Previous Issue
Volume 13, March
 
 

Antibodies, Volume 13, Issue 2 (June 2024) – 16 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 4811 KiB  
Article
Humoral Immunity across the SARS-CoV-2 Spike after Sputnik V (Gam-COVID-Vac) Vaccination
by Alejandro Cornejo, Christopher Franco, Mariajose Rodriguez-Nuñez, Alexis García, Inirida Belisario, Soriuska Mayora, Domingo José Garzaro, José Luis Zambrano, Rossana Celeste Jaspe, Mariana Hidalgo, Nereida Parra-Giménez, Franklin Ennodio Claro, Ferdinando Liprandi, Jacobus Henri de Waard, Héctor Rafael Rangel and Flor Helene Pujol
Antibodies 2024, 13(2), 41; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020041 - 11 May 2024
Viewed by 243
Abstract
SARS-CoV-2 vaccines have contributed to attenuating the burden of the COVID-19 pandemic by promoting the development of effective immune responses, thus reducing the spread and severity of the pandemic. A clinical trial with the Sputnik-V vaccine was conducted in Venezuela from December 2020 [...] Read more.
SARS-CoV-2 vaccines have contributed to attenuating the burden of the COVID-19 pandemic by promoting the development of effective immune responses, thus reducing the spread and severity of the pandemic. A clinical trial with the Sputnik-V vaccine was conducted in Venezuela from December 2020 to July 2021. The aim of this study was to explore the antibody reactivity of vaccinated individuals towards different regions of the spike protein (S). Neutralizing antibody (NAb) activity was assessed using a commercial surrogate assay, detecting NAbs against the receptor-binding domain (RBD), and a plaque reduction neutralization test. NAb levels were correlated with the reactivity of the antibodies to the spike regions over time. The presence of Abs against nucleoprotein was also determined to rule out the effect of exposure to the virus during the clinical trial in the serological response. A high serological reactivity was observed to S and specifically to S1 and the RBD. S2, although recognized with lower intensity by vaccinated individuals, was the subunit exhibiting the highest cross-reactivity in prepandemic sera. This study is in agreement with the high efficacy reported for the Sputnik V vaccine and shows that this vaccine is able to induce an immunity lasting for at least 180 days. The dissection of the Ab reactivity to different regions of S allowed us to identify the relevance of epitopes outside the RBD that are able to induce NAbs. This research may contribute to the understanding of vaccine immunity against SARS-CoV-2, which could contribute to the design of future vaccine strategies. Full article
(This article belongs to the Special Issue SARS-CoV-2: Immune Response Elicited by Infection or Vaccination)
Show Figures

Figure 1

16 pages, 943 KiB  
Article
Human Antibodies against Herpes Simplex Virus 2 Glycoprotein G Do Not Neutralize but Mediate Antibody-Dependent Cellular Cytotoxicity
by Jan-Åke Liljeqvist, Karin Önnheim, Petra Tunbäck, Kristina Eriksson, Staffan Görander, Malin Bäckström and Tomas Bergström
Antibodies 2024, 13(2), 40; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020040 - 11 May 2024
Viewed by 384
Abstract
Herpes simplex virus 2 (HSV-2) is a sexually transmitted infection affecting 491 million individuals globally. Consequently, there is a great need for both prophylactic and therapeutic vaccines. Unfortunately, several vaccine clinical trials, primarily employing the glycoprotein D of HSV-2 (gD-2), have failed. The [...] Read more.
Herpes simplex virus 2 (HSV-2) is a sexually transmitted infection affecting 491 million individuals globally. Consequently, there is a great need for both prophylactic and therapeutic vaccines. Unfortunately, several vaccine clinical trials, primarily employing the glycoprotein D of HSV-2 (gD-2), have failed. The immune protection conferred by human anti-HSV-2 antibodies in genital infection and disease remains elusive. It is well-known that gD-2 elicits cross-reactive neutralizing antibodies, i.e., anti-gD-2 antibodies recognize gD in HSV-1 (gD-1). In contrast, anti-glycoprotein G in HSV-2 (mgG-2) antibodies are exclusively type-specific for HSV-2. In this study, truncated versions of gD-2 and mgG-2 were recombinantly produced in mammalian cells and used for the purification of anti-gD-2 and anti-mgG-2 antibodies from the serum of five HSV-2-infected subjects, creating a pool of purified antibodies. These antibody pools were utilized as standards together with purified mgG-2 and gD-2 antigens in ELISA to quantitatively estimate and compare the levels of cross-reactive anti-gD-1 and anti-gD-2 antibodies, as well as anti-mgG-2 antibodies in sera from HSV-1+2-, HSV-2-, and HSV-1-infected subjects. The median concentration of anti-mgG-2 antibodies was five times lower in HSV-1+2-infected subjects as compared with cross-reactive anti-gD-1 and anti-gD-2 antibodies, and three times lower in HSV-2 infected subjects as compared with anti-gD-2 antibodies. The pool of purified anti-gD-2 antibodies presented neutralization activity at low concentrations, while the pool of purified anti-mgG-2 antibodies did not. Instead, these anti-mgG-2 antibodies mediated antibody-dependent cellular cytotoxicity (ADCC) by human granulocytes, monocytes, and NK-cells, but displayed no complement-dependent cytotoxicity. These findings indicate that antibodies to mgG-2 in HSV-2-infected subjects are present at low concentrations but mediate the killing of infected cells via ADCC rather than by neutralizing free viral particles. We, and others, speculate that Fc-receptor mediated antibody functions such as ADCC following HSV-2 vaccination may serve as a better marker of protection correlate instead of neutralizing activity. In an mgG-2 therapeutic vaccine, our findings of low levels of anti-mgG-2 antibodies in HSV-2-infected subjects may suggest an opportunity to enhance the immune responses against mgG-2. In a prophylactic HSV-2 mgG-2 vaccine, a possible interference in cross-reactive immune responses in already infected HSV-1 subjects can be circumvented. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

14 pages, 2589 KiB  
Article
Identification of a Fully Human Antibody VH Domain Targeting Anaplastic Lymphoma Kinase (ALK) with Applications in ALK-Positive Solid Tumor Immunotherapy
by Chuan Chen, Zehua Sun, Zening Wang, Seungmin Shin, Abigail Berrios, John W. Mellors, Dimiter S. Dimitrov and Wei Li
Antibodies 2024, 13(2), 39; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020039 - 7 May 2024
Viewed by 360
Abstract
The anaplastic lymphoma kinase (ALK, CD247) is a potential target for antibody-based therapy. However, no antibody-based therapeutics targeting ALK have entered clinical trials, necessitating the development of novel antibodies with unique therapeutic merits. Single-domain antibodies (sdAb) bear therapeutic advantages compared to the full-length [...] Read more.
The anaplastic lymphoma kinase (ALK, CD247) is a potential target for antibody-based therapy. However, no antibody-based therapeutics targeting ALK have entered clinical trials, necessitating the development of novel antibodies with unique therapeutic merits. Single-domain antibodies (sdAb) bear therapeutic advantages compared to the full-length antibody including deeper tumor penetration, cost-effective production and fast washout from normal tissues. In this study, we identified a human immunoglobulin heavy chain variable domain (VH domain) (VH20) from an in-house phage library. VH20 exhibits good developability and high specificity with no off-target binding to ~6000 human membrane proteins. VH20 efficiently bound to the glycine-rich region of ALK with an EC50 of 0.4 nM and a KD of 6.54 nM. Both VH20-based bispecific T cell engager (TCE) and chimeric antigen receptor T cells (CAR Ts) exhibited potent cytolytic activity to ALK-expressing tumor cells in an ALK-dependent manner. VH20 CAR Ts specifically secreted proinflammatory cytokines including IL-2, TNFα and IFNγ after incubation with ALK-positive cells. To our knowledge, this is the first reported human single-domain antibody against ALK. Our in vitro characterization data indicate that VH20 could be a promising ALK-targeting sdAb with potential applications in ALK-expressing tumors, including neuroblastoma (NBL) and non-small cell lung cancer. Full article
Show Figures

Figure 1

22 pages, 16238 KiB  
Article
Structural and Functional Characterization of Medicinal Plants as Selective Antibodies towards Therapy of COVID-19 Symptoms
by Fatemeh Mollaamin
Antibodies 2024, 13(2), 38; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020038 - 7 May 2024
Viewed by 498
Abstract
Considering the COVID-19 pandemic, this research aims to investigate some herbs as probable therapies for this disease. Achillea millefolium (Yarrow), Alkanet, Rumex patientia (Patience dock), Dill, Tarragon, and sweet fennel, including some principal chemical compounds [...] Read more.
Considering the COVID-19 pandemic, this research aims to investigate some herbs as probable therapies for this disease. Achillea millefolium (Yarrow), Alkanet, Rumex patientia (Patience dock), Dill, Tarragon, and sweet fennel, including some principal chemical compounds of achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone have been selected. The possible roles of these medicinal plants in COVID-19 treatment have been investigated through quantum sensing methods. The formation of hydrogen bonding between the principal substances selected in anti-COVID natural drugs and Tyr-Met-His (the database amino acids fragment), as the active area of the COVID protein, has been evaluated. The physical and chemical attributes of nuclear magnetic resonance, vibrational frequency, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy, partial charges, and spin density have been investigated using the DFT/TD-DFT method and 6-311+G (2d,p) basis set by the Gaussian 16 revision C.01 program toward the industry of drug design. This research has exhibited that there is relative agreement among the results that these medicinal plants could be efficient against COVID-19 symptoms. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

25 pages, 3699 KiB  
Article
A Conditionally Activated Cytosol-Penetrating Antibody for TME-Dependent Intracellular Cargo Delivery
by Carolin Sophie Dombrowsky, Dominic Happel, Jan Habermann, Sarah Hofmann, Sasi Otmi, Benny Cohen and Harald Kolmar
Antibodies 2024, 13(2), 37; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020037 - 2 May 2024
Viewed by 860
Abstract
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody [...] Read more.
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells. Full article
Show Figures

Figure 1

19 pages, 4024 KiB  
Article
Balancing the Affinity and Tumor Cell Binding of a Two-in-One Antibody Simultaneously Targeting EGFR and PD-L1
by Julia Harwardt, Felix Klaus Geyer, Katrin Schoenfeld, David Baumstark, Vera Molkenthin and Harald Kolmar
Antibodies 2024, 13(2), 36; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020036 - 2 May 2024
Viewed by 705
Abstract
The optimization of the affinity of monoclonal antibodies is crucial for the development of drug candidates, as it can impact the efficacy of the drug and, thus, the dose and dosing regimen, limit adverse effects, and reduce therapy costs. Here, we present the [...] Read more.
The optimization of the affinity of monoclonal antibodies is crucial for the development of drug candidates, as it can impact the efficacy of the drug and, thus, the dose and dosing regimen, limit adverse effects, and reduce therapy costs. Here, we present the affinity maturation of an EGFR×PD-L1 Two-in-One antibody for EGFR binding utilizing site-directed mutagenesis and yeast surface display. The isolated antibody variants target EGFR with a 60-fold-improved affinity due to the replacement of a single amino acid in the CDR3 region of the light chain. The binding properties of the Two-in-One variants were confirmed using various methods, including BLI measurements, real-time antigen binding measurements on surfaces with a mixture of both recombinant proteins and cellular binding experiments using flow cytometry as well as real-time interaction cytometry. An AlphaFold-based model predicted that the amino acid exchange of tyrosine to glutamic acid enables the formation of a salt bridge to an arginine at EGFR position 165. This easily adaptable approach provides a strategy for the affinity maturation of bispecific antibodies with respect to the binding of one of the two antigens. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

11 pages, 1130 KiB  
Communication
Antibodies against Platelet Glycoproteins in Clinically Suspected VITT Patients
by Romy T. Meier, Leendert Porcelijn, Suzanne Hofstede-van Egmond, Camila Caram-Deelder, Jonathan M. Coutinho, Yvonne M. C. Henskens, Marieke J. H. A. Kruip, An K. Stroobants, Jaap J. Zwaginga, C. Ellen van der Schoot, Masja de Haas and Rick Kapur
Antibodies 2024, 13(2), 35; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020035 - 1 May 2024
Viewed by 561
Abstract
Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare but severe complication following COVID-19 vaccination, marked by thrombocytopenia and thrombosis. Analogous to heparin-induced thrombocytopenia (HIT), VITT shares similarities in anti-platelet factor 4 (PF4) IgG-mediated platelet activation via the FcγRIIa. To investigate the involvement of platelet-antibodies [...] Read more.
Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare but severe complication following COVID-19 vaccination, marked by thrombocytopenia and thrombosis. Analogous to heparin-induced thrombocytopenia (HIT), VITT shares similarities in anti-platelet factor 4 (PF4) IgG-mediated platelet activation via the FcγRIIa. To investigate the involvement of platelet-antibodies in VITT, we analyzed the presence of platelet-antibodies directed against glycoproteins (GP)IIb/IIIa, GPV and GPIb/IX in the serum of 232 clinically suspected VITT patients determined based on (suspicion of) occurrence of thrombocytopenia and/or thrombosis in relation to COVID-19 vaccination. We found that 19% of clinically suspected VITT patients tested positive for anti-platelet GPs: 39%, 32% and 86% patients tested positive for GPIIb/IIIa, GPV and GPIb/IX, respectively. No HIT-like VITT patients (with thrombocytopenia and thrombosis) tested positive for platelet-antibodies. Therefore, it seems unlikely that platelet-antibodies play a role in HIT-like anti-PF4-mediated VITT. Platelet-antibodies were predominantly associated with the occurrence of thrombocytopenia. We found no association between the type of vaccination (adenoviral vector vaccine versus mRNA vaccine) or different vaccines (ChAdOx1 nCoV-19, Ad26.COV2.S, mRNA-1273, BTN162b2) and the development of platelet-antibodies. It is essential to conduct more research on the pathophysiology of VITT, to improve diagnostic approaches and identify preventive and therapeutic strategies. Full article
Show Figures

Figure 1

13 pages, 1414 KiB  
Brief Report
Characterization of a Trispecific PD-L1 Blocking Antibody That Exhibits EGFR-Conditional 4-1BB Agonist Activity
by Laura Rubio-Pérez, Susana Frago, Marta Compte, Rocío Navarro, Seandean L. Harwood, Rodrigo Lázaro-Gorines, Marina Gómez-Rosel, Oana Hangiu, Noelia Silva-Pilipich, Lucía Vanrell, Cristian Smerdou and Luis Álvarez-Vallina
Antibodies 2024, 13(2), 34; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020034 - 24 Apr 2024
Viewed by 787
Abstract
Immune checkpoint blockade has changed the treatment paradigm for advanced solid tumors, but the overall response rates are still limited. The combination of checkpoint blockade with anti-4-1BB antibodies to stimulate tumor-infiltrating T cells has shown anti-tumor activity in human trials. However, the further [...] Read more.
Immune checkpoint blockade has changed the treatment paradigm for advanced solid tumors, but the overall response rates are still limited. The combination of checkpoint blockade with anti-4-1BB antibodies to stimulate tumor-infiltrating T cells has shown anti-tumor activity in human trials. However, the further clinical development of these antibodies has been hampered by significant off-tumor toxicities. Here, we generated an anti-4-1BB/EGFR/PD-L1 trispecific antibody consisting of a triple-targeting tandem trimerbody (TT) fused to an engineered silent Fc region. This antibody (IgTT-4E1-S) was designed to combine the blockade of the PD-L1/PD-1 axis with conditional 4-1BB costimulation specifically confined to the tumor microenvironment (TME). The antibody demonstrated simultaneous binding to purified EGFR, PD-L1, and 4-1BB in solution, effective blockade of the PD-L1/PD1 interaction, and potent 4-1BB-mediated costimulation, but only in the presence of EGFR-expressing cells. These results demonstrate the feasibility of IgTT-4E1-S specifically blocking the PD-L1/PD-1 axis and inducing EGFR-conditional 4-1BB agonist activity. Full article
Show Figures

Graphical abstract

14 pages, 8324 KiB  
Article
Cross-Reactivity of N6AMT1 Antibodies with Aurora Kinase A: An Example of Antibody-Specific Non-Specificity
by Baiba Brūmele, Evgeniia Serova, Aleksandra Lupp, Mihkel Suija, Margit Mutso and Reet Kurg
Antibodies 2024, 13(2), 33; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020033 - 22 Apr 2024
Viewed by 1346
Abstract
Primary antibodies are one of the main tools used in molecular biology research. However, the often-occurring cross-reactivity of primary antibodies complicates accurate data analysis. Our results show that three commercial polyclonal antibodies raised against N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) strongly cross-react with [...] Read more.
Primary antibodies are one of the main tools used in molecular biology research. However, the often-occurring cross-reactivity of primary antibodies complicates accurate data analysis. Our results show that three commercial polyclonal antibodies raised against N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) strongly cross-react with endogenous and recombinant mitosis-associated protein Aurora kinase A (AURKA). The cross-reactivity was verified through immunofluorescence, immunoblot, and immunoprecipitation assays combined with mass spectrometry. N6AMT1 and AURKA are evolutionarily conserved proteins that are vital for cellular processes. Both proteins share the motif ENNPEE, which is unique to only these two proteins. We suggest that N6AMT1 antibodies recognise this motif in N6AMT1 and AURKA proteins and exhibit an example of “specific” non-specificity. This serves as an example of the importance of controls and critical data interpretation in molecular biology research. Full article
Show Figures

Figure 1

19 pages, 676 KiB  
Review
A Narrative Review of the State of the Art of CCR4-Based Therapies in Cutaneous T-Cell Lymphomas: Focus on Mogamulizumab and Future Treatments
by Corrado Zengarini, Alba Guglielmo, Martina Mussi, Giovanna Motta, Claudio Agostinelli, Elena Sabattini, Bianca Maria Piraccini and Alessandro Pileri
Antibodies 2024, 13(2), 32; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020032 - 22 Apr 2024
Viewed by 691
Abstract
The CCR4 receptor is a pivotal target in cutaneous T-cell lymphoma (CTCL) therapy due to its role in impairing immune responses against malignant T-cells and expression profiles. Monoclonal antibodies like mogamulizumab effectively bind to CCR4, reducing tumour burden and enhancing patient outcomes by [...] Read more.
The CCR4 receptor is a pivotal target in cutaneous T-cell lymphoma (CTCL) therapy due to its role in impairing immune responses against malignant T-cells and expression profiles. Monoclonal antibodies like mogamulizumab effectively bind to CCR4, reducing tumour burden and enhancing patient outcomes by inhibiting the receptor’s interaction with ligands, thereby hindering malignant T-cell migration and survival. Combining CCR4 antibodies with chemotherapy, radiation, and other drugs is being explored for synergistic effects. Additionally, small-molecular inhibitors, old pharmacological agents interacting with CCR4, and CAR-T therapies are under investigation. Challenges include drug resistance, off-target effects, and patient selection, addressed through ongoing trials refining protocols and identifying biomarkers. Despite advancements, real-life data for most of the emerging treatments are needed to temper expectations. In conclusion, CCR4-targeted therapies show promise for CTCL management, but challenges persist. Continued research aims to optimise treatments, enhance outcomes, and transform CTCL management. This review aims to elucidate the biological rationale and the several agents under various stages of development and clinical evaluation with the actual known data. Full article
Show Figures

Graphical abstract

17 pages, 3047 KiB  
Article
Fcγ-Receptor-Independent Controlled Activation of CD40 Canonical Signaling by Novel Therapeutic Antibodies for Cancer Therapy
by Karsten Beckmann, Carmen Reitinger, Xianglei Yan, Anna Carle, Eva Blümle, Nicole Jurkschat, Claudia Paulmann, Sandra Prassl, Linda V. Kazandjian, Karin Loré, Falk Nimmerjahn and Stephan Fischer
Antibodies 2024, 13(2), 31; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020031 - 18 Apr 2024
Viewed by 815
Abstract
The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have [...] Read more.
The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

18 pages, 2417 KiB  
Article
Enhanced Characterization of Lysine-Linked Antibody Drug Conjugates Enabled by Middle-Down Mass Spectrometry and Higher-Energy Collisional Dissociation-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation and Ultraviolet Photodissociation
by Eleanor Watts, Aarti Bashyal, Sean D. Dunham, Christopher M. Crittenden and Jennifer S. Brodbelt
Antibodies 2024, 13(2), 30; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020030 - 17 Apr 2024
Viewed by 717
Abstract
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow [...] Read more.
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Graphical abstract

12 pages, 1393 KiB  
Article
Efficient Expression of Functionally Active Aflibercept with Designed N-glycans
by Tahereh Keshvari, Stanislav Melnik, Lin Sun, Ali Niazi, Farzaneh Aram, Ali Moghadam, Benjamin Kogelmann, Gordana Wozniak-Knopp, Somanath Kallolimath, Amin Ramezani and Herta Steinkellner
Antibodies 2024, 13(2), 29; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020029 - 7 Apr 2024
Viewed by 900
Abstract
Aflibercept is a therapeutic recombinant fusion protein comprising extracellular domains of human vascular endothelial growth factor receptors (VEGFRs) and IgG1-Fc. It is a highly glycosylated protein with five N-glycosylation sites that might impact it structurally and/or functionally. Aflibercept is produced in mammalian cells [...] Read more.
Aflibercept is a therapeutic recombinant fusion protein comprising extracellular domains of human vascular endothelial growth factor receptors (VEGFRs) and IgG1-Fc. It is a highly glycosylated protein with five N-glycosylation sites that might impact it structurally and/or functionally. Aflibercept is produced in mammalian cells and exhibits large glycan heterogeneity, which hampers glycan-associated investigations. Here, we report the expression of aflibercept in a plant-based system with targeted N-glycosylation profiles. Nicotiana benthamiana-based glycoengineering resulted in the production of aflibercept variants carrying designed carbohydrates, namely, N-glycans with terminal GlcNAc and sialic acid residues, herein referred to as AFLIGnGn and AFLISia, respectively. Both variants were transiently expressed in unusually high amounts (2 g/kg fresh leaf material) in leaves and properly assembled to dimers. Mass spectrometric site-specific glycosylation analyses of purified aflibercept showed the presence of two to four glycoforms in a consistent manner. We also demonstrate incomplete occupancy of some glycosites. Both AFLIGnGn and AFLISia displayed similar binding potency to VEGF165, with a tendency of lower binding to variants with increased sialylation. Collectively, we show the expression of functionally active aflibercept in significant amounts with controlled glycosylation. The results provide the basis for further studies in order to generate optimized products in the best-case scenario. Full article
Show Figures

Figure 1

17 pages, 1931 KiB  
Review
Beyond bNAbs: Uses, Risks, and Opportunities for Therapeutic Application of Non-Neutralising Antibodies in Viral Infection
by Kahlio Mader and Lynn B. Dustin
Antibodies 2024, 13(2), 28; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020028 - 3 Apr 2024
Viewed by 1006
Abstract
The vast majority of antibodies generated against a virus will be non-neutralising. However, this does not denote an absence of protective capacity. Yet, within the field, there is typically a large focus on antibodies capable of directly blocking infection (neutralising antibodies, NAbs) of [...] Read more.
The vast majority of antibodies generated against a virus will be non-neutralising. However, this does not denote an absence of protective capacity. Yet, within the field, there is typically a large focus on antibodies capable of directly blocking infection (neutralising antibodies, NAbs) of either specific viral strains or multiple viral strains (broadly-neutralising antibodies, bNAbs). More recently, a focus on non-neutralising antibodies (nNAbs), or neutralisation-independent effects of NAbs, has emerged. These can have additive effects on protection or, in some cases, be a major correlate of protection. As their name suggests, nNAbs do not directly neutralise infection but instead, through their Fc domains, may mediate interaction with other immune effectors to induce clearance of viral particles or virally infected cells. nNAbs may also interrupt viral replication within infected cells. Developing technologies of antibody modification and functionalisation may lead to innovative biologics that harness the activities of nNAbs for antiviral prophylaxis and therapeutics. In this review, we discuss specific examples of nNAb actions in viral infections where they have known importance. We also discuss the potential detrimental effects of such responses. Finally, we explore new technologies for nNAb functionalisation to increase efficacy or introduce favourable characteristics for their therapeutic applications. Full article
(This article belongs to the Special Issue Review Collection on Humoral Immunity)
Show Figures

Figure 1

21 pages, 354 KiB  
Review
Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes
by Lindsay E. Bass and Rachel H. Bonami
Antibodies 2024, 13(2), 27; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020027 - 1 Apr 2024
Viewed by 1742
Abstract
Islet autoantibodies predict type 1 diabetes (T1D) but can be transient in murine and human T1D and are not thought to be directly pathogenic. Rather, these autoantibodies signal B cell activity as antigen-presenting cells (APCs) that present islet autoantigen to diabetogenic T cells [...] Read more.
Islet autoantibodies predict type 1 diabetes (T1D) but can be transient in murine and human T1D and are not thought to be directly pathogenic. Rather, these autoantibodies signal B cell activity as antigen-presenting cells (APCs) that present islet autoantigen to diabetogenic T cells to promote T1D pathogenesis. Disrupting B cell APC function prevents T1D in mouse models and has shown promise in clinical trials. Autoantigen-specific B cells thus hold potential as sophisticated T1D biomarkers and therapeutic targets. B cell receptor (BCR) somatic hypermutation is a mechanism by which B cells increase affinity for islet autoantigen. High-affinity B and T cell responses are selected in protective immune responses, but immune tolerance mechanisms are known to censor highly autoreactive clones in autoimmunity, including T1D. Thus, different selection rules often apply to autoimmune disease settings (as opposed to protective host immunity), where different autoantigen affinity ceilings are tolerated based on variations in host genetics and environment. This review will explore what is currently known regarding B cell signaling, selection, and interaction with T cells to promote T1D pathogenesis. Full article
12 pages, 1258 KiB  
Communication
Case Series: Efficacy of Polyclonal Intravenous Immunoglobulin for Refractory Clostridioides difficile Infection
by Sophie A. Ragan, Caitlin Doyle, Neha Datta, Heather Abdic, Mark H. Wilcox, Ros Montgomery, Shanika A. Crusz, Yashwant R. Mahida and Tanya M. Monaghan
Antibodies 2024, 13(2), 26; https://0-doi-org.brum.beds.ac.uk/10.3390/antib13020026 - 1 Apr 2024
Viewed by 931
Abstract
Background: Intravenous immunoglobulin (IVIg) for Clostridioides difficile infection (CDI) no longer features in treatment guidelines. However, IVIg is still used by some clinicians for severe or recurrent CDI (rCDI) cases. The main objective of this study was to investigate the efficacy of IVIg [...] Read more.
Background: Intravenous immunoglobulin (IVIg) for Clostridioides difficile infection (CDI) no longer features in treatment guidelines. However, IVIg is still used by some clinicians for severe or recurrent CDI (rCDI) cases. The main objective of this study was to investigate the efficacy of IVIg and to identify possible predictors of disease resolution post IVIg administration for patients with CDI. Methods: This retrospective observational cohort study of patients ≥2 years old hospitalised with severe, relapsing, or rCDI treated with IVIg therapy was performed in a large UK tertiary hospital between April 2018 and March 2023. Scanned electronic notes from patient admissions and clinical reporting systems were used to collect relevant data. Results: In total, 20/978 patients diagnosed with CDI over the 5-year study were treated with IVIg. Twelve (60%) had hospital-onset CDI. Eleven of the twenty patients (55%) responded to treatment, with a mean of 8.6 (SD 10.7) days to disease resolution. Sixteen (80%) patients were treated for severe CDI and four (20%) for rCDI (n = 3) and relapsing CDI (n = 1). There were no statistically significant differences in possible independent predictors of disease resolution post IVIg administration between groups. There was an average of 6.2 (4.9) days to IVIg administration after diagnosis with no difference between responders and non-responders (p = 0.88) and no further significant difference in additional indicators. Four (36%) of the responders were immunosuppressed compared to just one (11%) of the non-responders (p = 0.15). Six of the responders (two with recurrent and four with severe CDI) improved rapidly within 2 days, and three of these were immunosuppressed. Conclusion: We observed disease resolution post IVIg therapy in over 50% of patients with refractory CDI. Our data also support a potential enhanced effect of IVIg in immunosuppressed individuals. Thus, the role of IVIg for CDI treatment, particularly in the immunosuppressed, warrants future case–control studies coupled to mechanistic investigations to improve care for this ongoing significant healthcare-associated infection. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

Previous Issue
Back to TopTop