Next Article in Journal
Diet-Induced Rodent Models of Diabetic Peripheral Neuropathy, Retinopathy and Nephropathy
Previous Article in Journal
Fermented Morinda citrifolia (Noni) Alleviates DNCB-Induced Atopic Dermatitis in NC/Nga Mice through Modulating Immune Balance and Skin Barrier Function
Article

Docosahexaenoic Acid (DHA) Bioavailability in Humans after Oral Intake of DHA-Containing Triacylglycerol or the Structured Phospholipid AceDoPC®

1
Univ-Lyon, CarMeN Laboratory, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100 Villeurbanne, France
2
National Research Council Canada, Ottawa, ON K1A 0R6, Canada
3
Hospices Civils de Lyon, Groupement Hospitalier Sud, 69310 Pierre-Bénite, France
4
CRNH Rhône-Alpes, CENS, 69310 Pierre-Bénite, France
*
Author to whom correspondence should be addressed.
Co-first authors.
Received: 11 November 2019 / Revised: 8 January 2020 / Accepted: 15 January 2020 / Published: 18 January 2020
AceDoPC® is a structured glycerophospholipid that targets the brain with docosahexaenoic acid (DHA) and is neuroprotective in the experimental ischemic stroke. AceDoPC® is a stabilized form of the physiological 2-DHA-LysoPC with an acetyl group at the sn1 position; preventing the migration of DHA from the sn2 to sn1 position. In this study we aimed to know the bioavailability of 13C-labeled DHA after oral intake of a single dose of 13C-AceDoPC®, in comparison with 13C-DHA in triglycerides (TAG), using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to assess the 13C enrichment of DHA-containing lipids. 13C-DHA enrichment in plasma phospholipids was significantly higher after intake of AceDoPC® compared with TAG-DHA, peaking after 24 h in both cases. In red cells, 13C-DHA enrichment in choline phospholipids was comparable from both sources of DHA, with a maximum after 72 h, whereas the 13C-DHA enrichment in ethanolamine phospholipids was higher from AceDoPC® compared to TAG-DHA, and continued to increase after 144 h. Overall, our study indicates that DHA from AceDoPC® is more efficient than from TAG-DHA for a sustained accumulation in red cell ethanolamine phospholipids, which has been associated with increased brain accretion. View Full-Text
Keywords: plasma phospholipids; brain; gas chromatography combustion isotope ratio mass spectrometry plasma phospholipids; brain; gas chromatography combustion isotope ratio mass spectrometry
Show Figures

Figure 1

MDPI and ACS Style

Hachem, M.; Nacir, H.; Picq, M.; Belkouch, M.; Bernoud-Hubac, N.; Windust, A.; Meiller, L.; Sauvinet, V.; Feugier, N.; Lambert-Porcheron, S.; Laville, M.; Lagarde, M. Docosahexaenoic Acid (DHA) Bioavailability in Humans after Oral Intake of DHA-Containing Triacylglycerol or the Structured Phospholipid AceDoPC®. Nutrients 2020, 12, 251. https://0-doi-org.brum.beds.ac.uk/10.3390/nu12010251

AMA Style

Hachem M, Nacir H, Picq M, Belkouch M, Bernoud-Hubac N, Windust A, Meiller L, Sauvinet V, Feugier N, Lambert-Porcheron S, Laville M, Lagarde M. Docosahexaenoic Acid (DHA) Bioavailability in Humans after Oral Intake of DHA-Containing Triacylglycerol or the Structured Phospholipid AceDoPC®. Nutrients. 2020; 12(1):251. https://0-doi-org.brum.beds.ac.uk/10.3390/nu12010251

Chicago/Turabian Style

Hachem, Mayssa, Houda Nacir, Madeleine Picq, Mounir Belkouch, Nathalie Bernoud-Hubac, Anthony Windust, Laure Meiller, Valerie Sauvinet, Nathalie Feugier, Stephanie Lambert-Porcheron, Martine Laville, and Michel Lagarde. 2020. "Docosahexaenoic Acid (DHA) Bioavailability in Humans after Oral Intake of DHA-Containing Triacylglycerol or the Structured Phospholipid AceDoPC®" Nutrients 12, no. 1: 251. https://0-doi-org.brum.beds.ac.uk/10.3390/nu12010251

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop