnberger, T.; Jones, J.D.G.; Felix, G.; Boller, T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 2007, 448, 497–500. [Google Scholar] [CrossRef] [PubMed]
  83. Ye, G.; McNeil, D.L.; Hill, G.D. Genetic variation for minor gene conditioning Ascochyta blight resistance in lentils. In Proceedings of the 4th European Conference on Grain Legumes, Cracow, Poland, 8–12 July 2001; pp. 240–241. [Google Scholar]
  84. Singh, K.B.; Reddy, M.V. Inheritance of resistance to Ascochyta blight in chickpea. Crop Sci. 1983, 23, 9–10. [Google Scholar] [CrossRef]
  85. Fondevilla, S.; Cubero, J.I.; Rubiales, D. Inheritance of resistance to Ascochyta pinodes in two wild accessions of Pisum. Eur. J. Plant Pathol. 2007, 119, 53–58. [Google Scholar] [CrossRef]
  86. Vir, S.; Grewal, J.S.; Gupta, V.P. Inheritance of resistance to Ascochyta blight in chickpea. Euphytica 1975, 24, 209–211. [Google Scholar] [CrossRef]
  87. Tewari, S.K.; Pandey, M.P. Genetics of resistance to ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 1986, 35, 211–215. [Google Scholar] [CrossRef]
  88. Danehloueipour, N.; Yan, G.; Clarke, H.; Siddique, K. Diallel analyses reveal the genetic control of resistance to Ascochyta blight in diverse chickpea and wild Cicer species. Euphytica 2007, 154, 195–205. [Google Scholar] [CrossRef]
  89. Andrahennadi, C.P. Genetics and Linkage of Isozyme Markers and Resistance to Seedborne Ascochyta Infection in Lentil. MSc Thesis, Univ. of Saskatchewan, Saskatoon, SK, Canada, 1994. [Google Scholar]
  90. Parh, D.K. Interspecific Mapping of the Ascochyta Gene (s) of Lentil (Lens Culinaris Medikus) Using RAPD Technology. MSc Thesis, Lincoln University, Canterbury, New Zealand, 1998. [Google Scholar]
  91. Nguyen, T.T.; Taylor, P.W.J.; Brouwer, J.B.; Pang, E.C.K.; Ford, R. A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight caused by Ascochyta lentis. Australas. Plant Pathol. 2001, 30, 211–215. [Google Scholar] [CrossRef]
  92. Kohpina, S.; Knight, R.; Stoddard, F.L. Genetics of resistance to ascochyta blight in two populations of faba bean. Euphytica 2000, 112, 101–107. [Google Scholar] [CrossRef]
  93. Maurin, N.; Tivoli, B. Variation in the resistance of Vicia faba to Ascochyta fabae in relation to disease development in field trials. Plant Pathol. 1992, 41, 737–744. [Google Scholar] [CrossRef]
  94. Maurin, N.; Gourret, J.P.; Tivoli, B. Histopathology of the interaction between Ascochyta fabae and Vicia faba: Comparison of susceptible and resistant reactions. Agronomie 1993, 13, 921–927. [Google Scholar] [CrossRef]
  95. Wroth, J.M. Evidence suggests that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait. Euphytica 1999, 107, 193–204. [Google Scholar] [CrossRef]
  96. Zhang, R.; Hwang, S.F.; Gossen, B.D.; Chang, K.F.; Turnbull, D.G. A quantitative analysis of resistance to Mycosphaerella blight in field pea. Crop Sci. 2007, 47, 162–167. [Google Scholar] [CrossRef]
  97. Siddique, K.H.M.; Erskine, W.; Hobson, K.; Knights, E.J.; Leonforte, A.; Khan, T.N.; Paull, J.G.; Redden, R.; Materne, M. Cool-season grain legume improvement in Australia—Use of genetic resources. Crop Pasture Sci. 2013, 64, 347–360. [Google Scholar] [CrossRef]
  98. Bayaa, B.; Erskine, W. Response of wild lentil to Ascochyta fabae f. sp. lentis from Syria. Genet. Crop Evol. 1994, 41, 61–65. [Google Scholar] [CrossRef]
  99. Collard, B.C.-Y.; Ades, P.; Pang, E.; Brouwer, J.; Taylor, P. Prospecting for sources of resistance to Ascochyta blight in wild Cicer species. Australas. Plant Pathol. 2001, 30, 271–276. [Google Scholar] [CrossRef]
  100. Fondevilla, S.; Avila, C.M.; Cubero, J.I.; Rubiales, D. Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed. 2005, 124, 313–315. [Google Scholar] [CrossRef]
  101. Singh, K.B. Experiences, difficulties and prospects of disease resistance breeding in chickpea. In Durability of Disease Resistance; Jacobs, T.H., Parlevliet, J.E., Eds.; Kluwer Academic Publ.: Dordrecht, The Netherlands, 1993; pp. 241–248. [Google Scholar]
  102. Kimurto, P.K.; Towett, B.K.; Mulwa, R.S.; Njogu, N.; Jeptanui, L.J.; Rao, G.N.V.P.R.; Silim, S.; Kaloki, P.; Korir, P.; Macharia, J.K. Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathol. Mediterr. 2013, 52, 212–221. [Google Scholar]
  103. Pande, S.; Sharma, M.; Gaur, P.M.; Basandrai, A.K.; Kaur, L.; Hooda, K.S.; Basandrai, D.; Kiran Babu, T.; Jain, S.K.; Rathore, A. Biplot analysis of genotype × environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Australas. Plant Pathol. 2013, 42, 561–571. [Google Scholar] [CrossRef]
  104. Benzohra, I.E.; Bendahmane, B.S.; Benkada, M.Y.; Labdi, M. Screening of 15 chickpea germplasm accessions for resistance to Ascochyta rabiei in North West of Algeria. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 109–114. [Google Scholar]
  105. Gayacharan; Rani, U.; Singh, S.; Basandrai, A.K.; Rathee, V.K.; Tripathi, K.; Singh, N.; Dixit, G.P.; Rana, J.C.; Pandey, S.; et al. Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea. PLoS ONE 2020, 15, e0240589. [Google Scholar] [CrossRef]
  106. Singh, K.; Reddy, M. Sources of resistance to Ascochyta blight in wild Cicer species. Neth. J. Plant Pathol. 1993, 99, 163–167. [Google Scholar] [CrossRef] [Green Version]
  107. Dubey, S.C.; Singh, B. Evaluation of chickpea genotypes against Ascochyta blight. Indian Phytopath. 2003, 56, 505. [Google Scholar]
  108. Chen, W.; Coyne, T.C.J.; Peever, T.L.; Muehlbauer, F.J. Characterization of chickpea differentials for pathogenicity assay of Ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol. 2004, 53, 759–769. [Google Scholar] [CrossRef]
  109. Rubio, J.; Moreno, M.T.; Moral, A.; Rubiales, D.; Gil, J. Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and Ascochyta blight resistance. Crop Sci. 2006, 46, 2331–2332. [Google Scholar] [CrossRef] [Green Version]
  110. Chandirasekaran, R.; Warkentin, T.D.; Gan, Y.; Shirtliffe, S.; Gossen, B.D.; Taran, B.; Banniza, S. Improved sources of resistance to ascochyta blight in chickpea. Can. J. Plant Sci. 2009, 89, 107–118. [Google Scholar] [CrossRef]
  111. Kaur, l.; Sandhu, J.S.; Malhotra, R.S.; Imtiaz, M.; Sirari, A. Sources of stable resistance to Ascochyta blight in exotic kabuli chickpea. J. Food Legumes 2012, 25, 79–80. [Google Scholar]
  112. Duzdemir, O.; Selvi, B.; Yanar, Y.; Yildirimi, A. Sources of resistance in chickpea (Cicer arietinum L.) land races against Ascochyta rabiei causal agent of ascochyta blight disease. Pak. J. Bot. 2014, 46, 1479–1483. [Google Scholar]
  113. Benzohra, I.E.; Bendahmane, B.S.; Labdi, M.; Benkada, M.Y. Sources of Resistance in Chickpea Germplasm to Three Pathotypes of Ascochyta rabiei (Pass.) Labr. in Algeria. World Appl. Sci. J. 2013, 21, 873–878. [Google Scholar]
  114. Newman, T.E.; Jacques, S.; Grime, C.; Kamphuis, F.L.; Lee, R.C.; Berger, J.; Kamphuis, L.G. Identification of novel sources of resistance to ascochyta blight in a collection of wild Cicer accessions. Phytopathol. 2021, 111, 369–379. [Google Scholar] [CrossRef]
  115. Sudheesh, S.; Kahrood, H.V.; Braich, S.; Dron, N.; Hobson, K.; Cogan, N.O.; Kaur, S. Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea. Agron. 2021, 11, 1937. [Google Scholar] [CrossRef]
  116. Ondrej, M. Response of resistant lines of horse bean to pathogenic fungus Ascochyta fabae Speg. Plant Genet. Resour. Annu. Rep. 1993, 2, 45–48. [Google Scholar]
  117. Ramsey, M.; Knight, R.; Paull, J. Asochyta and Chocolate Spot resistant faba beans (Vicia faba L.) for Australia. In Proceedings of the 2nd European Conference on Grain Legumes, Copenhagen, Denmark, 9–13 July 1995; pp. 164–165. [Google Scholar]
  118. Sillero, J.C.; Avila, C.M.; Moreno, M.T.; Rubiales, D. Identification of resistance to Ascochyta fabae in Vicia faba germplasm. Plant Breed. 2001, 120, 529–531. [Google Scholar] [CrossRef]
  119. Gurung, A.M.; Pang, E.C.K.; Taylor, P.W.J. Examination of Pisum and Lathyrus species as sources of ascochyta blight resistance for field pea (Pisum sativum). Austr. Plant Pathol. 2002, 31, 41–45. [Google Scholar] [CrossRef]
  120. Rubeena, A.; Taylor, P.W.J.; Ades, P.K.; Ford, R. QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight (Ascochyta lentis). Plant Breed. 2006, 125, 506–512. [Google Scholar]
  121. Tullu, A.; Banniza, S.; Tar’an, B.; Warkentin, T.; Vandenberg, A. Sources of resistance to ascochyta blight in wild species of lentil (Lens culinaris Medik.). Genet. Resour. Crop Evol. 2010, 57, 1053–1063. [Google Scholar] [CrossRef]
  122. Sari, E.; Bhadauria, V.; Vandenberg, A.; Banniza, S. Genotype-Dependent Interaction of Lentil Lines with Ascochyta lentis. Front. Plant Sci. 2017, 8, 764. [Google Scholar] [CrossRef] [Green Version]
  123. Dadu, R.H.R.; Ford, R.; Sambasivam, P.; Gupta, D. Evidence of early defence to Ascochyta lentis within the recently identified Lens orientalis resistance source ILWL180. Plant Pathol. 2018, 67, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
  124. Dadu, R.H.R.; Ford, R.; Sambasivam, P.; Street, K.; Gupta, D. Identification of novel Ascochyta lentis resistance in a global lentil collection using a focused identification of germplasm strategy (FIGS). Australas. Plant Pathol. 2018, 48, 103–113. [Google Scholar] [CrossRef]
  125. Clulow, S.A.; Lewis, B.G.; Matthews, P. Expression of resistance to Mycosphaerella pinodes in Pisum sativum. Plant Pathol. 1992, 41, 362–369. [Google Scholar] [CrossRef]
  126. Dadu, R.R.; Bar, I.; Ford, R.; Sambasivam, P.; Croser, J.; Ribalta, F.; Kaur, S.; Sudheesh, S.; Gupta, D. Lens orientalis Contributes Quantitative Trait Loci and Candidate Genes Associated with Ascochyta Blight Resistance in Lentil. Front. Plant Sci. 2021, 12, 703283. [Google Scholar] [CrossRef]
  127. Jha, A.B.; Warkentin, T.D.; Gurusamy, V.; Tar’an, B.; Banniza, S. Identification of Ascochyta blight resistance in wild Pisum species for use in pea breeding. Crop Sci. 2012, 52, 2462–2468. [Google Scholar] [CrossRef]
  128. Jha, A.B.; Tar’an, B.; Stonehouse, R.; Warkentin, T.D. Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop Sci. 2016, 56, 2926–2939. [Google Scholar] [CrossRef] [Green Version]
  129. Kaur, L.; Sirari, A.; Kumar, D.; Sandhu, J.S.; Singh, S.; Kapoor, K.; Singh, I.; Gowda, C.L.; Pande, S.; Gaur, P.M.; et al. Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol. Mediterr. 2013, 52, 157–165. [Google Scholar]
  130. Vakulabharanam, V.R.; Slinkard, A.E.; Vandenberg, A. Inheritance of resistance to Ascochyta blight in lentil and linkage between isozyme. In Proceedings of the Food Legume Res. Conf. III, Adelaide, Australia, 22–26 September 1997; p. 162. [Google Scholar]
  131. Erskine, W.; Bayaa, B. Screening for resistance to ascochyta blight. ICARDA Annu. Rep. 1991, 98–102. [Google Scholar]
  132. Ye, G.; McNeil, D.L.; Hill, G.D. Inheritance of foliar resis- tance to ascochyta blight in lentil (Lens culinaris). N. Z. J. Crop Hort. Sci. 2003, 31, 77–83. [Google Scholar] [CrossRef] [Green Version]
  133. Polanco, C.; Sáenz de Miera, L.E.; González, A.I.; García, P.; Fratini, R.; Vaquero, F.; Vences, F.J.; de la Vega, M.P. Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. PLoS ONE 2019, 14, e0214409. [Google Scholar] [CrossRef] [Green Version]
  134. Francis, C.; Khan, T.; Priliouk, L.; Gorfu, D.; Beijiga, G. Screening of peas of Vavilov Institute and ICARDA for black spot resistance,” in New Approaches and Techniques in Breeding Sustainable Fodder Crops and Amenity Grasses. In Proceedings of the 22nd EUCARPIA Fodder Crops and Amenity Grasses Section Meeting, St. Petersburg, Russia, 17–21 October 2000; Provorov, N.A., Ed.; N.I. Vavilov All-Russian Institute of Plant Industry: Saint Petersburg, Russia; pp. 242–244. [Google Scholar]
  135. Xue, A.G.; Warkentin, T.D. Partial resistance to Mycosphaerella pinodes in field pea. Can. J. Plant Sci. 2001, 81, 535–540. [Google Scholar] [CrossRef]
  136. Zhang, R.; Hwang, S.F.; Chang, K.F.; Gossen, B.D.; Strelkov, S.E.; Turnbull, G.D.; Blade, S.F. Genetic resistance to Ascochyta pinodes in 558 field pea accessions. Crop Sci. 2006, 46, 2409–2414. [Google Scholar] [CrossRef]
  137. Prioul, S.; Frankewitz, A.; Deniot, G.; Morin, G.; Baranger, A. Mapping of quantitative trait loci for partial resistance to Ascochyta pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor. Appl. Genet. 2004, 108, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
  138. Sudheesh, S.; Rodda, M.S.; Davidson, J.; Javid, M.; Stephens, A.; Slater, A.T.; Cogan, N.O.I.; Forster, J.W.; Kaur, S. SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front. Plant Sci. 2016, 7, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  139. Madrid, E.; Rajesh, P.N.; Rubio, J.; Gil, J.; Millán, T.; Chen, W. Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTLAR1 implicated in ascochyta blight resistance in chickpea. Plant Cell Rep. 2012, 31, 1033–1042. [Google Scholar] [CrossRef]
  140. Cobos, M.; Rubio, J.; Strange, R.; Moreno, M.; Gil, J.; Millan, T. A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 2006, 149, 105–111. [Google Scholar] [CrossRef]
  141. Jha, A.B.; Gali, K.K.; Tar’an, B.; Warkentin, T.D. Fine mapping of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front. Plant Sci. 2017, 8, 765. [Google Scholar] [CrossRef] [Green Version]
  142. Kumar, K.; Purayannur, S.; Kaladhar, V.C.; Parida, S.K.; Verma, P.K. mQTL-seq and classical mapping implicates the role of an At-Hook Motif Containing Nuclear Localized (AHL) family gene in Ascochyta blight resistance of chickpea. Plant Cell Environ. 2018, 41, 2128–2140. [Google Scholar] [CrossRef]
  143. Gutierrez, N.; Torres, A.M. QTL dissection and mining of candidate genes for Ascochyta fabae and Orobanche crenata resistance in faba bean (Vicia faba L.). BMC Plant Biol. 2021, 21, 551. [Google Scholar] [CrossRef]
  144. Collard, B.; Pang, E.; Ades, P.; Taylor, P. Preliminary investigation of QTLs associated with seedling resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor. Appl. Genet. 2003, 107, 719–729. [Google Scholar] [CrossRef]
  145. Udupa, S.M.; Baum, M. Genetic dissection of pathotype- specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor. Appl. Genet. 2003, 106, 1196–1202. [Google Scholar] [CrossRef]
  146. Lichtenzveig, J.; Bonfil, D.J.; Zhang, H.-B.; Shtienberg, D.; Abbo, S. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor. Appl. Genet. 2006, 113, 1357–1369. [Google Scholar] [CrossRef]
  147. Santra, D.K.; Tekeoglu, M.; Ratnaparkhe, M.; Kaiser, W.J.; Muehlbauer, F.J. Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci. 2000, 40, 1606–1612. [Google Scholar] [CrossRef]
  148. Cho, S.; Chen, W.; Muehlbauer, F.J. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Ascochyta blight. Theor. Appl. Genet. 2004, 109, 733–739. [Google Scholar] [CrossRef] [PubMed]
  149. Iruela, M.; Castro, P.; Rubio, J.; Cubero, J.; Jacinto, C.; Millan, T.; Gil, J. Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). In Ascochyta Blights of Grain Legumes; Tivoli, B., Baranger, A., Muehlbauer, F.J., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
  150. Tar’an, B.; Warkentin, T.D.; Tullu, A.; Vandenberg, A. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 2007, 50, 26–34. [Google Scholar] [CrossRef] [Green Version]
  151. Anbessa, Y.; Taran, B.; Warkentin, T.; Tullu, A.; Vandenberg, A. Genetic analyses and conservation of QTL for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2009, 119, 757–765. [Google Scholar] [CrossRef] [PubMed]
  152. Kottapalli, P.; Gaur, P.; Katiyar, S.; Crouch, J.H.; Buhariwalla, H.K.; Pande, S.; Gali, K.K. Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 2009, 165, 79–88. [Google Scholar] [CrossRef]
  153. Aryamanesh, N.; Nelson, M.; Yan, G.; Clarke, H.J.; Siddique, K.H.M. Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 2010, 173, 307–319. [Google Scholar] [CrossRef]
  154. Tar’an, B.; Warkentin, T.; Somers, D.J.; Miranda, D.; Vandenberg, A.; Balde, S.; Woods, S.; Bing, D.; Xue, A.; DeKoeyer, D.; et al. Quantitative trait loci for lodging resistance, plant height and partial resistance to ascochyta blight in field pea (Pisum sativum L.). Theor. Appl. Genet. 2003, 107, 1482–1491. [Google Scholar] [CrossRef]
  155. Sabbavarapu, M.M.; Sharma, M.; Chamarthi, S.K.; Swapna, N.; Rathore, A.; Thudi, M.; Gaur, P.M.; Pande, S.; Singh, S.; Kaur, L. Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 2013, 193, 121–133. [Google Scholar] [CrossRef] [Green Version]
  156. Madrid, E.; Seoane, P.; Claros, M.G.; Barro, F.; Rubio, J.; Gil, J.; Millan, T. Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L). Euphytica 2014, 198, 69–78. [Google Scholar] [CrossRef] [Green Version]
  157. Stephens, A.; Lombardi, M.; Cogan, N.O.I.; Forster, J.W.; Hobson, K.; Materne, M.; Kaul, S. Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol. Breed. 2014, 33, 297–313. [Google Scholar] [CrossRef]
  158. Daba, K.; Deokar, A.; Banniza, S.; Warkentin, T.D.; Tar’an, B. QTL mapping of early flowering and resistance to Ascochyta blight in chickpea. Genome 2016, 59, 413–425. [Google Scholar] [CrossRef] [PubMed]
  159. Li, Y.; Ruperao, P.; Batley, J.; Edwards, D.; Davidson, J.; Hobson, K.; Sutton, T. Genome analysis identified novel candidate genes for Ascochyta blight resistance in chickpea using whole genome re-sequencing data. Front. Plant Sci. 2017, 8, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  160. Garg, T.; Mallikarjuna, B.P.; Thudi, M.; Samineni, S.; Singh, S.; Sandhu, J.S.; Kaur, L.; Singh, I.; Sirari, A.; Basandrai, A.K.; et al. Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.). Euphytica 2018, 214, 1–11. [Google Scholar] [CrossRef] [Green Version]
  161. Deokar, A.; Sagi, M.; Tar’an, B. Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of Ascochyta blight resistance in chickpea (Cicer arietinum L). Theor. Appl. Genet. 2019, 132, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
  162. Deokar, A.; Sagi, M.; Daba, K.; Tar’an, B. QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnol. J. 2019, 17, 275–288. [Google Scholar] [CrossRef]
  163. Kushwah, A.; Bhatia, D.; Rani, U.; Yadav, I.S.; Singh, I.; Bharadwaj, C.; Singh, S. Molecular mapping of quantitative trait loci for ascochyta blight and botrytis grey mould resistance in an inter-specific cross in chickpea (Cicer arietinum L.) using genotyping by sequencing. Breed. Sci. 2021, 71, 229–239. [Google Scholar] [CrossRef]
  164. Román, B.; Satovic, Z.; Avila, C.M.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Locating genes associated with Ascochyta fabae resistance in Vicia faba. Aust. J. Agric. Res. 2003, 54, 85–90. [Google Scholar] [CrossRef]
  165. Avila, C.M.; Satovic, Z.; Sillero, J.C.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). Theor. Appl. Genet. 2004, 108, 1071–1078. [Google Scholar] [CrossRef]
  166. Díaz-Ruiz, R.; Satovic, Z.; Ávila, C.M.; Alfaro, C.M.; Gutierrez, M.V.; Torres, A.M.; Román, B. Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.). Crop Pasture Sci. 2009, 60, 353–361. [Google Scholar] [CrossRef] [Green Version]
  167. Kaur, S.; Kimber, R.B.E.; Cogan, N.O.I.; Materne, M.; Forster, J.W.; Paull, J.G. SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci. 2014, 217–218, 47–55. [Google Scholar] [CrossRef]
  168. Faridi, R.; Koopman, B.; Schierholt, A.; Ali, M.B.; Apel, S.; Link, W. Genetic study of the resistance of faba bean (Vicia faba) against the fungus Ascochyta fabae through a genome-wide association analysis. Plant Breed. 2021, 140, 442–452. [Google Scholar] [CrossRef]
  169. Skiba, B.; Ford, R.; Pang, E.C. Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor. Appl. Genet. 2004, 109, 1726–1735. [Google Scholar] [CrossRef]
  170. Chowdhury, M.A.; Andrahennadi, C.P.; Slinkard, A.E.; Vandenberg, A. RAPD and SCAR markers for resistance to acochyta blight in lentil. Euphytica 2001, 118, 331–337. [Google Scholar] [CrossRef]
  171. Tar’an, B.; Buchwaldt, L.; Breitkreutz, C.; Tullu, A.; Warkentin, T.; Banniza, S.; Vandenberg, A. Genetic Study of Ascochyta Blight Resistance in Chickpea and Lentil. 2002. Available online: http://www.usask.ca/soilsncrops/conference-proceedings/ (accessed on 5 January 2022).
  172. Tullu, A.; Tar’an, B.; Breitkreutz, C.; Banniza, S.; Warkentin, T.; Vandenberg, A.; Buchwaldt, L. A quantitative-trait locus for resistance to ascochyta blight (Ascochyta lentis) maps close to a gene for resistance to anthracnose (Colletotrichum truncatum) in lentil. Can. J. Plant. Pathol. 2006, 28, 588–595. [Google Scholar] [CrossRef]
  173. Gupta, D.; Taylor, P.W.J.; Inder, P.; Phan, H.T.T.; Ellwood, S.R.; Mathur, P.N.; Sarker, A.; Ford, R. Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to Ascochyta blight at seedling and pod stages. Mol. Breed. 2012, 30, 429–439. [Google Scholar] [CrossRef] [Green Version]
  174. Timmerman-Vaughan, G.M.; Frew, T.J.; Russell, A.C.; Khan, T.; Butler, R.; Gilpin, M.; Murray, S.; Falloon, K. QTL mapping of partial resistance to field epidemics of Ascochyta blight of pea. Crop Sci. 2002, 42, 2100–2111. [Google Scholar] [CrossRef]
  175. Fondevilla, S.; Satovic, Z.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Mapping of quantitative trait loci for resistance to Ascochyta pinodes in Pisum sativum subsp. syriacum. Mol. Breed. 2008, 21, 439–454. [Google Scholar] [CrossRef]
  176. Timmerman-Vaughan, G.M.; Frew, T.J.; Butler, R.; Murray, S.; Gilpin, M.; Falloon, K.; Johnston, P.; Lakeman, M.B.; Russell, A.; Khan, T. Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor. Appl. Genet. 2004, 109, 1620–1631. [Google Scholar] [CrossRef]
  177. Prioul-Gervais, S.; Deniot, G.; Receveur, E.-M.; Frankewitz, A.; Fourmann, M.; Rameau, C.; Pilet-Nayel, M.L.; Baranger, A. Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor. Appl. Genet. 2007, 114, 971–984. [Google Scholar] [CrossRef]
  178. Fondevilla, S.; Almeida, N.F.; Satovic, Z.; Rubiales, D.; Patto, M.C.V.; Cubero, J.I.; Torres, A.M. Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 2011, 182, 43–52. [Google Scholar] [CrossRef]
  179. Timmerman-Vaughan, G.M.; Moya, L.; Frew, T.J.; Murray, S.R.; Crowhurst, R. Ascochyta blight disease of pea (Pisum sativum L.): Defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor. Appl. Genet. 2016, 129, 879–896. [Google Scholar] [CrossRef]
  180. Jha, A.B.; Gali, K.K.; Banniza, S.; Warkentin, T.D. Validation of SNP markers associated with ascochyta blight resistance in pea. Canad. J. Plant Sci. 2019, 99, 243–249. [Google Scholar] [CrossRef]
  181. Iruela, M.; Rubio, J.; Barro, F.; Cubero, J.I.; Millán, T.; Gil, J. Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): Development of SCAR markers associated with resistance. Theor. Appl. Genet. 2006, 112, 278–287. [Google Scholar] [CrossRef]
  182. Jha, A.B.; Tar’an, B.; Diapari, M.; Sindhu, A.; Shunmugam, A.; Bett, K.; Warkentin, T.D. Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 2015, 202, 189–197. [Google Scholar] [CrossRef]
  183. Carrillo, E.; Satovic, Z.; Aubert, G.; Boucherot, K.; Rubiales, D.; Fondevilla, S. Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 2014, 33, 1133–1145. [Google Scholar] [CrossRef]
  184. Poland, J.; Rutkoski, J. Advances and challenges in genomic selection for disease resistance. Annu. Rev. Phytopathol. 2016, 54, 79–98. [Google Scholar] [CrossRef]
  185. Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
  186. Carpenter, M.A.; Goulden, D.S.; Woods, C.J.; Thomson, S.J.; Kenel, F.; Frew, T.J.; Cooper, R.D.; Timmerman-Vaughan, G.M. Genomic Selection for Ascochyta Blight Resistance in Pea. Front. Plant Sci. 2018, 9, 1878. [Google Scholar] [CrossRef] [Green Version]
  187. Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
  188. Newell, M.A.; Jannink, J.L. Genomic selection in plant breeding. Methods Mol. Biol. 2014, 1145, 117–130. [Google Scholar]
  189. Huang, X.; Han, B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef]
  190. Satovic, Z.; Avila, C.M.; Cruz-Izquierdo, S.; Díaz-Ruíz, R.; García-Ruíz, G.M.; Palomino, C.; Gutiérrez, N.; Vitale, S.; Ocaña-Moral, S.; Gutiérrez, M.V.; et al. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genom. 2013, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
  191. Coram, T.E.; Pang, E.C.K. Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiol. Mol. Plant Pathol. 2005, 66, 201–210. [Google Scholar] [CrossRef]
  192. Skiba, B.; Ford, R.; Pang, E.C. Construction of a cDNA library of Lathyrus sativus inoculated with Mycosphaerella pinodes and the expression of potential defence-related expressed sequence tags (ESTs). Physiol. Mol. Plant Pathol. 2005, 66, 55–67. [Google Scholar] [CrossRef]
  193. Coram, T.E.; Pang, E.C. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol. J. 2006, 4, 647–666. [Google Scholar] [CrossRef]
  194. Ocaña, S.; Seoane, P.; Bautista, R.; Palomino, C.; Claros, G.M.; Torres, A.M.; Madrid, E. Large-scale transcriptome analysis in faba bean (Vicia faba L.) under Ascochyta fabae infection. PLoS ONE 2015, 10, e0135143. [Google Scholar] [CrossRef] [Green Version]
  195. García-García, P.; Vaquero, F.; Vences, F.J.; Sáenz de Miera, L.E.; Polanco, C.; González, A.I.; Horres, R.; Krezdorn, N.; Rotter, B.; Winter, P.; et al. Transcriptome pro ling of lentil in response to Ascochyta lentis infection. Spanish J. Agric. Res. 2019, 17, e0703. [Google Scholar] [CrossRef] [Green Version]
  196. Fondevilla, S.; Küster, H.; Krajinski, F.; Cubero, J.I.; Rubiales, D. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genom. 2011, 12, 28. [Google Scholar] [CrossRef] [Green Version]
  197. Almeida, N.F.; Krezdorn, N.; Rotter, B.; Winter, P.; Rubiales, D.; Vaz Patto, M.C. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis. Front. Plant Sci. 2015, 6, 178. [Google Scholar] [CrossRef] [Green Version]
  198. Singh, K.; Nizam, S.; Sinha, M.; Verma, P.K. Comparative Transcriptome Analysis of the Necrotrophic Fungus Ascochyta rabiei during Oxidative Stress: Insight for Fungal Survival in the Host Plant. PLoS ONE 2012, 7, e33128. [Google Scholar] [CrossRef] [PubMed]
  199. Liu, Y.; Lu, S.; Liu, K.; Wang, S.; Huang, L.; Guo, L. Proteomics: A powerful tool to study plant responses to biotic stress. Plant Methods 2019, 15, 1–20. [Google Scholar] [CrossRef]
  200. Castillejo, M.Á.; Fondevilla-Aparicio, S.; Fuentes-Almagro, C.; Rubiales, D. Quantitative analysis of target peptides related to resistance against Ascochyta blight (Peyronellaea pinodes) in pea. J. Proteome Res. 2020, 19, 1000–1012. [Google Scholar] [CrossRef]
  201. Varshney, R.; Song, C.; Saxena, R.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [Green Version]
  202. Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
  203. Lee, R.C.; Farfan-Caceres, L.; Debler, J.W.; Williams, A.H.; Syme, R.A.; Henares, B.M. Reference genome assembly for Australian Ascochyta lentis isolate Al4. Gene Genet. Genome 2021, 11, jkab006. [Google Scholar] [CrossRef]
  204. Varshney, R.K.; Thudi, M.; Roorkiwal, M.; He, W.; Upadhyaya, H.D.; Yang, W.; Bajaj, P.; Cubry, P.; Rathore, A.; Jian, J.; et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 2019, 51, 857–864. [Google Scholar] [CrossRef] [Green Version]
  205. Varshney, R.K.; Roorkiwal, M.; Sun, S.; Bajaj, P.; Chitikineni, A.; Thudi, M.; Singh, N.P.; Du, A.; Upadhyaya, H.D.; Khan, A.W.; et al. A chickpea genetic variation map based on the sequencing of 3366 genomes. Nature 2021, 599, 622–627. [Google Scholar] [CrossRef]
  206. Badet, T.; Croll, D. The rise and fall of genes: Origins and functions of plant pathogen pangenomes. Curr. Opin Plant Biol. 2020, 56, 65–73. [Google Scholar] [CrossRef]
  207. Houle, D.; Govindaraju, D.; Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 2010, 11, 855–866. [Google Scholar] [CrossRef]
  208. Furbank, R.T.; Tester, M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
  209. Zhang, C.; Chen, W.; Sankaran, S. High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Prot. 2019, 125, 104885. [Google Scholar] [CrossRef]
  210. Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant. 2020, 13, 187–214. [Google Scholar] [CrossRef] [Green Version]
  211. Zhao, C.; Zhang, Y.; Du, J.; Guo, X.; Wen, W.; Gu, S.; Wang, J.; Fan, J. Crop phenomics: Current status and perspectives. Front. Plant Sci. 2019, 10, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  212. Zhang, D.; Zhou, X.; Zhang, J.; Lan, Y.; Xu, C.; Liang, D. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PLoS ONE 2018, 13, e0187470. [Google Scholar] [CrossRef] [Green Version]
  213. Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016, 148, 1–10. [Google Scholar] [CrossRef]
  214. Tetila, E.C.; Machado, B.B.; Belete, N.A.; Guimaraes, D.A.; Pistori, H. Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2190–2194. [Google Scholar] [CrossRef]
  215. Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
  216. Lu, J.; Hu, J.; Zhao, G.; Mei, F.; Zhang, C. An in-field automatic wheat disease diagnosis system. Comput. Electron. Agric. 2017, 142, 369–379. [Google Scholar] [CrossRef] [Green Version]
  217. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
  218. Harfouche, A.L.; Jacobson, D.A.; Kainer, D.; Romero, J.C.; Harfouche, A.H.; Mugnozza, G.S.; Moshelion, M.; Tuskan, G.A.; Keurentjes, J.J.; Altman, A. Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol. 2019, 37, 1217–1235. [Google Scholar] [CrossRef]
  219. Bouhadida, M.; Benjannet, R.; Madrid, E.; Amri, M.; Kharrat, M. Efficiency of marker-assisted selection in detection of ascochyta blight resistance in Tunisian chickpea breeding lines. Phytopathol. Mediterr. 2013, 52, 202–211. [Google Scholar]
  220. Varshney, R.K.; Mohan, S.M.; Gaur, P.M.; Chamarthi, S.K.; Singh, V.K.; Srinivasan, S.; Swapna, N.; Sharma, M.; Pande, S.; Singh, S.; et al. Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 2014, 7, plantgenome2013-10. [Google Scholar] [CrossRef] [Green Version]
  221. Castro, P.; Rubio, J.; Madrid, E.; Fernández-Romero, M.D.; Millán, T.; Gil, J. Efficiency of marker-assisted selection for Ascochyta blight in chickpea. J. Agric. Sci. 2015, 153, 56–67. [Google Scholar] [CrossRef]
Figure 1. Proposed mechanism of Ascochyta blight (AB) resistance in grain legumes.
Figure 1. Proposed mechanism of Ascochyta blight (AB) resistance in grain legumes.
Ijms 23 02217 g001
Table 1. Races/pathotypes of Ascochyta blight and its major symptoms in major grain legumes.
Table 1. Races/pathotypes of Ascochyta blight and its major symptoms in major grain legumes.
CropScientific Name of Causal OrganismRaces/PathotypeSymptoms
ChickpeaAscochyta rabiei (anamorph); Didymella rabiei (teleomorph)Three pathotypes [29,30], four pathotypes [32], five pathotypes [6], ten pathotypes [33]Concentric necrotic lesions on all aboveground plant parts [34]; 100% chickpea yield loss under favorable environment [11].
Faba beanAscochyta fabaeRaces 1, 2, 3, and 4 [7]; Seven races [35]Stem lesions usually darker than leaf and pod lesions; lesions can be produced over the surface; mycelial invasion causes seed infection [36].
LentilAscochyta lentis Vassiljevsky (teleomorph: Didymella lentis, syn. Ascochyta fabae f. sp. lentis) [37]Two mating types [38]Symptom appears as necrotic lesions on leaves, stems, and pods, inhibiting photosynthesis and causing up to 70% seed yield losses [5].
LathyrusAscochyta lentis var. lathyriSymptoms are characterised by presence of necrotic lesions on stems and leaves [39].
PeaDidymella pinodes, Phoma pinodella, and P. koolunga, Ascochyta pisi Lib., Mycosphaerella pinodes, Phoma medicaginis var. pinodella [8,40,41,42,43,44]Small ‘pinprick’ lesions, flecks on the leaf surface, coalescence of expanding lesions under wet condition, senescence of leaves [45,46] symptoms are noticed. Stem lesions have similar color and elongation, lesions become progressively longer and often coalesce to completely girdle stems [47,48].
Table 2. Sources of Ascochyta blight resistance in various grain legumes.
Table 2. Sources of Ascochyta blight resistance in various grain legumes.
CropName of AccessionReporting CountryReference
ChickpeaC. judaicum, C. pinnatifidum-[106]
ChickpeaC. echinospermum, C. reticulatum-[99]
ChickpeaHOO-108, GL92024India[107]
ChickpeaPI 559361, PI 559363, W6 22589USA[108]
ChickpeaRIL58-ILC72/Cr5Spain[109]
ChickpeaAlmaz, ICC 3996, ILWC 118Australia[88]
ChickpeaFLIP 98-133C, FLIP 98-136CCanada[110]
ChickpeaFLIP 97-121CIndia[111]
ChickpeaFLIP 4107, FLIP 1025, FLIP 10511Algeria[104]
ChickpeaEC 516934, ICCV 04537, ICCV 98818, EC 516850, EC 516971India[103]
ChickpeaICC7052, ICC4463, ICC4363, ICC2884, ICC7150, ICC15294, ICC11627Kenya[102]
Chickpea10A, 28BTurkey[112]
ChickpeaILC72, ILC182, ILC187, ILC200, ILC202Algeria[113]
ChickpeaC. echinospermum accessions S2Drd_ 061 Deste_064, C. reticulatum accession Bari1_062, C. echinospermum accession Karab_063 [114]
ChickpeaCicer echinospernumNSW-DPI, Tamworth, Australia [115]
ChickpeaIC275447, IC117744, EC267301, IC248147, EC220109PAU, Ludhiana, India; HAREC, HPKV, Dhaulakuan India[105]
Faba beanBPL 471, 2485 Syria, England, Canada, Poland, France, Tunisia[7]
Faba beanSU-R 40, SU-R 5/13-[116]
Faba beanILB 1414, ILB 6561-[98]
Faba beanAscot-[117]
Faba bean29HFrance[93,94]
Faba beanILB 752-[92]
Faba beanV-1220, V-494, V-175, V-47, V-165, V-1122, V-46-[118]
Faba beanL-831818, V-26, V-958, V-255, V-1020, V-1085, V-1117, V-1020, V-1085, V-1117Czech Republic, Estonia, Germany, Spain[58]
GrasspeaL. sativus, L. ochrus, L. clymenum-[119]
LentilIndian head -[89]
LentilW6 3261, W6 3192, W6 3222, W6 3241-[23,26]
Lentil24 Lentis orientalis, 12 Lentis odemensis, 3 Lentis nigricans-[99]
LentilILL 358, ILL 5588, ILL 5684, LairdCanada[68]
LentilILL 358, ILL 4605Chile[68]
LentilILL 358, LL 857Ethiopia[68]
LentilILL 5698, ILL 5700, ILL 5883, ILL 6212Morocco [68]
LentilILL 5684, ILL 5588, ILL 5714, Rajah New Zealand[68]
lentilFLIP84-27L, FLIP84-43L, FLIP84-55L Pakistan[68]
LentilILL 857, ILL 2439, ILL 4605 Syria[68]
LentilHPL5, L442, L448, LG169, Pant4, Pant L406India[68]
LentilILL 7537Jordan[120]
LentilL. ervoides, L. nigricans, L. culinaris subsp. orientalis, L. culinaris subsp. odemensisSaskatoon, Canada[121]
LentilILL 1704Ethiopia[121]
LentilCDC Robin, 964a-46-[122]
LentilL. orientalis accession ILWL 180 ICARDA[123]
LentilIG207ICARDA[124]
LentilILL7537-[70]
PeaLines JI 96, JI 252, JI 1089 Afghanistan, Ethiopia, Syria[125]
PeaP. fulvum accession PS1115-[119]
PeaP. fuivum, followed by P. sativum ssp. eiatius and P. sativum ssp. syriacum-[100]
PeaPisum fulvum accessions PI595937, P651, W615017, PI560061, P. sativum subsp. elatius accession PI344538Canada[127]
PeaP13 Pisum sativum ssp. elatius Turkey [14]
PeaP18 Pisum sativum ssp. elatius Greece[14]
PeaP651 Pisum fulvumSyria[14]
PeaP665 Pisum sativum ssp. syriacum Syria[14]
PeaP670 Pisum sativum ssp. elatius Turkey [14]
Pea05P778-BSR-701, ATC 5338, ATC 5345, Dundale, ATC 866Western Australia[48]
PeaPisum fulvum accessions PI595937, P651, W615017, PI560061, P. sativum subsp. elatius accession PI344538Canada[128]
Table 3. List of Aschochyta blight resistant QTLs identified in various grain legumes.
Table 3. List of Aschochyta blight resistant QTLs identified in various grain legumes.
CropMapping ApproachMapping PopulationQTL/GeneType of Marker UsedLinkage Group (LG)Phenotypic Variation (PV) %Reference
ChickpeaBi-parentalFLIP84-92C × C. reticulatum Lad. (PI 599072)QTL-1 and QTL-2RAPD, ISSR-50.30[147]
ChickpeaBi-parentalLasseter × C. echinospermum accession (PI 527930), F21 QTLSTMSLG4-[144]
ChickpeaBi-parentalILC 1272 × ILC 3279ar1, ar2a, ar2bSSRLG4, LG2-[145]
ChickpeaBi-parentalPI 359075 × FLIP84-92C F7(RIL)3 QTL + Ar19 (or Ar21d) geneSSR(LG)4A, LG2 + 6-[148]
ChickpeaBi-parentalCicer arietinum (ILC72) × Cicer reticulatum (Cr5-10)1 QTLRAPD, ISSR, STMS, isozymeLG228[140]
ChickpeaBi-parental QTLAR3STMSLG2-[149]
ChickpeaBi-parentalICCV96029′ and ‘CDC Frontier (186 F2)T3hree QTLSSRLG3, 4, 612–29[150]
ChickpeaBi-parentalCDC Frontier × ICCV 96029, CDC Luna × ICCV 96029, CDC Corinne × ICCV 96029, Amit × ICCV 96029, F1 and F25 QTL (QTL1–5)SSRLG 2, 3, 4, 6, 814–56[151]
ChickpeaBi-parentalICC 4991 × ICCV 045163 QTLSSRLG3, LG47.7–18.6[152]
ChickpeaBi-parentalC. arietinum × C. reticulatum3 QTLSSRLG3, LG449[153]
ChickpeaBi-parentalILC3279 × WR315, RILQTL(AR1), EIN4-like sequence SSRLG433.8[139]
ChickpeaBackcrossCDCXena × CDC Frontier, CDCXena × CDC 425-14Abr QTL 3, Abr QTL 4SSRLG4, LG8-[154]
ChickpeaBi-parentalC 214′ × ‘ILC 3279′ (F2)AB-Q-SR-4-1, AB-Q-SR-4-2, AB-Q-APR-6-1, AB-Q-APR-6-2, AB-Q-APR-4-1, AB-Q-APR-5BSSRLG4, 5, 61.5–32[155]
Chickpea--42 candidate genes Ein3, Avr9/Cf9 and Argonaute 4SNPCa244.2[156]
ChickpeaBi-parentalS95362 × Howzat, Lasseter × ICC3996ab_QTL1, ab_QTL2EST, SNP-14–45[157]
ChickpeaBi-parentalICCV 96029 × CDC Frontier RIL(92)qtlAb-1.1, qtlAb-2.1, qtlAb-3.1, qtlAb-4.1, qtlAb-6.1, qtlAb-7, qtlAb-8.1, qtlAb-8.2, qtlAb-8.3SNPLG1, 2, 3, 4, 6, 7, 89–19[158]
ChickpeaGWAS132 advanced breeding linesAB4.1 QTL along with 12 candidate genesSNPLG4-[159]
ChickpeaBi-parentalJG 62 × ICCV 05530, RIL(188)1 QTL for seedling resistance; minor QTL each for SR and adult plant resistanceSSR, SNP--[160]
ChickpeaBi-parentalFLIP84-92C(2) × PI359075(250 RILs), CRIL-7 (217 RILs)qABR4.1, qABR4.2, qABR4.3 QTL and CaAHL18 candidate geneSNPLG442[142]
ChickpeaGWAS146 (C. reticulatum) + 44 (C. echinospermum)WRKY TF (Cr_02657.1), (Cr_09847.1) encodes a TF of ARF familySNPLG3, 4, 66.7–15.2[114]
ChickpeaBi-parentalICCV 96029 × CDCFrontier 92 RILs, ICCV 96029 × Amit 139 RILsCPR01-qAB1.1, CPR01-qAB1.2, CPR01-qAB1.3, CPR01-qAB1.4, CPR01-qAB4.1, CPR01-qAB4.2, CPR01-qAB4.3, CPR01-qAB4.4, CPR01-qAB4.5, CPR01-qAB6.1, CPR01-qAB6.2, CPR01-qAB7.1SNPLG1, 2, 3, 4, 6, 7, 8-[161]
ChickpeaBi-parentalAmit × ICCV 96029 (RIL)8 QTLSNPLG2, 3, 4, 5 and 67–40[162]
ChickpeaBi-parentalC. arietinum × Cicer echinospernum, RIL(134)AB_echino_2014, AB_echino_2015SNPLG434–41[138]
ChickpeaBi-parentalGPF2 × C. reticulatum acc. ILWC 292, 187 RILqab-4.1, qab-4.2, qab-7.1SNPLG4, LG77–11[163]
Faba beanBi-parental196F2Af1 and Af2-LGVIII, LGIVa46[164]
Faba beanBi-parental29H × Vf136, (F2)6 QTL (Af3 to Af8) LG2, LG3, LG6, LG12, LG14, LG156.2–44.7[165]
Faba beanBi-parentalVf6 Vf136 (165 RIL)Af1 and Af 2 RAPD, SSR, Isozyme EST, SCARLG2, LG316–24[166]
Faba beanBi-parentalIcarus × AscotQTL-3, QTL-1, QTL-2, QTL-4SSR, SNPChr-II, Chr-VI, Chr-I.A [167]
Faba beanBi-parental29H × Vf136, (RIL)10 QTL-LG2 LG3, LG49.8–17.7[57]
Faba beanBi-parental29H × Vf136 (RIL, 119)9 QTLSNP chromosomes II, III, IV10.6–21.4[56]
Faba beanBi-parental29H × Vf136, Vf6 × Vf136Af2, Af3, F_DSP1, F_DSP2 and DSL_Lo98 Chromosomes II, III, IV7.8–14[143]
Faba beanGWAS188 diverse lines12 MTAsAFLP, SNPLGI, III, IV, V, VI5.6–21.7[168]
LathyrusBackcross populationATC 80,878 × ATC 80407QTL1, QTL2RAPD, STMS, STS/CAPSLG1, LG29–12[169]
LentilBi-parentalILL5588 (cv. Northfield) × ILL6002 -RAPD -89[20]
LentilBi-parentalEston x Indian head, F2(60)ral 2geneRAPD, SCAR--[170]
LentilBi-parentalILL5588 (cv. Northfield) × L692-16-1 2 QTLRAPD, ISSR, RFLP, AFLP LG436[171]
LentilF2ILL5588 (cv. Northfield) × ILL7537, ILL7537 × ILL60025 + 3 QTLRAPD, ISSR, AFLP LG1, 2, 4, and 550[120]
LentilBi-parentalEston × PI 320,937 1 QTLRAPD, AFLP, SSR LG641[172]
LentilBi-parentalILL5588 (cv. Northfield) × ILL5722 (cv. Digger) F5(94)QTL1, QTL2, QTL3, QTL4, QTL5, QTL6ST-SSR/SSR, ISSR, RAPD, ITAP LG1, 4, 5 and 934–61 [173]
LentilBi-parentalIndianhead × Northfield AB_IH1, AB_IH1.2, AB_NF1, AB_IH1.3SSR, SNPLG2, 3 and 67–47[138]
LentilBi-parentalLens culinaris × L. odemensis, RILAS-Q1, AS-Q2, AS-Q3SNPLG623–27[133]
PeaBi-parental3148-A88 × Rovar, F2:413 QTLRAPD, STS [174]
PeaBi-parentalCarneval × MP14013 QTLAFLP, SCARLG2, 3, 4, 5, 736[154]
PeaBi-parentalP665 × Messire6 QTLRAPD, STS, ESTLG2, 3, 4, 531–75[175]
PeaBi-parentalDP × JI296 (135 RIL)6 QTL at the seedling stage--56.6–74[137]
PeaBi-parentalA26 × Rovar, A88 × Rovar11 + 14 QTLSTSLG I, II, III, IV, V, VI, VII4.6–37.4[176]
PeaBi-parentalJI296 × DP RILRGA-G3A, RGA2.97, PsPRP4A, Peachi21, PsMnSOD, DRR230-b, PsDof1, peabetaglu and DRR49a, QTL mpIII-4-LG2, 3, 7, 4, 6-[177]
PeaBi-parentalP665 × Messire3 QTLSSR--[178]
PeaBi-parentalA26 × Rovar, A88 × Rovar.Asc2.1, Asc4.2, Asc4.3 and Asc7.1 QTL, 14 candidate genes--[179]
PeaBi-parentalP651 (P. fulvum) × Alfetta (Pisum sativum L.) RIL(144)abI-IV-1, abI-IV-2, abI-IV-3, abI-IV-4, abIII- 1, abVII-1, abI-IV-5, abIII-2, abVII-2SNPLG1, 2, 3, 4, 77.5–28%[128]
PeaBi-parentalF6 RILs PR-19-224 and PR-19-173abI-IV-2.1 and abI-IV-2.2SNP-5.5–14% [141]
PeaGenome-wide association study36 cultivars3 MTAsSNP--[180]
Table 4. Differentially expressed genes (DEGs)/candidate genes associated with ascochyta blight resistance in grain legumes along with putative function.
Table 4. Differentially expressed genes (DEGs)/candidate genes associated with ascochyta blight resistance in grain legumes along with putative function.
CropDEG/Candidate GeneFunctionReferencesGenotype NameTechnique Used
Chickpea97 DEGsPathogenesis-related proteins, proline-rich protein, SNAKIN2 antimicrobial peptide, leucine-zipper protein[193]ICC3996, FLIP94-508C, ILWC245RT-PCR, Microarray technology
ChickpeaLOC101508336, LOC101508648, LOC101508966, LOC101509280[142]FLIP8492C, PI359075qRT-PCR
Chickpea6767 differentially expressed genes, 651 miRNAs, chitinases (Ca_04405), CC-NBS-LRR (Ca_08361), CC-NBS-LRR (Ca_08122), Dof zinc finger protein (Ca_19433), ERF (Ca_00359), calcium-transporting ATPase (Ca_12185), senescence-associated protein (Ca_15107), cellulose synthase (Ca_08607)Pathogenesis-related proteins, cell wall synthesis, NBS-LRR, secondary metabolites[76]ILC 3279, ICCV 05530, C 214, Pb 7Illumina Inc., San Diego, CA, USA, qRT-PCR
Faba bean850 differentially expressed transcriptBiosynthesis of secondary metabolites, ethylene, phenylpropanoid and isoflavonoids, NBS-LRR proteins synthesis[194]29H and Vf136Illumina platform, RT-qPCR
Lathyrus29 unique gene sequencesPathogen recognition, signaling transduction, transcription regulation, PR proteins, and disease resistance[192]ATC 80,878, ATC 80407Microarray technology
Lentil Pathogenesis-related proteins, genes related to hormone signaling, cell death, and cell-wall reinforcement[122]CDC Robin, 964a-46 EstonHiSeq 2500. qRT-PCR
Lentilpathogen invasion recognition and signaling genes, pathogenesis-related protein genes, ethylene response factor (ERF)Fungal elicitors recognition, defense signaling genes, hypersensitive reaction and cell death, transcription regulation of defense genes[70]‘ILL7537′ and ‘ILL6002′ RT- qPCR. RNA-Seq
Lentil Lignin biosynthesis, jasmonic acid pathway signaling geneContributed to defense response[195]Lupa, ILL5588, BG16880Massive analysis of cDNA ends
Pea346 DEGsPathogenesis-related (PR) proteins, hormone signaling, cell wall reinforcement, phenylpropanoid[196]P665 Microarray technology
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Jha, U.C.; Sharma, K.D.; Nayyar, H.; Parida, S.K.; Siddique, K.H.M. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. Int. J. Mol. Sci. 2022, 23, 2217. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23042217

AMA Style

Jha UC, Sharma KD, Nayyar H, Parida SK, Siddique KHM. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. International Journal of Molecular Sciences. 2022; 23(4):2217. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23042217

Chicago/Turabian Style

Jha, Uday C., Kamal Dev Sharma, Harsh Nayyar, Swarup K. Parida, and Kadambot H. M. Siddique. 2022. "Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes" International Journal of Molecular Sciences 23, no. 4: 2217. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23042217

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop