Next Article in Journal
Deep Learning Using Symmetry, FAST Scores, Shape-Based Filtering and Spatial Mapping Integrated with CNN for Large Scale Image Retrieval
Next Article in Special Issue
An Erdős-Ko-Rado Type Theorem via the Polynomial Method
Previous Article in Journal
Likelihood-Based Inference for the Asymmetric Beta-Skew Alpha-Power Distribution
Previous Article in Special Issue
Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind
 
 
Correction published on 26 May 2020, see Symmetry 2020, 12(6), 871.
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials

1
Department of Mathematics, Kwangwoon University, Seoul 139-701, Korea
2
Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O Box 1664, Al Khobar 31952, Kingdom of Saudi Arabia
3
College of Computer and Information Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
4
Department of Mathematics, Integral University Campus, Shahjahanpur 242001, India
*
Author to whom correspondence should be addressed.
Submission received: 20 March 2020 / Revised: 31 March 2020 / Accepted: 2 April 2020 / Published: 13 April 2020
(This article belongs to the Special Issue Current Trends in Symmetric Polynomials with Their Applications Ⅱ)

Abstract

:
Recently, the parametric kind of some well known polynomials have been presented by many authors. In a sequel of such type of works, in this paper, we introduce the two parametric kinds of degenerate poly-Bernoulli and poly-Genocchi polynomials. Some analytical properties of these parametric polynomials are also derived in a systematic manner. We will be able to find some identities of symmetry for those polynomials and numbers.

1. Introduction

Special functions, polynomials and numbers play a prominent role in the study of many areas of mathematics, physics and engineering. In particular, the Appell polynomials and numbers are frequently used in the development of pure and applied mathematics related to functional equations in differential equations, approximation theories, interpolation problems, summation methods, quadrature rules and their multidimensional extensions (see [1] ).The sequence of Appell polynomials A j ( z ) can be signified as follows:
d d z A j ( z ) = j A j 1 ( z ) , A 0 ( z ) 0 , z = η + i ξ C , j N ,
or equivalently
A ( z ) e η z = j = 0 A j ( η ) z j j ! ,
where
A ( z ) = A 0 + A 1 z 1 ! + A 2 z 2 2 ! + + A j z j j ! + , A 0 0 ,
is a formal power series with coefficients A j known as Appell numbers.
The well known degenerate exponential function is defined by (see [2])
e μ η ( z ) = ( 1 + μ z ) η μ , e μ ( z ) = e μ 1 ( z ) , ( μ R ) .
In 1956 and 1979, Carlitz [3,4] introduced and investigated the following degenerate Bernoulli and Euler polynomials:
z e μ ( z ) 1 e μ η ( z ) = z ( 1 + μ z ) 1 μ 1 ( 1 + μ z ) η μ = s = 0 β s ( η ; μ ) z s s ! ,
and
2 e μ ( z ) + 1 e μ η ( z ) = 2 ( 1 + μ z ) 1 μ 1 ( 1 + μ z ) η μ = s = 0 E s ( η ; μ ) z s s ! .
Note that
lim μ 0 β s ( η ; μ ) = B s ( η ) , lim μ 0 E s ( η ; μ ) = E s ( η ) ,
where B s ( η ) and E s ( η ) are the classical Bernoulli and Euler polynomials (see [5,6]).
Lim [7] introduced the degenerate Genocchi polynomials G j ( p ) ( η ; μ ) of order p by means of the undermentioned generating function:
2 z e μ ( z ) + 1 p e μ η ( z ) = 2 z ( 1 + μ z ) 1 μ 1 p ( 1 + μ z ) η μ = j = 0 G j ( p ) ( η ; μ ) z j j ! ,
so that
G j ( p ) ( η ; μ ) = s = 0 j j s G s ( p ) ( μ ) η μ j s .
From Equation (6), we note that
lim μ 0 s = 0 G j ( p ) ( η ; μ ) z j j ! = lim μ 0 2 z ( 1 + μ z ) 1 μ 1 p ( 1 + μ z ) η μ = 2 z e z + 1 p e η z = j = 0 G j ( p ) ( η ) z j j ! ,
where G j ( p ) ( η ) are the generalized Genocchi polynomials of order p (see [8,9,10,11]).
The degenerate poly-Bernoulli and poly-Genocchi polynomials are defined by (see [12,13,14])
Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) = Li k ( 1 e z ) ( 1 + μ z ) 1 μ 1 ( 1 + μ z ) η μ = s = 0 B s ( k ) ( η ; μ ) z s s ! , ( k Z ) ,
and
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) = 2 Li k ( 1 e z ) ( 1 + μ z ) 1 λ + 1 ( 1 + μ z ) η μ = s = 0 G s ( k ) ( η ; μ ) z s s ! , ( k Z ) .
Here, we note that (see [5,15]).
lim μ 0 B s ( k ) ( η ; μ ) = B s ( k ) ( η ) , lim μ 0 G s ( k ) ( η ; μ ) = G s ( k ) ( η ) ,
The Stirling numbers of the first kind are given by (see, [16,17,18])
( a ) s = a ( a 1 ) ( a s + 1 ) = k = 0 s S ( 1 ) ( s , k ) a k , ( k 0 ) ,
and the Stirling numbers of the second kind are defined by (see [19,20])
a s = k = 0 s S ( 2 ) ( k , s ) ( a ) k .
The degenerate Stirling numbers of the of the second kind are defined by (see [10,21,22])
1 k ! ( e μ ( t ) 1 ) k = k = s S μ ( 2 ) ( k , s ) t k k ! , ( k 0 ) .
Note that lim μ 0 S μ ( 2 ) ( k , s ) = S ( 2 ) ( k , s ) , ( s , k 0 ) .
In the year (2017, 2018), Jamei et al. [23,24] introduced the two parametric kinds of exponential functions as follows (see also [6,23,24,25]):
e η z cos ξ z = k = 0 C k ( η , ξ ) z k k ! ,
and
e η z sin ξ z = k = 0 S k ( η , ξ ) z k k ! ,
where
C k ( η , ξ ) = j = 0 [ k 2 ] k 2 j ( 1 ) j η k 2 j ξ 2 j ,
and
S k ( η , ξ ) = j = 0 [ k 1 2 ] k 2 j + 1 ( 1 ) j η k 2 j 1 ξ 2 j + 1 .
Recently, Kim et al. [2] introduced the following degenerate type parametric exponential functions:
e μ η ( z ) cos μ ξ ( z ) = k = 0 C k , μ ( η , ξ ) z k k ! ,
and
e μ η ( z ) sin μ ξ ( z ) = k = 0 S k , μ ( η , ξ ) z k k ! ,
where
C r , μ ( η , ξ ) = k = 0 [ r 2 ] q = 2 k r r q ( 1 ) k μ q 2 k ξ 2 k S 1 ( q , 2 k ) ( η ) r q , μ ,
and
S r , μ ( η , ξ ) = k = 0 [ r 1 2 ] q = 2 k + 1 r r q ( 1 ) k μ q 2 k 1 ξ 2 k + 1 S 1 ( q , 2 k + 1 ) ( η ) r q , μ .
Motivated by the importance and potential applications in certain problems in number theory, combinatorics, classical and numerical analysis and physics, several families of degenerate Bernoulli and Euler polynomials and degenerate versions of special polynomials have been recently studied by many authors, (see [3,4,5,11,12,13,16]). Recently, Kim and Kim [2] have introduced the degenerate Bernoulli and degenerate Euler polynomials of a complex variable. By separating the real and imaginary parts, they introduced the parametric kinds of these degenerate polynomials.
The main object of this article is to present the parametric kinds of degenerate poly-Bernoulli and poly-Genocchi polynomials in terms of the degenerate type parametric exponential functions. We also investigate some fundamental properties of our introduced parametric polynomials.

2. Parametric Kinds of the Degenerate Poly-Bernoulli Polynomials

In this section, we define the two parametric kinds of degenerate poly-Bernoulli polynomials by means of the two special generating functions involving the degenerate exponential as well as trigonometric functions.
It is well known that (see [2])
e ( η + i ξ ) z = e η z e i ξ z = e η z ( cos ξ z + i sin ξ z ) ,
The degenerate trigonometric functions are defined by (see [19])
cos μ z = e μ i ( z ) + e μ i ( z ) 2 , sin μ z = e μ i ( z ) e μ i ( z ) 2 i .
Note that, we have
lim μ 0 cos μ z = cos z , lim μ 0 sin μ z = sin z .
In view of Equation (8), we have
Li k ( 1 e z ) e μ ( z ) 1 e μ η + i ξ ( z ) = j = 0 B j , μ ( k ) ( η + i ξ ) z j j ! ,
and
Li k ( 1 e z ) e μ ( z ) 1 e μ η i ξ ( z ) = j = 0 B j , μ ( k ) ( η i ξ ) z j j ! .
From Equations (23) and (24), we note that
Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) cos μ ξ ( z ) = j = 0 B j , μ ( k ) ( η + i ξ ) + B j , μ ( k ) ( η i ξ ) 2 z j j ! ,
and
Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) sin μ ξ ( z ) = j = 0 B j , μ ( k ) ( η + i ξ ) B j , μ ( k ) ( η i ξ ) 2 i z j j ! .
Definition 1.
The degenerate cosine-poly-Bernoulli polynomials B p , μ ( k , c ) ( η , ξ ) and degenerate sine-poly-Bernoulli polynomials B p , μ ( k , s ) ( η , ξ ) for nonnegative integer p are defined, respectively, by
Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) cos μ ξ ( z ) = p = 0 B p , μ ( k , c ) ( η , ξ ) z p p ! ,
and
Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) sin μ ξ ( z ) = p = 0 B p , μ ( k , s ) ( η , ξ ) z p p ! .
For η = ξ = 0 in Equations (27) and (28), we get
B p , μ ( k , c ) ( 0 , 0 ) = B p , μ ( k ) , B p , μ ( k , s ) ( 0 , 0 ) = 0 , ( p 0 ) .
Note that lim μ 0 B p , μ ( k , c ) ( η , ξ ) = B p ( k , c ) ( η , ξ ) , lim μ 0 B p , μ ( k , s ) ( η , ξ ) = B p ( k , s ) ( η , ξ ) , ( p 0 ) , where B p ( k , c ) ( η , ξ ) and B p ( k , s ) ( η , ξ ) are the new type of poly-Bernoulli polynomials.
Based on Equations (25)–(28), we determine
B p , μ ( k , c ) ( η , ξ ) = B p , μ ( k ) ( η + i ξ ) + B p , μ ( k ) ( η i ξ ) 2 ,
and
B p , μ ( k , s ) ( η , ξ ) = B p , μ ( k ) ( η + i ξ ) B p , μ ( k ) ( η i ξ ) 2 i .
Theorem 1.
Let k Z and j 0 . Then
B j , μ ( k ) ( η + i ξ ) = q = 0 j j q B j q , μ ( k ) ( η ) ( i ξ ) q , μ = q = 0 j j q B j q , μ ( k ) ( η + i ξ ) q , μ ,
and
B j , μ ( k ) ( η i ξ ) = q = 0 j j q B j q , μ ( k ) ( η ) ( 1 ) q ( i ξ ) q , μ = q = 0 j j q B j q , μ ( k ) ( η i ξ ) q , μ .
Proof. 
From Equation (23), we have
j = 0 B j , μ ( k ) ( η + i ξ ) z j j ! = Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) e μ i ξ ( z ) = j = 0 B j , μ ( k ) ( η ) z j j ! q = 0 ( i ξ ) q , μ z q q ! = j = 0 q = 0 j j q B j q , μ ( k ) ( η ) ( i ξ ) q , μ z j j ! .
Similarly, we find
Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) e μ i ξ ( z ) = j = 0 B j , μ ( k ) z j j ! q = 0 ( η + i ξ ) q , μ z q q ! = j = 0 q = 0 j j q B j q , μ ( k ) ( η + i ξ ) q , μ z j j ! .
In view of Equations (33) and (34), we obtain our first claimed result shown in Equation (31). Similarly, we can establish our second result shown in Equation (32).□
Theorem 2.
The following results hold true:
B j , μ ( k , c ) ( η , ξ ) = r = 0 j j r B r , μ ( k ) C j r , μ ( η , ξ ) = r = 0 [ q 2 ] q = 2 r j j q μ q 2 r ( 1 ) r ξ 2 r S ( 1 ) ( q , 2 r ) B j q , μ ( k ) ( η ) ,
and
B j , μ ( k , s ) ( η , ξ ) = r = 0 j j r B r , μ ( k ) S j r , μ ( η , ξ ) = r = 0 [ q 1 2 ] q = 2 r + 1 j j q μ q 2 r 1 ( 1 ) r ξ 2 r + 1 S ( 1 ) ( q , 2 r + 1 ) B j q , μ ( k ) ( η ) .
Proof. 
From Equations (27) and (17), we see
j = 0 B j , μ ( k , c ) ( η , ξ ) z j j ! = Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) cos μ ξ ( z ) = r = 0 B r , μ ( k ) z r r ! j = 0 C j , μ ( η , ξ ) z j j ! = j = 0 r = 0 j j r B r , μ ( k ) C j r , μ ( η , ξ ) z j j ! .
Now, by using Equations (27) and (10), we find
Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) cos μ ξ ( z ) = j = 0 B j , μ ( k ) ( η ) z j j ! p = 0 r = 0 [ q 2 ] μ l 2 r ( 1 ) r y 2 r S ( 1 ) ( q , 2 r ) z r r ! = j = 0 q = 0 j r = 0 [ q 2 ] j q μ q 2 r ( 1 ) r ξ 2 r S ( 1 ) ( q , 2 r ) B j r , μ ( k ) ( η ) z j j ! = j = 0 r = 0 [ q 2 ] q = 2 r j j q μ q 2 r ( 1 ) r ξ 2 r S ( 1 ) ( q , 2 r ) B j q , μ ( k ) ( η ) z j j ! .
Therefore, from Equations (37) and (38), we attain our needed result, Equation (35). Similarly, we can obtain Equation (36).□
Theorem 3.
Each of the following identities holds true:
B r , μ ( 2 , c ) ( η , ξ ) = q = 0 r r q q ! B q q + 1 B r q , μ ( c ) ( η , ξ ) ,
and
B r , μ ( 2 , s ) ( η , ξ ) = q = 0 r r q q ! B q q + 1 B r q , μ ( s ) ( η , ξ ) .
Proof. 
In view of Equation (27), we have
r = 0 B r , μ ( k , c ) ( η , ξ ) z r r ! = Li k ( 1 e z ) e μ ( z ) 1 e μ η ( z ) cos μ ξ ( z ) = e μ η ( z ) cos μ ξ ( z ) e μ ( z ) 1 0 z 1 e u 1 0 u 1 e u 1 · · · 1 e u 1 0 u u e u 1 ( k 1 ) times d u d u .
Upon setting k = 2 , we obtain
r = 0 B r , μ ( 2 , c ) ( η , ξ ) z r r ! = e μ η ( z ) cos μ ξ ( z ) e μ ( z ) 1 0 z u e u 1 d u = q = 0 B q z q ( q + 1 ) e μ η ( z ) cos μ ξ ( z ) e μ ( z ) 1 = q = 0 q ! B q z q ( q + 1 ) q ! r = 0 B r , μ ( c ) ( η , ξ ) z r r ! . = r = 0 q = 0 r r q q ! B q q + 1 B r q , μ ( c ) ( η , ξ ) z r r ! ,
which gives our required result, Equation (39). The proof of Equation (40) is similar; therefore, we omit the proof.□
Theorem 4.
Let k Z , then
B j , μ ( k , c ) ( η , ξ ) = r = 0 j j r q = 1 r + 1 ( 1 ) q + r + 1 l ! S 2 ( r + 1 , q ) q k ( r + 1 ) B j r , μ ( c ) ( η , ξ ) ,
and
B j , μ ( k , s ) ( η , ξ ) = r = 0 j j r q = 1 r + 1 ( 1 ) q + r + 1 q ! S 2 ( r + 1 , q ) q k ( r + 1 ) B j r , μ ( s ) ( η , ξ ) .
Proof. 
From Equations (27) and (11), we see
j = 0 B j , μ ( k , c ) ( η , ξ ) z j j ! = Li k ( 1 e z ) z z e μ η ( z ) cos μ ξ ( z ) e μ ( z ) 1 .
Now
1 z Li k ( 1 e z ) = 1 z q = 1 ( 1 e z ) q q k = 1 z q = 1 ( 1 ) q q k q ! r = l ( 1 ) r S 2 ( r , q ) z r r ! = 1 z r = q q = 1 r ( 1 ) q + r q k q ! S 2 ( r , q ) z r r ! = r = 0 q = 1 q + 1 ( 1 ) q + r + 1 q k l ! S 2 ( r + 1 , q ) r + 1 z r r ! .
On using Equation (45) in (44), we find
j = 0 B j , μ ( k , c ) ( η , ξ ) z j j ! = r = 0 q = 1 r + 1 ( 1 ) q + r + 1 q k l ! S 2 ( r + 1 , q ) r + 1 z r r ! j = 0 B j , μ ( c ) ( η , ξ ) z j j ! .
Replacing j by j r in the right side of above expression and after equating the coefficients of z j , we obtain our needed result, Equation (42). Similarly, we can derive our second result, Equation (43).□
Theorem 5.
The following recurrence relation holds true:
B j , μ ( k , c ) ( η + 1 , ξ ) B j , μ ( k , c ) ( η , ξ ) = r = 1 j j r q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) C j r , μ ( η , ξ ) ,
and
B j , μ ( k , s ) ( η + 1 , ξ ) B j , μ ( k , s ) ( η , ξ ) = r = 1 j j r q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) S j r , μ ( η , ξ ) .
Proof. 
In view of Equation (27), we have
j = 0 B j , μ ( k , c ) ( η + 1 , ξ ) z j j ! j = 0 B j , μ ( k , c ) ( η , ξ ) z j j ! = Li k ( 1 e z ) e μ ( z ) 1 e μ ( η + 1 ) ( z ) cos μ ξ ( z ) Li k ( 1 e z ) e μ ( z ) 1 e μ ( η ) ( z ) cos μ ξ ( z ) = Li k ( 1 e z ) e μ ( η ) ( z ) cos μ ξ ( z ) = q = 0 ( 1 e z ) q + 1 ( q + 1 ) k e μ ( η ) ( z ) cos μ ξ ( z ) = r = 1 q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) z r r ! e μ ( η ) ( z ) cos μ ξ ( z )
= r = 1 q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) z r r ! j = 0 C j , μ ( η , ξ ) z j j ! ,
which upon replacing j by j r in the right side of above expression and after equating the coefficients of z j , yields our first claimed result, Equation (46). Similarly, we can establish our second result, Equation (47).□
Theorem 6.
Let k Z and j 0 , then we have
B j , μ ( k , c ) ( η + γ , ξ ) = r = 0 j j r B j r , μ ( k , c ) ( η , ξ ) ( γ ) r , μ ,
and
B j , μ ( k , s ) ( η + γ , ξ ) = r = 0 j j r B j r , μ ( k , s ) ( η , ξ ) ( γ ) r , μ .
Proof. 
On using Equation (27), we find
j = 0 B j , μ ( k , c ) ( η + γ , ξ ) z j j ! = Li k ( 1 e z ) e μ ( z ) 1 e μ ( η + γ ) ( z ) cos μ ξ ( z ) = j = 0 B j , μ ( k , c ) ( η , ξ ) z j j ! r = 0 ( γ ) r , μ z r r ! = j = 0 r = 0 j j r B j r , μ ( k , c ) ( η , ξ ) ( γ ) r , μ z j j ! .
By comparing the coefficients of z j on both sides, we obtain the result, Equation (48). The proof of Equation (49) is similar to Equation (48).□
Theorem 7.
If k Z and j 0 , then
B j , μ ( k , c ) ( η , ξ ) = r = 0 j q = 0 r j r ( η ) q S μ ( 2 ) ( r , q ) B j r , μ ( k , c ) ( 0 , ξ ) ,
and
B j , μ ( k , s ) ( η , ξ ) = r = 0 j q = 0 r j r ( η ) q S μ ( 2 ) ( r , q ) B j r , μ ( k , s ) ( 0 , ξ ) .
Proof. 
From Equations (27) and (12), we find
j = 0 B j , μ ( k , c ) ( η , ξ ) z j j ! = Li k ( 1 e z ) e μ ( z ) 1 ( e μ ( z ) 1 + 1 ) η cos μ ξ ( z ) = Li k ( 1 e z ) e μ ( z ) 1 q = 0 η q ( e μ ( z ) 1 ) q cos μ ξ ( z ) = Li k ( 1 e z ) e μ ( z ) 1 cos μ ξ ( z ) q = 0 ( η ) q r = q S μ ( 2 ) ( r , q ) z r r ! = j = 0 B j , μ ( k , c ) ( 0 , ξ ) z j j ! r = 0 q = 0 r ( η ) q S μ ( 2 ) ( r , q ) z r r ! = j = 0 r = 0 j q = 0 r j r ( η ) q S μ ( 2 ) ( r , q B j r , μ ( k , c ) ( 0 , ξ ) z j j ! .
On comparing the coefficients of z j on both sides, we obtain our required result, Equation (50). The proof of Equation (51) is similar to Equation (50).□

3. Parametric Kinds of Degenerate Poly-Genocchi Polynomials

In this section, we introduce the two parametric kinds of degenerate poly-Genocchi polynomials by defining the two special generating functions involving the degenerate exponential as well as trigonometric functions.
In view of Equation (9), we have
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η + i ξ ( z ) = j = 0 G j , μ ( k ) ( η + i ξ ) z j j ! ,
and
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η i ξ ( z ) = j = 0 G j , μ ( k ) ( η i ξ ) z j j ! .
From Equations (52) and (53), we can easily get
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) cos μ ξ ( z ) = j = 0 G j , μ ( k ) ( η + i ξ ) + G j , μ ( k ) ( η i ξ ) 2 z j j ! ,
and
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) sin μ ξ ( z ) = j = 0 G j , μ ( k ) ( η + i ξ ) G j , μ ( k ) ( η i ξ ) 2 i z j j ! .
Definition 2.
The degenerate cosine-poly-Genocchi polynomials G j , μ ( k , c ) ( η , ξ ) and degenerate sine-poly-Genocchi polynomials G j , μ ( k , s ) ( η , ξ ) for nonnegative integer j are defined, respectively, by
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) cos μ ξ ( z ) = j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! ,
and
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) sin μ ξ ( z ) = j = 0 G j , μ ( k , s ) ( η , ξ ) z j j ! .
On setting η = ξ = 0 in Equations (56) and (57), we get
G j , μ ( k , c ) ( 0 , 0 ) = G j , μ ( k ) , G j , μ ( k , s ) ( 0 , 0 ) = 0 , ( j 0 ) .
Note that lim μ 0 G j , μ ( k , c ) ( η , ξ ) = G j ( k , c ) ( η , ξ ) , lim μ 0 G j , μ ( k , s ) ( η , ξ ) = G j ( k , s ) ( η , ξ ) , ( j 0 ) , where G n ( k , c ) ( η , ξ ) and G j ( k , s ) ( η , ξ ) are the new type of poly-Genocchi polynomials.
From Equations (54)–(57), we determine
G j , μ ( k , c ) ( η , ξ ) = G j , μ ( k ) ( η + i ξ ) + G j , μ ( k ) ( η i ξ ) 2
and
G j , μ ( k , s ) ( η , ξ ) = G j , μ ( k ) ( η + i ξ ) G j , μ ( k ) ( η i ξ ) 2 i .
Theorem 8.
For k Z and j 0 , we have
G j , μ ( k ) ( η + i ξ ) = q = 0 j j q G j q , μ ( k ) ( η ) ( i ξ ) q , μ = q = 0 j j q G j q , μ ( k ) ( η + i ξ ) q , μ ,
and
G j , μ ( k ) ( η i ξ ) = q = 0 j j q G j q , μ ( k ) ( η ) ( 1 ) q ( i ξ ) q , μ = q = 0 j j q G j q , μ ( k ) ( η i ξ ) q , μ .
Proof. 
On using Equation (52), we see
j = 0 G j , μ ( k ) ( η + i ξ ) z j j ! = 2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) e μ i ξ ( z ) = j = 0 G j , μ ( k ) ( η ) z j j ! q = 0 ( i ξ ) q , μ z q q ! = j = 0 q = 0 j j q G j q , μ ( k ) ( η ) ( i ξ ) q , μ z j j ! .
Similarly, we find
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) e μ i ξ ( z ) = j = 0 G j , μ ( k ) z j j ! q = 0 ( η + i ξ ) q , μ z q q ! = j = 0 q = 0 j j q G j q , μ ( k ) ( η + i ξ ) q , μ z j j ! .
By comparing the coefficients of z j on both sides in Equations (62) and (63), we obtain our desired result, Equation (60). The proof of Equation (61) is similar to Equation (60).□
Theorem 9.
If k Z and j 0 , then
G j , μ ( k , c ) ( η , ξ ) = r = 0 j j r G r , μ ( k ) C j r , μ ( η , ξ ) = r = 0 [ q 2 ] q = 2 r j j q μ q 2 r ( 1 ) r ξ 2 r S ( 1 ) ( q , 2 r ) G j q , μ ( k ) ( ξ ) ,
and
G j , μ ( k , s ) ( η , ξ ) = r = 0 j j r B r , μ ( k ) S j r , μ ( η , ξ ) = r = 0 [ q 1 2 ] q = 2 r + 1 j j q μ q 2 r 1 ( 1 ) r ξ 2 r + 1 S ( 1 ) ( q , 2 r + 1 ) G j q , μ ( k ) ( η ) .
Proof. 
From Equations (56) and (10), we see
j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! = 2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( t ) cos μ ξ ( z ) = r = 0 G r , μ ( k ) z r r ! j = 0 C j , μ ( η , ξ ) z j j ! = j = 0 r = 0 j j r G r , μ ( k ) C j r , μ ( η , ξ ) z j j ! .
Similarly, we find
2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) cos μ ξ ( z ) = j = 0 G j , μ ( k ) ( η ) z j j ! q = 0 r = 0 [ q 2 ] μ q 2 r ( 1 ) r ξ 2 r S ( 1 ) ( q , 2 r ) z r r ! = j = 0 l = 0 j m = 0 [ l 2 ] j l μ l 2 m ( 1 ) m ξ 2 m S ( 1 ) ( q , 2 r ) G j q , μ ( k ) ( η ) z j j ! = j = 0 r = 0 [ q 2 ] q = 2 r j j q μ q 2 r ( 1 ) r ξ 2 r S ( 1 ) ( q , 2 r ) G j q , μ ( k ) ( η ) z j j ! .
By comparing the coefficients of z j on both sides of Equations (66) and (67), we easily get our first claimed result, Equation (64). Similarly, we can establish our second needed result, Equation (65).□
Theorem 10.
Let j 0 . Then, we have
G j , μ ( 2 , c ) ( η , ξ ) = r = 0 j j r r ! B r r + 1 G j r , μ ( c ) ( η , ξ ) ,
and
G j , μ ( 2 , s ) ( η , ξ ) = r = 0 j j r r ! B r r + 1 G j r , μ ( s ) ( η , ξ ) .
Proof. 
By using Equation (56), we determine
j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! = 2 Li k ( 1 e z ) e μ ( z ) + 1 e μ η ( z ) cos μ ξ ( z ) = 2 e μ η ( z ) cos μ ξ ( z ) e μ ( z ) + 1 0 z 1 e u 1 0 u 1 e u 1 · · · 1 e u 1 0 u u e u 1 ( k 1 ) times d u d u .
On setting k = 2 in Equation (70), we find
j = 0 G j , μ ( 2 , c ) ( η , ξ ) z j j ! = 2 e μ η ( z ) cos μ ξ ( z ) e μ ( z ) + 1 0 z u e u 1 d z = r = 0 r ! B r z r ( r + 1 ) r ! 2 z e μ η ( z ) cos μ ξ ( z ) e μ ( z ) + 1 = r = 0 r ! B r z r ( r + 1 ) r ! j = 0 G j , μ ( c ) ( η , ξ ) z j j ! .
On replacing j by j r in the above equation, we obtain
= j = 0 r = 0 j j r r ! B r r + 1 G j r , μ ( c ) ( η , ξ ) z j j ! .
Finally, by equating the coefficients of the like powers of z in the last expression, we get the result, Equation (68). The proof of Equation (69) is similar to Equation (68).□
Theorem 11.
For k Z and j 0 , we have
G j , μ ( k , c ) ( η , ξ ) = r = 0 j j r q = 1 r + 1 ( 1 ) q + r + 1 q ! S 2 ( r + 1 , q ) q k ( r + 1 ) G j r , μ ( c ) ( η , ξ ) ,
and
G j , μ ( k , s ) ( η , ξ ) = r = 0 j j r q = 1 r + 1 ( 1 ) q + r + 1 q ! S 2 ( r + 1 , q ) q k ( r + 1 ) G j r , μ ( s ) ( η , ξ ) .
Proof. 
In view of Equations (56) and (11), we see
j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! = 2 Li k ( 1 e z ) z z e μ η ( z ) cos μ ξ ( z ) e μ ( z ) + 1 .
Now
1 z Li k ( 1 e z ) = 1 z q = 1 ( 1 e z ) q q k = 1 z q = 1 ( 1 ) q q k q ! r = l ( 1 ) r S 2 ( r , q ) z r r ! = 1 z r = 1 q = 1 r ( 1 ) q + r q k q ! S 2 ( r , q ) t r r ! = r = 0 q = 1 r + 1 ( 1 ) q + r + 1 q k q ! S 2 ( r + 1 , q ) q + 1 z r r ! .
Using Equation (74) in (73), we find
j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! = r = 0 q = 1 r + 1 ( 1 ) q + r + 1 q k q ! S 2 ( r + 1 , q ) r + 1 z r r ! j = 0 G j , μ ( c ) ( η , ξ ) z j j ! ,
which on comparing the coefficients of z j on both sides, yields our desired result, Equation (71). Similarly, we can derive our second result, Equation (72).□
Theorem 12.
Let k Z and j 0 , then we have
1 2 G j , μ ( k , c ) ( η + 1 , ξ ) + G j , μ ( k , c ) ( η , ξ ) = r = 1 j j r q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) C j r , μ ( η , ξ ) ,
and
1 2 G j , μ ( k , s ) ( η + 1 , ξ ) + G j , μ ( k , s ) ( η , ξ ) = r = 1 j j r q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) S j r , μ ( η , ξ ) .
Proof. 
Taking
j = 0 G j , μ ( k , c ) ( η + 1 , ξ ) z j j ! + j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! = 2 Li k ( 1 e z ) e μ ( z ) + 1 e μ ( η + 1 ) ( z ) cos μ ξ ( z ) + 2 Li k ( 1 e z ) e μ ( z ) + 1 e μ ( η ) ( z ) cos μ ξ ( z ) = 2 Li k ( 1 e z ) e μ ( η ) ( z ) cos μ ξ ( z ) = q = 0 ( 1 e z ) q + 1 ( q + 1 ) k 2 e μ η ( z ) cos μ ( ξ ) ( z ) = r = 1 q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) z r r ! 2 e μ x ( z ) cos μ ( ξ ) ( z ) = 2 r = 1 q = 0 r 1 ( 1 ) q + r + 1 ( q + 1 ) k ( q + 1 ) ! S 2 ( r , q + 1 ) z r r ! j = 0 C j , μ ( η , ξ ) z j j ! .
On replacing j by j r in the right side of the above equation, and after comparing the coefficients of z j on both sides, we acquire the desired result, Equation (75). Similarly, we can obtain the result, Equation (76).□
Theorem 13.
For k Z and j 0 , we have
G j , μ ( k , c ) ( η + α , ξ ) = m = 0 j j m G j m , μ ( k , c ) ( η , ξ ) ( α ) m , μ ,
and
G j , μ ( k , s ) ( η + α , ξ ) = m = 0 j j m G j m , μ ( k , s ) ( η , ξ ) ( α ) m , μ .
Proof. 
By using Equation (56), we have
j = 0 G j , μ ( k , c ) ( η + α , ξ ) z j j ! = 2 Li k ( 1 e z ) e μ ( z ) + 1 e μ ( η + α ) ( z ) cos μ ( ξ ) ( z )
= j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! m = 0 ( α ) m , μ z m m !
= j = 0 m = 0 j j m G j m , μ ( k , c ) ( η , ξ ) ( α ) m , μ z j j ! .
By comparing the coefficients of z j on both sides in the last expression, we acquire our desired result, Equation (77). Similarly, we can derive our second result, Equation (78).□
Theorem 14.
If k Z and j 0 , then
G j , μ ( k , c ) ( η , ξ ) = r = 0 j q = 0 r j r ( η ) l S μ ( 2 ) ( r , q ) G j r , μ ( k , c ) ( 0 , ξ ) ,
and
G j , μ ( k , s ) ( η , ξ ) = r = 0 j q = 0 r j r ( η ) l S μ ( 2 ) ( r , q ) G j r , μ ( k , s ) ( 0 , ξ ) .
Proof. 
From Equations (56) and (12), we have
j = 0 G j , μ ( k , c ) ( η , ξ ) z j j ! = 2 Li k ( 1 e z ) e μ ( z ) + 1 ( e μ ( z ) 1 + 1 ) η cos μ ξ ( z ) = 2 Li k ( 1 e z ) e μ ( z ) + 1 q = 0 η q ( e μ ( z ) 1 ) q cos μ ξ ( z ) = 2 Li k ( 1 e z ) e μ ( z ) + 1 cos μ ξ ( z ) q = 0 ( η ) q r = q S μ ( 2 ) ( r , q ) z r r ! = j = 0 G j , μ ( k , c ) ( 0 , ξ ) z j j ! r = 0 q = 0 r ( η ) q S μ ( 2 ) ( r , q ) z r r ! = j = 0 r = 0 j q = 0 r j r ( η ) q S μ ( 2 ) ( r , q ) G j r , μ ( k , c ) ( 0 , ξ ) z j j ! .
Finally, by comparing the coefficients of z j on both sides in the last expression, we arrive at our claimed result, Equation (79). Similarly, we can establish our second result, Equation (80).□

4. Conclusions

In the present article, we have considered the parametric kinds of degenerate poly-Bernoulli and poly-Genocchi polynomials by making use of the degenerate type exponential as well as trigonometric functions. We have also derived some analytical properties of our newly introduced parametric polynomials by using the series manipulation technique. Furthermore, it is noticed that, if we consider any Appell polynomials of a complex variable (as discussed in the present article), then we can easily define its parametric kinds by separating the complex variable into real and imaginary parts.

Author Contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MKdVmodified Korteweg–de Vries equation

References

  1. Avram, F.; Taqqu, M.S. Noncentral limit theorems and Appell polynomials. Ann. Probab. 1987, 15, 767–775. [Google Scholar] [CrossRef]
  2. Kim, D.S.; Kim, T.; Lee, H. A note on degenerate Euler and Bernoulli polynomials of complex variable. Symmetry 2019, 11, 1168. [Google Scholar] [CrossRef] [Green Version]
  3. Carlitz, L. Degenerate Stirling Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
  4. Carlitz, L. A degenerate Staud-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
  5. Haroon, H.; Khan, W.A. Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials. Commun. Korean Math. Soc. 2018, 33, 651–669. [Google Scholar]
  6. Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. A new type of Euler polynomials and numbers. Mediterr. J. Math. 2018, 15, 138. [Google Scholar] [CrossRef]
  7. Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569–579. [Google Scholar] [CrossRef] [Green Version]
  8. Khan, W.A. A note on Hermite-based poly-Euler and multi poly-Euler polynomials. Palest. J. Math. 2017, 6, 204–214. [Google Scholar]
  9. Khan, W.A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8, 65–76. [Google Scholar] [CrossRef]
  10. Kim, D. A note on the degenerate type of complex Appell polynomials. Symmetry 2019, 11, 1339. [Google Scholar] [CrossRef] [Green Version]
  11. Ryoo, C.S.; Khan, W.A. On two bivariate kinds of poly-Bernoulli and poly-Genocchi polynomials. Mathematics 2020, 8, 417. [Google Scholar] [CrossRef] [Green Version]
  12. Sharma, S.K. A note on degenerate poly-Genocchi polynomials. Int. J. Adv. Appl. Sci. 2020, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
  13. Kim, D.S.; Kim, T. A note on degenerate poly-Bernoulli numbers polynomials. Adv. Diff. Equat. 2015, 2015, 258. [Google Scholar] [CrossRef] [Green Version]
  14. Sharma, S.K.; Khan, W.A.; Ryoo, C.S. A parametric kind of the degenerate Fubini numbers and polynomials. Mathematics 2020, 8, 405. [Google Scholar] [CrossRef] [Green Version]
  15. Kim, T.; Jang, Y.S.; Seo, J.J. A note on poly-Genocchi numbers and polynomials. Appl. Math. Sci. 2014, 8, 4475–4781. [Google Scholar] [CrossRef] [Green Version]
  16. Kim, T.; Jang, G.-W. A note on degenerate gamma function and degenerate Stirling numbers of the second kind. Adv. Stud. Contemp. Math. 2018, 28, 207–214. [Google Scholar]
  17. Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
  18. Kim, T.; Yao, Y.; Kim, D.S.; Jang, G.-W. Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 2018, 25, 44–58. [Google Scholar] [CrossRef]
  19. Kim, T.; Ryoo, C.S. Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
  20. Kim, T.; Kim, D.S.; Kim, H.Y.; Jang, L.-C. Degenerate poly-Bernoulli number and polynomials. Informatica 2020, 31, 2–8. [Google Scholar]
  21. Kim, T.; Kim, D.S.; Kwon, H.-I. A note on degenerate Stirling numbers and their applications. Proc. Jangjeon Math. Soc. 2018, 21, 195–203. [Google Scholar]
  22. Kim, D. A class of Sheffer sequences of some complex polynomials and their degenerate types. Mathematics 2019, 7, 1064. [Google Scholar] [CrossRef] [Green Version]
  23. Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. An extension of the Euler-Maclaurin quadrature formula using a parametric type of Bernoulli polynomials. Bull. Sci. Math. 2019, 156, 102798. [Google Scholar] [CrossRef]
  24. Masjed-Jamei, M.; Koepf, W. Symbolic computation of some power trigonometric series. J. Symb. Comput. 2017, 80, 273–284. [Google Scholar] [CrossRef]
  25. Masjed-Jamei, M.; Beyki, M.R.; Omey, E. On a parametric kind of Genocchi polynomials. J. Inq. Spec. Funct. 2018, 9, 68–81. [Google Scholar]

Share and Cite

MDPI and ACS Style

Kim, T.; Khan, W.A.; Sharma, S.K.; Ghayasuddin, M. A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials. Symmetry 2020, 12, 614. https://0-doi-org.brum.beds.ac.uk/10.3390/sym12040614

AMA Style

Kim T, Khan WA, Sharma SK, Ghayasuddin M. A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials. Symmetry. 2020; 12(4):614. https://0-doi-org.brum.beds.ac.uk/10.3390/sym12040614

Chicago/Turabian Style

Kim, Taekyun, Waseem A. Khan, Sunil Kumar Sharma, and Mohd Ghayasuddin. 2020. "A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials" Symmetry 12, no. 4: 614. https://0-doi-org.brum.beds.ac.uk/10.3390/sym12040614

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop