Next Issue
Volume 8, December
Previous Issue
Volume 8, June
 
 

Antibodies, Volume 8, Issue 3 (September 2019) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2857 KiB  
Article
A Rabbit Monoclonal Antibody against the Antiviral and Cancer Genomic DNA Mutating Enzyme APOBEC3B
by William L. Brown, Emily K. Law, Prokopios P. Argyris, Michael A. Carpenter, Rena Levin-Klein, Alison N. Ranum, Amy M. Molan, Colleen L. Forster, Brett D. Anderson, Lela Lackey and Reuben S. Harris
Antibodies 2019, 8(3), 47; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030047 - 10 Sep 2019
Cited by 30 | Viewed by 5814
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is normally an antiviral factor in the innate immune response. However, A3B has been implicated in cancer mutagenesis, particularly in solid tumors of the bladder, breast, cervix, head/neck, and lung. Here, we report data on the generation [...] Read more.
The DNA cytosine deaminase APOBEC3B (A3B) is normally an antiviral factor in the innate immune response. However, A3B has been implicated in cancer mutagenesis, particularly in solid tumors of the bladder, breast, cervix, head/neck, and lung. Here, we report data on the generation and characterization of a rabbit monoclonal antibody (mAb) for human A3B. One mAb, 5210-87-13, demonstrates utility in multiple applications, including ELISA, immunoblot, immunofluorescence microscopy, and immunohistochemistry. In head-to-head tests with commercial reagents, 5210-87-13 was the only rabbit monoclonal suitable for detecting native A3B and for immunohistochemical quantification of A3B in tumor tissues. This novel mAb has the potential to enable a wide range of fundamental and clinical studies on A3B in human biology and disease. Full article
Show Figures

Figure 1

16 pages, 2822 KiB  
Article
Optimization of an Antibody Light Chain Framework Enhances Expression, Biophysical Properties and Pharmacokinetics
by Patrice Douillard, Michael Freissmuth, Gerhard Antoine, Michael Thiele, Daniel Fleischanderl, Peter Matthiessen, Dirk Voelkel, Randolf J. Kerschbaumer, Friedrich Scheiflinger and Nicolas Sabarth
Antibodies 2019, 8(3), 46; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030046 - 06 Sep 2019
Cited by 5 | Viewed by 6296
Abstract
Efficacy, safety, and manufacturability of therapeutic antibodies are influenced by their biopharmaceutical and biophysical properties. These properties can be optimized by library approaches or rationale protein design. Here, we employed a protein engineering approach to modify the variable domain of the light chain [...] Read more.
Efficacy, safety, and manufacturability of therapeutic antibodies are influenced by their biopharmaceutical and biophysical properties. These properties can be optimized by library approaches or rationale protein design. Here, we employed a protein engineering approach to modify the variable domain of the light chain (VL) framework of an oxidized macrophage migration inhibitory factor (oxMIF)-specific antibody. The amendment of the antibody sequence was based on homology to human germline VL genes. Three regions or positions were identified in the VL domain—L1-4, L66, L79—and mutated independently or in combination to match the closest germline V gene. None of the mutations altered oxMIF specificity or affinity, but some variants improved thermal stability, aggregation propensity, and resulted in up to five-fold higher expression. Importantly, the improved biopharmaceutical properties translated into a superior pharmacokinetic profile of the antibody. Thus, optimization of the V domain framework can ameliorate the biophysical qualities of a therapeutic antibody candidate, and as result its manufacturability, and also has the potential to improve pharmacokinetics. Full article
(This article belongs to the Special Issue Antibody-Based Therapeutics for Treating Cancer)
Show Figures

Figure 1

19 pages, 2675 KiB  
Article
Back-to-Germline (B2G) Procedure for Antibody Devolution
by Anja Schrade, Alexander Bujotzek, Christian Spick, Martina Wagner, Johannes Goerl, Xenia Wezler, Guy Georges, Roland E. Kontermann and Ulrich Brinkmann
Antibodies 2019, 8(3), 45; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030045 - 26 Aug 2019
Cited by 4 | Viewed by 5640
Abstract
Bispecific antibodies (bsAbs) with avidity-enhanced specificity can be used to address target cells with increased specificity, ideally binding efficiently to cells that express two cognate antigens, yet not to cells that express only one of those. Building blocks required to generate such bsAbs [...] Read more.
Bispecific antibodies (bsAbs) with avidity-enhanced specificity can be used to address target cells with increased specificity, ideally binding efficiently to cells that express two cognate antigens, yet not to cells that express only one of those. Building blocks required to generate such bsAbs are binders that recognize the two antigens with high specificity yet with various (including very low monovalent) affinities. The herein described ‘back-to-germline’ (B2G) procedure defines such derivatives. It converts parent antibodies with high specificity to derivatives that retain specificity but modulate affinity. The approach defines mutations to be introduced into antibody complementarity-determining regions (CDRs) regions without requiring structures of antibody-antigen complexes. Instead, it reverses the B-cell maturation process that increases affinities, with preference on CDR residues with high antigen contact probability. Placing germline residues at those positions generates VH and VL domains and Fv-combinations thereof that retain specificities but are ‘de-matured’ to different degrees. De-maturation influences on-rates and off-rates, and can produce entities with extremely low affinity for which binding can only be detected in bivalent formats. A comparison with alanine replacement in CDRs (so far, the most frequently applied technology) indicates that B2G may be more reliable/predictable without introduction of stickiness or poly-reactivity. The applicability for generating sets of affinity-modulated monospecific variants is exemplarily shown for antibodies that bind CD138, Her2/neu, and EGFR. Full article
Show Figures

Figure 1

21 pages, 1745 KiB  
Review
Phage Display Libraries for Antibody Therapeutic Discovery and Development
by Juan C. Almagro, Martha Pedraza-Escalona, Hugo Iván Arrieta and Sonia Mayra Pérez-Tapia
Antibodies 2019, 8(3), 44; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030044 - 23 Aug 2019
Cited by 88 | Viewed by 22039
Abstract
Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to [...] Read more.
Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies. Full article
(This article belongs to the Special Issue Antibody Phage Display)
Show Figures

Figure 1

30 pages, 1875 KiB  
Review
Design and Production of Bispecific Antibodies
by Qiong Wang, Yiqun Chen, Jaeyoung Park, Xiao Liu, Yifeng Hu, Tiexin Wang, Kevin McFarland and Michael J. Betenbaugh
Antibodies 2019, 8(3), 43; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030043 - 02 Aug 2019
Cited by 146 | Viewed by 32264
Abstract
With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune [...] Read more.
With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential. Full article
(This article belongs to the Special Issue Structure and Function of Antibodies)
Show Figures

Figure 1

16 pages, 2110 KiB  
Article
Selection and Characterization of Monoclonal Antibodies Targeting Middle East Respiratory Syndrome Coronavirus through a Human Synthetic Fab Phage Display Library Panning
by Yoonji Kim, Hansaem Lee, Keunwan Park, Sora Park, Ju-Hyeon Lim, Min Kyung So, Hye-Min Woo, Hyemin Ko, Jeong-Min Lee, Sun Hee Lim, Byoung Joon Ko, Yeon-Su Park, So-Young Choi, Du Hyun Song, Joo-Yeon Lee, Sung Soon Kim and Dae Young Kim
Antibodies 2019, 8(3), 42; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030042 - 31 Jul 2019
Cited by 17 | Viewed by 7948
Abstract
Since its first report in the Middle East in 2012, the Middle East respiratory syndrome-coronavirus (MERS-CoV) has become a global concern due to the high morbidity and mortality of individuals infected with the virus. Although the majority of MERS-CoV cases have been reported [...] Read more.
Since its first report in the Middle East in 2012, the Middle East respiratory syndrome-coronavirus (MERS-CoV) has become a global concern due to the high morbidity and mortality of individuals infected with the virus. Although the majority of MERS-CoV cases have been reported in Saudi Arabia, the overall risk in areas outside the Middle East remains significant as inside Saudi Arabia. Additional pandemics of MERS-CoV are expected, and thus novel tools and reagents for therapy and diagnosis are urgently needed. Here, we used phage display to develop novel monoclonal antibodies (mAbs) that target MERS-CoV. A human Fab phage display library was panned against the S2 subunit of the MERS-CoV spike protein (MERS-S2P), yielding three unique Fabs (S2A3, S2A6, and S2D5). The Fabs had moderate apparent affinities (Half maximal effective concentration (EC50 = 123–421 nM) for MERS-S2P, showed no cross-reactivity to spike proteins from other CoVs, and were non-aggregating and thermostable (Tm = 61.5–80.4 °C). Reformatting the Fabs into IgGs (Immunoglobulin Gs) greatly increased their apparent affinities (KD = 0.17–1.2 nM), presumably due to the effects of avidity. These apparent affinities were notably higher than that of a previously reported anti-MERS-CoV S2 reference mAb (KD = 8.7 nM). Furthermore, two of the three mAbs (S2A3 and S2D5) bound only MERS-CoV (Erasmus Medical Center (EMC)) and not other CoVs, reflecting their high binding specificity. However, the mAbs lacked MERS-CoV neutralizing activity. Given their high affinity, specificity, and desirable stabilities, we anticipate that these anti-MERS-CoV mAbs would be suitable reagents for developing antibody-based diagnostics in laboratory or hospital settings for point-of-care testing. Full article
(This article belongs to the Special Issue Antibody Phage Display)
Show Figures

Figure 1

68 pages, 4837 KiB  
Review
Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells
by William R. Strohl and Michael Naso
Antibodies 2019, 8(3), 41; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030041 - 03 Jul 2019
Cited by 87 | Viewed by 23758
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory [...] Read more.
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment. Full article
(This article belongs to the Special Issue Structure and Function of Antibodies)
Show Figures

Figure 1

17 pages, 3560 KiB  
Article
Integrated Clarification and Purification of Monoclonal Antibodies by Membrane Based Separation of Aqueous Two-Phase Systems
by Thomas Kruse, Axel Schmidt, Markus Kampmann and Jochen Strube
Antibodies 2019, 8(3), 40; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030040 - 02 Jul 2019
Cited by 14 | Viewed by 6470
Abstract
Therapeutic monoclonal antibodies (mAb) are used for the treatment of numerous serious diseases, which have led to an increasing demand over the last decades. Increased cell density and mAb titer of the cultivation broth lead to great challenges for the subsequent clarification and [...] Read more.
Therapeutic monoclonal antibodies (mAb) are used for the treatment of numerous serious diseases, which have led to an increasing demand over the last decades. Increased cell density and mAb titer of the cultivation broth lead to great challenges for the subsequent clarification and capture operations in the downstream process. As an alternative approach to the conventional downstream process, a selective mAb extraction via an aqueous two-phase system (ATPS) directly from the cultivation broth of a mAb producing industrial relevant chinese hamster ovary (CHO) cell line was investigated. An efficient purification of the mAb was accomplished by the ATPS composition. The phase separation was realized by a newly developed membrane based phase separator. Moreover, a complete cell removal was integrated into this process by the used membrane. A selectivity between both phases was achieved by membrane modification. Yields up to 93% in the light phase and removal of process related impurities were obtained after aqueous two-phase extraction (ATPE). Phase separation performance as well as contact angles on the membrane were characterized for different ATPS. ATPE directly from the cultivation broth in combination with the new membrane based phase separation led to a mAb yield of 78% with a simultaneous reduction of deoxyribonucleic acid (DNA) and host cell protein (HCP) load. Full article
Show Figures

Figure 1

13 pages, 2816 KiB  
Article
Dynamic Views of the Fc Region of Immunoglobulin G Provided by Experimental and Computational Observations
by Saeko Yanaka, Rina Yogo, Rintaro Inoue, Masaaki Sugiyama, Satoru G. Itoh, Hisashi Okumura, Yohei Miyanoiri, Hirokazu Yagi, Tadashi Satoh, Takumi Yamaguchi and Koichi Kato
Antibodies 2019, 8(3), 39; https://0-doi-org.brum.beds.ac.uk/10.3390/antib8030039 - 01 Jul 2019
Cited by 26 | Viewed by 7694
Abstract
The Fc portion of immunoglobulin G (IgG) is a horseshoe-shaped homodimer, which interacts with various effector proteins, including Fcγ receptors (FcγRs). These interactions are critically dependent on the pair of N-glycans packed between the two CH2 domains. Fucosylation of these N-glycans [...] Read more.
The Fc portion of immunoglobulin G (IgG) is a horseshoe-shaped homodimer, which interacts with various effector proteins, including Fcγ receptors (FcγRs). These interactions are critically dependent on the pair of N-glycans packed between the two CH2 domains. Fucosylation of these N-glycans negatively affects human IgG1-FcγRIIIa interaction. The IgG1-Fc crystal structures mostly exhibit asymmetric quaternary conformations with divergent orientations of CH2 with respect to CH3. We aimed to provide dynamic views of IgG1-Fc by performing long-timescale molecular dynamics (MD) simulations, which were experimentally validated by small-angle X-ray scattering and nuclear magnetic resonance spectroscopy. Our simulation results indicated that the dynamic conformational ensembles of Fc encompass most of the previously reported crystal structures determined in both free and complex forms, although the major Fc conformers in solution exhibited almost symmetric, stouter quaternary structures, unlike the crystal structures. Furthermore, the MD simulations suggested that the N-glycans restrict the motional freedom of CH2 and endow quaternary-structure plasticity through multiple intramolecular interaction networks. Moreover, the fucosylation of these N-glycans restricts the conformational freedom of the proximal tyrosine residue of functional importance, thereby precluding its interaction with FcγRIIIa. The dynamic views of Fc will provide opportunities to control the IgG interactions for developing therapeutic antibodies. Full article
(This article belongs to the Special Issue Structure and Function of Antibodies)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop