Next Article in Journal
Carbon Nanotubes and Polydopamine Modified Poly(dimethylsiloxane) Sponges for Efficient Oil–Water Separation
Next Article in Special Issue
Numerical Simulation of Vehicle–Lighting Pole Crash Tests: Parametric Study of Factors Influencing Predicted Occupant Safety Levels
Previous Article in Journal
Numerical Analysis of Particulate Migration Behavior within Molten Pool during TIG-Assisted Droplet Deposition Manufacturing of SiC Particle-Reinforced Aluminum Matrix Composites
Previous Article in Special Issue
Analytical Prediction for Nonlinear Buckling of Elastically Supported FG-GPLRC Arches under a Central Point Load
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Wang et al. Parametric Formula for Stress Concentration Factor of Fillet Weld Joints with Spline Bead Profile. Materials 2020, 13, 4639

1
Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan
2
Department of Structural Engineering, Tongji University, Shanghai 200092, China
*
Author to whom correspondence should be addressed.
Submission received: 30 March 2021 / Accepted: 28 April 2021 / Published: 7 May 2021
The authors wish to revise the following from pages 16–18 in the text of Appendix B [1] due to the presence of incorrect information.
The correct text is shown below:

Appendix B

Formulas for calculating SCFs for T-shape welded joint and cruciform welded joint under tensile and bending stress.
(1)
T-shape welded joint under tensile stress:
K t = 1 + 1.39418 f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) )
where:
f ( r 1 / t ) = 1.824174 ( r 1 / t ) 0.145045 + 6.400210 ( r 1 / t ) 3 6.802011 ( r 1 / t ) 2 + 3.277059 ( r 1 / t )   2.692331
f ( θ 1 ) = 2.778232 × 10 1 ( π θ 1 ) 3 + 1.531999 ( π θ 1 ) 2 3.394907 ( π θ 1 ) + 4.967130
f ( ( r 1 / t ) ( θ 1 ) ) = 1.001612 × 10 1 ( ( r 1 / t ) ( π θ 1 ) ) 3 + 1.279269 × 10 1 ( ( r 1 / t ) ( π θ 1 ) ) 2 + 5.761117 ( ( r 1 / t ) ( π θ 1 ) )   + 1.181649
(2)
T-shape welded joint under bending stress:
K t = 1 1.129553 f ( T / t ) f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) ) f ( L 1 / t ) f ( L 2 / t )       f ( ( L 1 / t ) ( L 2 / t ) ) f ( H / t )
where:
f ( T / t ) = 9.622916 × 10 3 ( T / t ) 3 3.157009 × 10 2 ( T / t ) 2 + 1.848086 × 10 1 ( T / t ) + 2.433139
f ( r 1 / t ) = 6.477191 × 10 1 ( r 1 / t ) 0.258620 + 2.860640 ( r 1 / t ) 3 3.689862 ( r 1 / t ) 2 + 2.089786 ( r 1 / t ) 1.238719
f ( θ 1 ) = 3.450624 × 10 3 ( π θ 1 ) 3 3.531382 × 10 2 ( π θ 1 ) 2 + 6.008736 × 10 2 ( π θ 1 ) + 8.576512 × 10 2
f ( ( r 1 / t ) ( θ 1 ) ) = 3.532021 ( ( r 1 / t ) ( π θ 1 ) ) 5.127981 8.442514 ( ( r 1 / t ) ( π θ 1 ) ) 3 +   8.645182 ( ( r 1 / t ) ( π θ 1 ) ) 2 +     1.481668 ( ( r 1 / t ) ( π θ 1 ) ) + 3.814145 × 10 1
f ( L 1 / t ) = 1 . 140609 × 10 1 ( L 1 / t ) 3.036113 + 7.436459 × 10 2 ( L 1 / t ) 4 + 1.188223 × 10 1 ( L 1 / t ) 3 8 . 150334 × 10 1 ( L 1 / t ) 2   + 2 . 933742 × 10 1 ( L 1 / t ) + 2 . 718308 × 10 2
f ( L 2 / t ) = 1.919634 × 10 1 ( L 2 / t ) 0.1508265 7.315526 × 10 1 ( L 2 / t ) 4 + 4.967357 ( L 2 / t ) 3 8.382442 ( L 2 / t ) 2 5.482638 ( L 2 / t ) + 4.359819 × 10 1
f ( ( L 1 / t ) ( L 2 / t ) ) = 1.823407 × 10 1 ( ( L 1 / t ) ( L 2 / t ) ) 3 + 1.469586 ( ( L 1 / t ) ( L 2 / t ) ) 2   5.862377 ( ( L 1 / t ) ( L 2 / t ) ) 8.301064
f ( H / t ) = 1.913752 × 10 1 ( H / t ) 3 + 7.690410 ( H / t ) 2 5.994878 × 10 1 ( H / t ) + 1.201826
(3)
Cruciform welded joint under tensile stress:
K t = 1 + 9.355385 × 10 1 f ( T / t ) f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) ) f ( L 1 / t ) f ( L 2 / t ) f ( ( L 1 / t ) ( L 2 / t ) ) f ( H / t )
where:
f ( T / t ) = 4.241098 × 10 1 ( T / t ) 3 + 1.392836 ( T / t ) 2 1.072866 ( T / t ) + 5.223873
f ( r 1 / t ) = 2.214616 ( r 1 / t ) 0.5081972 + 3.365455 ( r 1 / t ) 3 4.439046 ( r 1 / t ) 2 + 3.726006 ( r 1 / t ) + 4.033244 × 10 1
f ( θ 1 ) = 7.886656 × 10 1 ( π θ 1 ) 3 + 2.966534 ( π θ 1 ) 2 5.878541 ( π θ 1 ) + 1.772818 × 10 1
f ( ( r 1 / t ) ( θ 1 ) ) = 1.557408 ( ( r 1 / t ) ( π θ 1 ) ) 0.1158765 + 3.821716 ( ( r 1 / t ) ( π θ 1 ) ) 3 5.354226 ( ( r 1 / t ) ( π θ 1 ) ) 2       + 7.153383 ( ( r 1 / t ) ( π θ 1 ) ) 1.529427
f ( L 1 / t ) = 8.158610 ( L 1 / t ) 1.944849 1.90075 × 10 2 ( L 1 / t ) 4 + 2.021235 × 10 1 ( L 1 / t ) 3 7.977936 ( L 1 / t ) 2 4.569099 × 10 1 ( L 1 / t ) + 1.108427 × 10 1
f ( L 2 / t ) = 1.020926 × 10 1 ( L 2 / t ) 0.09585178 + 3.856400 × 10 1 ( L 2 / t ) 4 2.432551 ( L 2 / t ) 3 + 6.069561 ( L 2 / t ) 2 8.045796 ( L 2 / t ) 5.364472
f ( ( L 1 / t ) ( L 2 / t ) ) = 2.421137 × 10 1 ( ( L 1 / t ) ( L 2 / t ) ) 3 +   5.706142 × 10 1 ( ( L 1 / t ) ( L 2 / t ) ) 2 2.159502 × 10 1 ( ( L 1 / t ) ( L 2 / t ) )   2.240262
f ( H / t ) = 4.996101 ( H / t ) 3 1.461031 ( H / t ) 2 1.874919 × 10 1 ( H / t ) 1.083093
(4)
Cruciform welded joint under bending stress:
K t = 1 + 1.20077 f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) ) f ( L 1 / t ) f ( L 2 / t ) f ( ( L 1 / t ) ( L 2 / t ) )
where:
f ( r 1 / t ) = 1.245919 ( r 1 / t ) 0.1788861 + 5.187295 ( r 1 / t ) 3 5.888376 ( r 1 / t ) 2 + 2.948041 ( r 1 / t ) 2.024161
f ( θ 1 ) = 4.518553 × 10 1 ( π θ 1 ) 3 4.169720 ( π θ 1 ) 2 + 6.471859 ( π θ 1 ) + 1.232356 × 10 1
f ( ( r 1 / t ) ( θ 1 ) ) = 6.195167 ( ( r 1 / t ) ( π θ 1 ) ) 1.958767 + 2.102936 × 10 1 ( ( r 1 / t ) ( π θ 1 ) ) 3 6.258362 ( ( r 1 / t ) ( π θ 1 ) ) 2   +   4.307112 × 10 2 ( ( r 1 / t ) ( π θ 1 ) ) + 1.578839 × 10 2
f ( L 1 / t ) = 1.069048 × 10 1 ( L 1 / t ) 3 + 4.896665 × 10 1 ( L 1 / t ) 2 3.181390 ( L 1 / t ) + 1.187674 × 10 1
f ( L 2 / t ) = 6.217977 ( L 2 / t ) 2.938345 + 8.220848 × 10 2 ( L 2 / t ) 4 5.872895 ( L 2 / t ) 3 5.835022 × 10 1 ( L 2 / t ) 2 + 1.809699 × 10 1 ( L 2 / t ) + 2.220297 × 10 2
f ( ( L 1 / t ) ( L 2 / t ) ) = 9.639892 × 10 2 ( ( L 1 / t ) ( L 2 / t ) ) 3 2.213564 × 10 1 ( ( L 1 / t ) ( L 2 / t ) ) 2 + 5.660853 ( ( L 1 / t ) ( L 2 / t ) )   + 3.300823 × 10 1
The previously given text is shown below:

Appendix B

Formulas for calculating SCFs for T-shape welded joint and cruciform welded joint under tensile and bending stress.
(1)
T-shape welded joint under tensile stress:
K t = 1 + 1.394 f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) )
where:
f ( r 1 / t ) = 1.824 ( r 1 / t ) 0.145 + 6.400 ( r 1 / t ) 3 6.802 ( r 1 / t ) 2 + 3.277 ( r 1 / t ) 2.692
f ( θ 1 ) = 0.278 ( π θ 1 ) 3 + 1.532 ( π θ 1 ) 2 3.395 ( π θ 1 ) + 4.967
f ( ( r 1 / t ) ( θ 1 ) ) = 10.016 ( ( r 1 / t ) ( π θ 1 ) ) 3 + 12.793 ( ( r 1 / t ) ( π θ 1 ) ) 2 + 5.761 ( ( r 1 / t ) ( π θ 1 ) )   + 1.182
(2)
T-shape welded joint under bending stress:
K t = 1 1.130 f ( T / t ) f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) ) f ( L 1 / t ) f ( L 2 / t ) f ( ( L 1 / t ) ( L 2 / t ) ) f ( H / t )
where:
f ( T / t ) = 0.010 ( T / t ) 3 0.032 ( T / t ) 2 + 0.185 ( T / t ) + 2.433
f ( r 1 / t ) = 0.648 ( r 1 / t ) 0.259 + 2.861 ( r 1 / t ) 3 3.690 ( r 1 / t ) 2 + 2.090 ( r 1 / t ) 1.239
f ( θ 1 ) = 0.003 ( π θ 1 ) 3 0.035 ( π θ 1 ) 2 + 0.060 ( π θ 1 ) + 0.086
f ( ( r 1 / t ) ( θ 1 ) ) = 3.532 ( ( r 1 / t ) ( π θ 1 ) ) 5.128 8.443 ( ( r 1 / t ) ( π θ 1 ) ) 3 +     8.645 ( ( r 1 / t ) ( π θ 1 ) ) 2 +     1.482 ( ( r 1 / t ) ( π θ 1 ) ) + 0.381
f ( L 1 / t ) = 11.406 ( L 1 / t ) 3.036 + 0.074 ( L 1 / t ) 4 + 11.882 ( L 1 / t ) 3 0.815 ( L 1 / t ) 2 + 0.293 ( L 1 / t ) + 0.027
f ( L 2 / t ) = 19.196 ( L 2 / t ) 0.151 0.732 ( L 2 / t ) 4 + 4.967 ( L 2 / t ) 3 8.382 ( L 2 / t ) 2 5.483 ( L 2 / t ) + 43.598
f ( ( L 1 / t ) ( L 2 / t ) ) = 0.182 ( ( L 1 / t ) ( L 2 / t ) ) 3 + 1.470 ( ( L 1 / t ) ( L 2 / t ) ) 2   5.862 ( ( L 1 / t ) ( L 2 / t ) ) 8.301
f ( H / t ) = 19.138 ( H / t ) 3 + 7.690 ( H / t ) 2 0.599 ( H / t ) + 1.202
(3)
Cruciform welded joint under tensile stress:
K t = 1 + 0.936 f ( T / t ) f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) ) f ( L 1 / t ) f ( L 2 / t ) f ( ( L 1 / t ) ( L 2 / t ) ) f ( H / t )
where:
f ( T / t ) = 0.424 ( T / t ) 3 + 1.393 ( T / t ) 2 1.073 ( T / t ) + 5.224
f ( r 1 / t ) = 2.215 ( r 1 / t ) 0.508 + 3.365 ( r 1 / t ) 3 4.439 ( r 1 / t ) 2 + 3.726 ( r 1 / t ) + 0.403
f ( θ 1 ) = 0.789 ( π θ 1 ) 3 + 2.967 ( π θ 1 ) 2 5.879 ( π θ 1 ) + 17.728
f ( ( r 1 / t ) ( θ 1 ) ) = 1.557 ( ( r 1 / t ) ( π θ 1 ) ) 0.116 + 3.822 ( ( r 1 / t ) ( π θ 1 ) ) 3 5.354 ( ( r 1 / t ) ( π θ 1 ) ) 2 + 7.153 ( ( r 1 / t ) ( π θ 1 ) ) 1.529
f ( L 1 / t ) = 8.159 ( L 1 / t ) 1.945 0.019 ( L 1 / t ) 4 + 0.202 ( L 1 / t ) 3 7.978 ( L 1 / t ) 2   0.457 ( L 1 / t ) + 0.111
f ( L 2 / t ) = 10.209 ( L 2 / t ) 0.096 + 0.386 ( L 2 / t ) 4 2.433 ( L 2 / t ) 3 + 6.070 ( L 2 / t ) 2 8.046 ( L 2 / t ) 5.364
f ( H / t ) = 4.996 ( H / t ) 3 1.461 ( H / t ) 2 0.187 ( H / t ) 1.083
f ( ( L 1 / t ) ( L 2 / t ) ) = 0.242 ( ( L 1 / t ) ( L 2 / t ) ) 3 +   0.571 ( ( L 1 / t ) ( L 2 / t ) ) 2 21.595 ( ( L 1 / t ) ( L 2 / t ) ) 2.240
(4)
Cruciform welded joint under bending stress:
K t = 1 + 1.201 f ( r 1 / t ) f ( θ 1 ) f ( ( r 1 / t ) ( θ 1 ) ) f ( L 1 / t ) f ( L 2 / t ) f ( ( L 1 / t ) ( L 2 / t ) )
where:
f ( r 1 / t ) = 1.246 ( r 1 / t ) 0.179 + 5.187 ( r 1 / t ) 3 5.888 ( r 1 / t ) 2 + 2.948 ( r 1 / t ) 2.024
f ( θ 1 ) = 0.452 ( π θ 1 ) 3 4.170 ( π θ 1 ) 2 + 6.472 ( π θ 1 ) + 12.324
f ( ( r 1 / t ) ( θ 1 ) ) = 6.195 ( ( r 1 / t ) ( π θ 1 ) ) 1.959 + 0.210 ( ( r 1 / t ) ( π θ 1 ) ) 3     6.258 ( ( r 1 / t ) ( π θ 1 ) ) 2 + 0.043 ( ( r 1 / t ) ( π θ 1 ) ) + 0.016
f ( L 1 / t ) = 0.107 ( L 1 / t ) 3 + 0.490 ( L 1 / t ) 2 3.181 ( L 1 / t ) + 11.877
f ( L 2 / t ) = 6.218 ( L 2 / t ) 2.938 + 0.082 ( L 2 / t ) 4 5.873 ( L 2 / t ) 3 0.584 ( L 2 / t ) 2 + 0.181 ( L 2 / t ) + 0.022
f ( ( L 1 / t ) ( L 2 / t ) ) = 0.096 ( ( L 1 / t ) ( L 2 / t ) ) 3 0.221 ( ( L 1 / t ) ( L 2 / t ) ) 2 + 5.661 ( ( L 1 / t ) ( L 2 / t ) ) + 33.008
The authors would like to apologize for any inconvenience caused to the readers by these changes.

Reference

  1. Wang, Y.; Luo, Y.; Tsutsumi, S. Parametric Formula for Stress Concentration Factor of Fillet Weld Joints with Spline Bead Profile. Materials 2020, 13, 4639. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wang, Y.; Luo, Y.; Tsutsumi, S. Correction: Wang et al. Parametric Formula for Stress Concentration Factor of Fillet Weld Joints with Spline Bead Profile. Materials 2020, 13, 4639. Materials 2021, 14, 2433. https://0-doi-org.brum.beds.ac.uk/10.3390/ma14092433

AMA Style

Wang Y, Luo Y, Tsutsumi S. Correction: Wang et al. Parametric Formula for Stress Concentration Factor of Fillet Weld Joints with Spline Bead Profile. Materials 2020, 13, 4639. Materials. 2021; 14(9):2433. https://0-doi-org.brum.beds.ac.uk/10.3390/ma14092433

Chicago/Turabian Style

Wang, Yixun, Yuxiao Luo, and Seiichiro Tsutsumi. 2021. "Correction: Wang et al. Parametric Formula for Stress Concentration Factor of Fillet Weld Joints with Spline Bead Profile. Materials 2020, 13, 4639" Materials 14, no. 9: 2433. https://0-doi-org.brum.beds.ac.uk/10.3390/ma14092433

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop