Next Issue
Volume 10, March
Previous Issue
Volume 10, January

Biology, Volume 10, Issue 2 (February 2021) – 99 articles

Cover Story (view full-size image): Biodiversity hotspots cover a fraction of the Earth’s surface, yet host several endemic species. Despite efforts to halt the extinction crisis, human-induced biodiversity loss has been increasing globally. The identification of biodiversity hotspots and endemism centres is a valuable tool in conservation prioritization. In Greece, one of the most plant species-rich European countries, it is unclear if the protective network efficiently protects Greek plant diversity, and where its biodiversity hotspots and endemism centres are found. Biodiversity hotspots and endemism centres in Greece are mainly located near mountainous areas, or in areas floristically impoverished, such as the central Aegean islands. The conservation efforts in Greece should focus on the biodiversity hotspots and endemism centres that fall outside the established Greek protected areas, to minimize the extinction risk [...] Read more.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
The Overall Efficacy and Outcomes of Metronomic Tegafur-Uracil Chemotherapy on Locally Advanced Head and Neck Squamous Cell Carcinoma: A Real-World Cohort Experience
Biology 2021, 10(2), 168; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020168 - 23 Feb 2021
Viewed by 425
Abstract
Metronomic chemotherapy inhibits tumor growth by continuous administration of lower-dose chemotherapy. Our study aimed to demonstrate the outcomes of metronomic chemotherapy with tegafur–uracil in locally advanced head and neck squamous cell carcinoma (LA HNSCC). This was a retrospective study including 240 patients with [...] Read more.
Metronomic chemotherapy inhibits tumor growth by continuous administration of lower-dose chemotherapy. Our study aimed to demonstrate the outcomes of metronomic chemotherapy with tegafur–uracil in locally advanced head and neck squamous cell carcinoma (LA HNSCC). This was a retrospective study including 240 patients with LA HNSCC. After standard treatment, 96 patients were further treated with metronomic tegafur-uracil, and 144 patients were not. No statistical differences were found between both groups with regard to sex, clinical stage, or primary treatment choice. There were more hypopharyngeal cancers and more patients with poor clinicopathological features, including lymphovascular invasion, extranodal extension, and positive margins in the tegafur–uracil group. The median follow-up duration was 31.16 months. Overall survival (OS) was not reached in the tegafur–uracil group and was 54.1 months in the control group (p = 0.008). The median disease-free survival (DFS) was 54.5 months in the tegafur–uracil group and 34.4 months in the control group (p = 0.03). Neither group reached distant metastasis-free survival (DMFS, p = 0.02). In patients with LA HNSCC, adding tegafur–uracil as metronomic chemotherapy after either curative surgery with adjuvant chemoradiotherapy or definitive concurrent chemoradiotherapy significantly improved the OS, DFS, and DMFS with tolerable adverse events. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

Open AccessReview
Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs
Biology 2021, 10(2), 167; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020167 - 23 Feb 2021
Viewed by 490
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph­angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal [...] Read more.
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph­angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the “mature” growth factors, which differ in affinity and receptor activation potential. The “default” VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer. Full article
Show Figures

Graphical abstract

Open AccessArticle
Establishing a Percutaneous Infection Model Using Zebrafish and a Salmon Pathogen
Biology 2021, 10(2), 166; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020166 - 22 Feb 2021
Viewed by 478
Abstract
To uncover the relationship between skin bacterial flora and pathogen infection, we developed a percutaneous infection model using zebrafish and Yersinia ruckeri, a pathogen causing enteric redmouth disease in salmon and in trout. Pathogen challenge, either alone or together with pricking by a [...] Read more.
To uncover the relationship between skin bacterial flora and pathogen infection, we developed a percutaneous infection model using zebrafish and Yersinia ruckeri, a pathogen causing enteric redmouth disease in salmon and in trout. Pathogen challenge, either alone or together with pricking by a small needle, did not cause infection of the fish. However, cold stress given by water temperature shift from the optimum 28 °C for zebrafish to 20 °C caused fatal infection of injured fish following pathogen challenge. We investigated the effects of cold stress, injury, and pathogen challenge, alone and in combination, on fish skin bacterial flora using 16S rDNA metagenomics. We found that cold stress drastically altered the skin bacterial flora, which was dominated by Y. ruckeri on infected fish. In addition, fish whose intrinsic skin bacterial flora was disrupted by antibiotics had their skin occupied by Y. ruckeri following a challenge with this pathogen, although the fish survived without injury to create a route for invasion into the fish body. Our results suggest that the intrinsic skin bacterial flora of fish protects them from pathogen colonization, and that its disruption by stress allows pathogens to colonize and dominate their skin. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Graphical abstract

Open AccessArticle
Are There Any Parameters Missing in the Mathematical Models Applied in the Process of Spreading COVID-19?
Biology 2021, 10(2), 165; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020165 - 19 Feb 2021
Viewed by 717
Abstract
On 11 March 2020, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO). As of 12.44 GMT on 15 January 2021, it has produced 93,640,296 cases and 2,004,984 deaths. The use of mathematical modelling was applied in Italy, [...] Read more.
On 11 March 2020, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO). As of 12.44 GMT on 15 January 2021, it has produced 93,640,296 cases and 2,004,984 deaths. The use of mathematical modelling was applied in Italy, Spain, and UK to help in the prediction of this pandemic. We used equations from general and reduced logistic models to describe the epidemic development phenomenon and the trend over time. We extracted this information from the Italian Ministry of Health, the Spanish Ministry of Health, Consumer Affairs, and Social Welfare, and the UK Statistics Authority from 3 February to 30 April 2020. We estimated that, from the seriousness of the phenomenon, the consequent pathology, and the lethal outcomes, the COVID-19 trend relate to the same classic laws that govern epidemics and their evolution. The curve d(t) helps to obtain information on the duration of the epidemic phenomenon, as its evolution is related to the efficiency and timeliness of the system, control, diagnosis, and treatment. In fact, the analysis of this curve, after acquiring the data of the first three weeks, also favors the advantage to formulate forecast hypotheses on the progress of the epidemic. Full article
(This article belongs to the Special Issue Theories and Models on COVID-19 Epidemics)
Show Figures

Figure 1

Open AccessReview
A New Perspective of Pseudomonas—Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont
Biology 2021, 10(2), 164; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020164 - 19 Feb 2021
Viewed by 679
Abstract
Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe–host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating [...] Read more.
Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe–host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating bark beetle bacterial communities and their functions usually meet in a common finding: Pseudomonas is a broadly represented genus within this holobiont and it may provide beneficial roles to its host. Thus, we aimed to review available research on this microbe–host interaction and point out the probable relevance of Pseudomonas strains for these insects, in order to guide future research toward a deeper analysis of the importance of these bacteria for the beetle’s life cycle. Full article
Show Figures

Figure 1

Open AccessReview
Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases
Biology 2021, 10(2), 163; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020163 - 19 Feb 2021
Viewed by 691
Abstract
Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction [...] Read more.
Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction of DDR is also proposed to contribute to more common NDDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we present mechanisms that link DDR with neurodegeneration in rare NDDs caused by defects in the DDR and discuss the relevance for more common age-related neurodegenerative diseases. Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. We compare the strengths and limitations of established model systems to model human NDDs, ranging from C. elegans and mouse models towards advanced stem cell-based 3D models. Full article
(This article belongs to the Special Issue Brain Damage and Repair: From Molecular Effects to CNS Disorders)
Show Figures

Graphical abstract

Open AccessArticle
A Stress Syndrome Prototype Reflects Type 3 Diabetes and Ischemic Stroke Risk: The SABPA Study
Biology 2021, 10(2), 162; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020162 - 18 Feb 2021
Viewed by 605
Abstract
Type 3 diabetes (T3D) accurately reflects that dementia, e.g., Alzheimer’s disease, represents insulin resistance and neurodegeneration in the brain. Similar retinal microvascular changes were observed in Alzheimer’s and chronic stressed individuals. Hence, we aimed to show that chronic stress relates to T3D dementia [...] Read more.
Type 3 diabetes (T3D) accurately reflects that dementia, e.g., Alzheimer’s disease, represents insulin resistance and neurodegeneration in the brain. Similar retinal microvascular changes were observed in Alzheimer’s and chronic stressed individuals. Hence, we aimed to show that chronic stress relates to T3D dementia signs and retinopathy, ultimately comprising a Stress syndrome prototype reflecting risk for T3D and stroke. A chronic stress and stroke risk phenotype (Stressed) score, independent of age, race or gender, was applied to stratify participants (N = 264; aged 44 ± 9 years) into high stress risk (Stressed, N = 159) and low stress risk (non-Stressed, N = 105) groups. We determined insulin resistance using the homeostatic model assessment (HOMA-IR), which is interchangeable with T3D, and dementia risk markers (cognitive executive functioning (cognitiveexe-func); telomere length; waist circumference (WC), neuronal glia injury; neuron-specific enolase/NSE, S100B). Retinopathy was determined in the mydriatic eye. The Stressed group had greater incidence of HOMA-IR in the upper quartile (≥5), larger WC, poorer cognitiveexe-func control, shorter telomeres, consistently raised neuronal glia injury, fewer retinal arteries, narrower arteries, wider veins and a larger optic cup/disc ratio (C/D) compared to the non-Stressed group. Furthermore, of the stroke risk markers, arterial narrowing was related to glaucoma risk with a greater C/D, whilst retinal vein widening was related to HOMA-IR, poor cognitiveexe-func control and neuronal glia injury (Adjusted R2 0.30; p ≤ 0.05). These associations were not evident in the non-Stressed group. Logistic regression associations between the Stressed phenotype and four dementia risk markers (cognitiveexe-func, telomere length, NSE and WC) comprised a Stress syndrome prototype (area under the curve 0.80; sensitivity/specificity 85%/58%; p ≤ 0.001). The Stress syndrome prototype reflected risk for HOMA-IR (odds ratio (OR) 7.72) and retinal glia ischemia (OR 1.27) and vein widening (OR 1.03). The Stressed phenotype was associated with neuronal glia injury and retinal ischemia, potentiating glaucoma risk. The detrimental effect of chronic stress exemplified a Stress syndrome prototype reflecting risk for type 3 diabetes, neurodegeneration and ischemic stroke. Full article
(This article belongs to the Special Issue Microcirculation in Health and Disease)
Show Figures

Graphical abstract

Open AccessReview
Neurotoxicity in Marine Invertebrates: An Update
Biology 2021, 10(2), 161; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020161 - 18 Feb 2021
Viewed by 561
Abstract
Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a [...] Read more.
Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

Open AccessArticle
Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients
Biology 2021, 10(2), 160; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020160 - 17 Feb 2021
Viewed by 448
Abstract
Djulis (Chenopodium formosanum Koidz.) is a species of cereal grain native to Taiwan. It is rich in dietary fibre and antioxidants and therefore reputed to relieve constipation, suppress inflammation, and lower blood glucose. The aim of this study was to investigate the [...] Read more.
Djulis (Chenopodium formosanum Koidz.) is a species of cereal grain native to Taiwan. It is rich in dietary fibre and antioxidants and therefore reputed to relieve constipation, suppress inflammation, and lower blood glucose. The aim of this study was to investigate the composition and physicochemical properties of dietary fibre from djulis hull. Meanwhile, determination of the in vivo antidiabetic effect on patients with type 2 diabetes mellitus (T2DM) after consuming the djulis hull powder. Djulis hull contained dietary fibre 75.21 ± 0.17% dry weight, and insoluble dietary fibre (IDF) reached 71.54 ± 0.27% dry weight. The IDF postponed the adsorption of glucose and reduced the activity of α-amylase. Postprandial blood glucose levels in patients with T2DM showed three different tendencies. First, the area under the glucose curve was significantly lower after ingesting 10 or 5 g djulis hull powder, which then postponed the adsorption of glucose, but the area under the glucose curve was similar with the two doses. After consuming 10 g djulis hull before 75 g glucose 30 and 60 min after the meal, patients with T2DM had blood glucose values that were significantly lower at the same postprandial times than those of patients who did not consume djulis hull. In short, patients who consumed djulis hull prior to glucose administration had decreased blood glucose level compared with those who did not. Djulis hull may have benefits for patients with T2DM. Full article
Show Figures

Figure 1

Open AccessArticle
Intrauterine Infusion of TGF-β1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development
Biology 2021, 10(2), 159; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020159 - 17 Feb 2021
Viewed by 370
Abstract
Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor β1 (TGF-β1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is [...] Read more.
Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor β1 (TGF-β1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is welcomed by the pig industry provided that embryo quality at embryo collection as well as the fertility and prolificacy of the recipients after the ET is increased. This study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, TGF-β1 cytokine in the extender, or the extender alone (control)) by mimicking an ET scenario in so-called “donor” (inseminated) and “recipient” (uninseminated) sows. On day 6 (day 0—onset of estrus), all “donors” were laparotomized to determine their pregnancy status (presence and developmental stage of the embryos). In addition, endometrial explants were collected from pregnant “donors” and cyclic “recipients,” incubated for 24 h, and analyzed for cytokine production. SP infusions (unlike TGF-β1 infusions) positively influenced the developmental stage of day 6 embryos. Infusion treatments differentially influenced the endometrial cytokine production, mainly in donors. We concluded that SP infusions prior to AI not only impacted the porcine preimplantation embryo development but also influenced the endometrial cytokine production six days after treatment, both in donors and recipients. Full article
Show Figures

Figure 1

Open AccessReview
Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle
Biology 2021, 10(2), 158; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020158 - 17 Feb 2021
Viewed by 596
Abstract
Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could [...] Read more.
Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications. Full article
(This article belongs to the Special Issue Linking Soil Biology to Agro-Ecosystems Functional Sustainability)
Show Figures

Figure 1

Open AccessArticle
Chromochloris zofingiensis (Chlorophyceae) Divides by Consecutive Multiple Fission Cell-Cycle under Batch and Continuous Cultivation
Biology 2021, 10(2), 157; https://doi.org/10.3390/biology10020157 - 16 Feb 2021
Viewed by 579
Abstract
Several green algae can divide by multiple fission and spontaneously synchronize their cell cycle with the available light regime. The yields that can be obtained from a microalgal culture are directly affected by cell cycle events. Chromochloris zofingiensis is considered as one of [...] Read more.
Several green algae can divide by multiple fission and spontaneously synchronize their cell cycle with the available light regime. The yields that can be obtained from a microalgal culture are directly affected by cell cycle events. Chromochloris zofingiensis is considered as one of the most promising microalgae for biotechnological applications due to its fast growth and the flexible trophic capabilities. It is intensively investigated in the context of bio-commodities production (carotenoids, storage lipids); however, the pattern of cell-cycle events under common cultivation strategies was not yet characterized for C. zofingiensis. In this study, we have employed fluorescence microscopy to characterize the basic cell-cycle dynamics under batch and continuous modes of phototrophic C. zofingiensis cultivation. Staining with SYBR green—applied in DMSO solution—enabled, for the first time, the clear and simple visualization of polynuclear stages in this microalga. Accordingly, we concluded that C. zofingiensis divides by a consecutive pattern of multiple fission, whereby it spontaneously synchronizes growth and cell division according to the available illumination regime. In high-light continuous culture or low-light batch culture, C. zofingiensis cell-cycle was completed within several light-dark (L/D) cycles (14 h/10 h); however, cell divisions were synchronized with the dark periods only in the high-light continuous culture. In both modes of cultivation, daughter cell release was mainly facilitated by division of 8 and 16-polynuclear cells. The results of this study are of both fundamental and applied science significance and are also important for the development of an efficient nuclear transformation system for C. zofingiensis. Full article
(This article belongs to the Special Issue The Path to Sustainable Production and Application of Algae)
Show Figures

Figure 1

Open AccessArticle
The Effect of Intensive Dietary Intervention on the Level of RANTES and CXCL4 Chemokines in Patients with Non-Obstructive Coronary Artery Disease: A Randomised Study
Biology 2021, 10(2), 156; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020156 - 16 Feb 2021
Viewed by 492
Abstract
Background: Inflammation is the key pathophysiological mechanism of the initiation and progression of atherosclerosis. The study objective was to assess the effects of a dietary intervention based on the model of the dietary approaches to stop hypertension (DASH) diet on the levels of [...] Read more.
Background: Inflammation is the key pathophysiological mechanism of the initiation and progression of atherosclerosis. The study objective was to assess the effects of a dietary intervention based on the model of the dietary approaches to stop hypertension (DASH) diet on the levels of chemokines RANTES and CXCL4 in patients with non-obstructive coronary artery disease. Methods: As part of Dietary Intervention to Stop Coronary Atherosclerosis in Computed Tomography (DISCO-CT) study, patients were randomised to an intervention group (n = 40), where the DASH diet was introduced along with optimal pharmacotherapy, and to a control group (n = 39), with optimal pharmacotherapy alone. In the DASH group, systematic dietary counselling was provided for the follow-up period. RANTES and CXCL4 levels were determined using ELISA. Results: In the DASH group, the RANTES level insignificantly reduced from 42.70 ± 21.1 ng/mL to 38.09 ± 18.5 ng/mL (p = 0.134), and the CXCL4 concentration significantly reduced from 12.38 ± 4.1 ng/mL to 8.36 ± 2.3 ng/mL (p = 0.0001). At the same time, an increase in the level of both chemokines was observed in the control group: RANTES from 34.69 ± 22.7 to 40.94 ± 20.0 ng/mL (p = 0.06) and CXCL4 from 10.98 ± 3.6 to 13.0 5± 4.8 ng/mL (p = 0.009). The difference between the changes in both groups was significant for both RANTES (p = 0.03) and CXCL4 (p = 0.00001). The RANTES/CXCL4 ratio reduced in the control group (from 3.52 ± 2.8 to 3.35 ± 2.8; p = 0.006), while in the DASH group, an increase was observed (from 3.54 ± 1.7 to 4.77 ± 2.4; p = 0.001). Conclusions: A 12-month-long intensive dietary intervention based on DASH diet guidelines as an addition to optimal pharmacotherapy causes changes in the levels of chemokines CXCL4 and RANTES and their mutual relationship in comparison to conventional treatment. Full article
Show Figures

Figure 1

Open AccessArticle
Assessing Scientific Soundness and Translational Value of Animal Studies on DPP4 Inhibitors for Treating Type 2 Diabetes Mellitus
Biology 2021, 10(2), 155; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020155 - 16 Feb 2021
Viewed by 792
Abstract
Although there is a wide range of animal models of type 2 diabetes mellitus (T2DM) used in research; we have limited evidence on their translation value. This paper provides a) a comparison of preclinical animal and clinical results on the effect of five [...] Read more.
Although there is a wide range of animal models of type 2 diabetes mellitus (T2DM) used in research; we have limited evidence on their translation value. This paper provides a) a comparison of preclinical animal and clinical results on the effect of five dipeptidyl peptidase-4 (DPP4) inhibitors by comparing the pharmaceutical caused glucose changes, and b) an evaluation of methodological and reporting standards in T2DM preclinical animal studies. DPP4 inhibitors play an important role in the clinical management of T2DM: if metformin alone is not sufficient enough to control the blood sugar levels, DPP4 inhibitors are often used as second-line therapy; additionally, DPP-4 inhibitors are also used in triple therapies with metformin and sodium-glucose co-transporter-2 (SGLT-2) inhibitors or with metformin and insulin. In our analysis of 124 preclinical studies and 47 clinical trials, (1) we found no evidence of species differences in glucose change response to DPP4 inhibitors, which may suggest that, for this drug class, studies in mice and rats may be equally predictive of how well a drug will work in humans; and (2) there is good reporting of group size, sex, age, euthanasia method and self-reported compliance with animal welfare regulations in animal studies but poor reporting of justification of group size, along with a strong bias towards the use of male animals and young animals. Instead of the common non-transparent model selection, we call for a reflective and evidenced-based assessment of predictive validity of the animal models currently available. Full article
(This article belongs to the Special Issue Preclinical Models in Translational Medicine)
Show Figures

Figure 1

Open AccessArticle
Predicting Hotspots and Prioritizing Protected Areas for Endangered Primate Species in Indonesia under Changing Climate
Biology 2021, 10(2), 154; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020154 - 15 Feb 2021
Viewed by 686
Abstract
Indonesia has a large number of primate diversity where a majority of the species are threatened. In addition, climate change is conservation issues that biodiversity may likely face in the future, particularly among primates. Thus, species-distribution modeling was useful for conservation planning. Herein, [...] Read more.
Indonesia has a large number of primate diversity where a majority of the species are threatened. In addition, climate change is conservation issues that biodiversity may likely face in the future, particularly among primates. Thus, species-distribution modeling was useful for conservation planning. Herein, we present protected areas (PA) recommendations with high nature-conservation importance based on species-richness changes. We performed maximum entropy (Maxent) to retrieve species distribution of 51 primate species across Indonesia. We calculated species-richness change and range shifts to determine the priority of PA for primates under mitigation and worst-case scenarios by 2050. The results suggest that the models have an excellent performance based on seven different metrics. Current primate distributions occupied 65% of terrestrial landscape. However, our results indicate that 30 species of primates in Indonesia are likely to be extinct by 2050. Future primate species richness would be also expected to decline with the alpha diversity ranging from one to four species per 1 km2. Based on our results, we recommend 54 and 27 PA in Indonesia to be considered as the habitat-restoration priority and refugia, respectively. We conclude that species-distribution modeling approach along with the categorical species richness is effectively applicable for assessing primate biodiversity patterns. Full article
(This article belongs to the Special Issue Biodiversity Patterns)
Show Figures

Figure 1

Open AccessArticle
Carfilzomib in Combination with Bortezomib Enhances Apoptotic Cell Death in B16-F1 Melanoma Cells
Biology 2021, 10(2), 153; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020153 - 15 Feb 2021
Viewed by 507
Abstract
Proteasome inhibitors, such as bortezomib (BZ) and carfilzomib (CFZ), have been suggested as treatments for various cancers. To utilize BZ and/or CFZ as effective therapeutics for treating melanoma, we studied their molecular mechanisms using B16-F1 melanoma cells. Flow cytometry of Annexin V-fluorescein isothiocyanate-labeled [...] Read more.
Proteasome inhibitors, such as bortezomib (BZ) and carfilzomib (CFZ), have been suggested as treatments for various cancers. To utilize BZ and/or CFZ as effective therapeutics for treating melanoma, we studied their molecular mechanisms using B16-F1 melanoma cells. Flow cytometry of Annexin V-fluorescein isothiocyanate-labeled cells indicated apoptosis induction by treatment with BZ and CFZ. Apoptosis was evidenced by the activation of various caspases, including caspase 3, 8, 9, and 12. Treatment with BZ and CFZ induced endoplasmic reticulum (ER) stress, as indicated by an increase in eIF2α phosphorylation and the expression of ER stress-associated proteins, including GRP78, ATF6α, ATF4, XBP1, and CCAAT/enhancer-binding protein homologous protein. The effects of CFZ on ER stress and apoptosis were lower than that of BZ. Nevertheless, CFZ and BZ synergistically induced ER stress and apoptosis in B16-F1 cells. Furthermore, the combinational pharmacological interactions of BZ and CFZ against the growth of B16-F1 melanoma cells were assessed by calculating the combination index and dose-reduction index with the CompuSyn software. We found that the combination of CFZ and BZ at submaximal concentrations could obtain dose reduction by exerting synergistic inhibitory effects on cell growth. Moreover, this drug combination reduced tumor growth in C57BL/6 syngeneic mice. Taken together, these results suggest that CFZ in combination with BZ may be a beneficial and potential strategy for melanoma treatment. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

Open AccessCase Report
HHV8-Negative Effusion-Based Large B Cell Lymphoma Arising in Chronic Myeloid Leukemia Patients under Dasatinib Treatment: A Report of Two Cases
Biology 2021, 10(2), 152; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020152 - 14 Feb 2021
Viewed by 577
Abstract
Tyrosine kinase inhibitors (TKIs) are the treatment of choice for BCR-ABL1-positive chronic myeloid leukemia (CML). Although TKIs have substantially improved prognosis of CML patients, their use is not free of adverse effects. Dasatinib is a second generation TKI frequently associated with pleural effusion [...] Read more.
Tyrosine kinase inhibitors (TKIs) are the treatment of choice for BCR-ABL1-positive chronic myeloid leukemia (CML). Although TKIs have substantially improved prognosis of CML patients, their use is not free of adverse effects. Dasatinib is a second generation TKI frequently associated with pleural effusion in up to 33% of patients. This results in symptoms as dyspnea, cough and chest pain that may require therapy discontinuation. In the present report, we describe two exceptional cases of HHV8-negative large B-cell effusion-based lymphoma (EBL) confined to the pleura, incidentally, diagnosed in patients presenting with dasatinib-related pleural effusion. One patient (case 1) is alive and is in remission at 17 months from large B-cell EBL diagnosis while unfortunately the other patient (case 2) died of progressive disease and COVID-19 pneumonia 16 months from large B-cell EBL diagnosis. These cases raise concern about a possible association between large B-cell EBL and dasatinib, and the different clinical outcome of the two cases poses a challenge in treatment decision. For this reason, we strongly recommend cytological investigation in patients with persistent/relapsing pleural effusion under dasatinib, primarily to validate its possible association with lymphoma development and to improve the knowledge about this entity. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

Open AccessArticle
A Novel Ferroptosis-Related Gene Signature Predicts Overall Survival of Breast Cancer Patients
Biology 2021, 10(2), 151; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020151 - 14 Feb 2021
Viewed by 649
Abstract
Breast cancer is the second leading cause of death in women, thus a reliable prognostic model for overall survival (OS) in breast cancer is needed to improve treatment and care. Ferroptosis is an iron-dependent cell death. It is already known that siramesine and [...] Read more.
Breast cancer is the second leading cause of death in women, thus a reliable prognostic model for overall survival (OS) in breast cancer is needed to improve treatment and care. Ferroptosis is an iron-dependent cell death. It is already known that siramesine and lapatinib could induce ferroptosis in breast cancer cells, and some ferroptosis-related genes were closely related with the outcomes of treatments regarding breast cancer. The relationship between these genes and the prognosis of OS remains unclear. The data of gene expression and related clinical information was downloaded from public databases. Based on the TCGA-BRCA cohort, an 8-gene prediction model was established with the least absolute shrinkage and selection operator (LASSO) cox regression, and this model was validated in patients from the METABRIC cohort. Based on the median risk score obtained from the 8-gene model, patients were stratified into high- or low-risk groups. Cox regression analyses identified that the risk score was an independent predictor for OS. The findings from CIBERSORT and ssGSEA presented noticeable differences in enrichment scores for immune cells and pathways between the abovementioned two risk groups. To sum up, this prediction model has potential to be widely applied in future clinical settings. Full article
(This article belongs to the Special Issue Emerging Roles of Ferroptosis in Human Diseases)
Show Figures

Figure 1

Open AccessReview
Clock at the Core of Cancer Development
Biology 2021, 10(2), 150; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020150 - 14 Feb 2021
Viewed by 689
Abstract
To synchronize various biological processes with the day and night cycle, most organisms have developed circadian clocks. This evolutionarily conserved system is important in the temporal regulation of behavior, physiology and metabolism. Multiple pathological changes associated with circadian disruption support the importance of [...] Read more.
To synchronize various biological processes with the day and night cycle, most organisms have developed circadian clocks. This evolutionarily conserved system is important in the temporal regulation of behavior, physiology and metabolism. Multiple pathological changes associated with circadian disruption support the importance of the clocks in mammals. Emerging links have revealed interplay between circadian clocks and signaling networks in cancer. Understanding the cross-talk between the circadian clock and tumorigenesis is imperative for its prevention, management and development of effective treatment options. In this review, we summarize the role of the circadian clock in regulation of one important metabolic pathway, insulin/IGF1/PI3K/mTOR signaling, and how dysregulation of this metabolic pathway could lead to uncontrolled cancer cell proliferation and growth. Targeting the circadian clock and rhythms either with recently discovered pharmaceutical agents or through environmental cues is a new direction in cancer chronotherapy. Combining the circadian approach with traditional methods, such as radiation, chemotherapy or the recently developed, immunotherapy, may improve tumor response, while simultaneously minimizing the adverse effects commonly associated with cancer therapies. Full article
Show Figures

Figure 1

Open AccessArticle
Time-Dependent Pathological Changes in Hypoperfusion-Induced Abdominal Aortic Aneurysm
Biology 2021, 10(2), 149; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020149 - 14 Feb 2021
Viewed by 363
Abstract
Hypoperfusion due to vasa vasorum stenosis can cause wall hypoxia and abdominal aortic aneurysm (AAA) development. Even though hypoperfusion is an important contributor toward pathological changes in AAA, the correlation between hypoperfusion and AAA is not fully understood. In this study, a time-dependent [...] Read more.
Hypoperfusion due to vasa vasorum stenosis can cause wall hypoxia and abdominal aortic aneurysm (AAA) development. Even though hypoperfusion is an important contributor toward pathological changes in AAA, the correlation between hypoperfusion and AAA is not fully understood. In this study, a time-dependent semi-quantitative pathological analysis of hypoperfusion-induced aortic wall changes was performed to understand the mechanisms underlying the gradual degradation of the aortic wall leading to AAA formation. AAA-related factors evaluated in this study were grouped according to the timing of dynamic change, and five groups were formed as follows: first group: angiotensin II type 1 receptor, endothelin-1 (ET-1), and malondialdehyde (MDA); second group: matrix metalloproteinase (MMP)-2, -9, -12, M1 macrophages (Mac387+ cells), and monocyte chemotactic protein-1; third group: synthetic smooth muscle cells (SMCs); fourth group: neutrophil elastase, contractile SMCs, and angiotensinogen; and the fifth group: M2 macrophages (CD163+ cells). Hypoxia-inducible factor-1α, ET-1, MDA, and MMP-9 were colocalized with alpha-smooth muscle actin cells in 3 h, suggesting that hypoperfusion-induced hypoxia directly affects the activities of contractile SMCs in the initial stage of AAA. Time-dependent pathological analysis clarified the cascade of AAA-related factors. These findings provide clues for understanding complicated multistage pathologies in AAA. Full article
(This article belongs to the Special Issue Preclinical Models in Translational Medicine)
Show Figures

Figure 1

Open AccessArticle
Exploring the Gut Microbiome Alteration of the European Hare (Lepus europaeus) after Short-Term Diet Modifications
Biology 2021, 10(2), 148; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020148 - 13 Feb 2021
Viewed by 372
Abstract
This study aimed to characterise the gut microbiome composition of European hares (Lepus europaeus) and its potential changes after a short-term diet modification. The high sensitivity of European hare to habitat changes makes this species a good model to analyse possible [...] Read more.
This study aimed to characterise the gut microbiome composition of European hares (Lepus europaeus) and its potential changes after a short-term diet modification. The high sensitivity of European hare to habitat changes makes this species a good model to analyse possible alterations in gut microbiome after the introduction of additional nourishment into the diet. In total, 20 pairs were chosen for the experiments; 10 pairs formed the control group and were fed with standard fodder. The other 10 pairs represented the experimental group, whose diet was integrated with apples and carrots. The DNA from fresh faecal pellets collected after 4 days from the start of the experiment was extracted and the V3-V4 hypervariable regions were amplified and sequenced using the Illumina MiSeq® platform. The obtained amplicon sequence variants were classified into 735 bacterial genera belonging to 285 families and 36 phyla. The control and the experimental groups appeared to have a homogenous dispersion for the two taxonomic levels analysed with the most abundant phyla represented by Bacteroidetes and Firmicutes. No difference between control and experimental samples was detected, suggesting that the short-term variation in food availability did not alter the hares’ gut microbiome. Further research is needed to estimate significant time threshold. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

Open AccessArticle
Male Sexual Preference for Female Swimming Activity in the Guppy (Poecilia reticulata)
Biology 2021, 10(2), 147; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020147 - 12 Feb 2021
Viewed by 564
Abstract
Mate choice that is based on behavioural traits is a common feature in the animal kingdom. Using the Trinidadian guppy, a species with mutual mate choice, we investigated whether males use female swimming activity—a behavioural trait known to differ consistently among individuals in [...] Read more.
Mate choice that is based on behavioural traits is a common feature in the animal kingdom. Using the Trinidadian guppy, a species with mutual mate choice, we investigated whether males use female swimming activity—a behavioural trait known to differ consistently among individuals in many species—as a trait relevant for their mate choice. In the first experiment, we assessed male and female activity in an open field test alone (two repeated measures) and afterwards in heterosexual pairs (two repeated measures). In these pairs, we simultaneously assessed males’ mating efforts by counting the number of sexual behaviours (courtship displays and copulations). Male and female guppies showed consistent individual differences in their swimming activity when tested both alone and in a pair, and these differences were maintained across both test situations. When controlling for male swimming behaviour and both male and female body size, males performed more courtship displays towards females with higher swimming activity. In a second experiment, we tested for a directional male preference for swimming activity by presenting males video animations of low- and high-active females in a dichotomous choice test. In congruence with experiment 1, we found males to spend significantly more time in association with the high-active female stimulus. Both experiments thus point towards a directional male preference for higher activity levels in females. We discuss the adaptive significance of this preference as activity patterns might indicate individual female quality, health or reproductive state while, mechanistically, females that are more active might be more detectable to males as well. Full article
(This article belongs to the Special Issue The Role of Personality in Sexual Selection)
Show Figures

Figure 1

Open AccessReview
The Role and Expression of Angiogenesis-Related miRNAs in Gastric Cancer
Biology 2021, 10(2), 146; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020146 - 12 Feb 2021
Viewed by 586
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed malignant tumor and the third highest cause of cancer mortality worldwide. For advanced GC, many novel drugs and combinations have been tested, but results are still disappointing, and the disease is incurable in the [...] Read more.
Gastric cancer (GC) is the fifth most frequently diagnosed malignant tumor and the third highest cause of cancer mortality worldwide. For advanced GC, many novel drugs and combinations have been tested, but results are still disappointing, and the disease is incurable in the majority of cases. In this regard, it is critical to investigate the molecular mechanisms underlying GC development. Angiogenesis is one of the hallmarks of cancer with a fundamental role in GC growth and progression. Ramucirumab, a monoclonal antibody that binds to vascular endothelial growth factor-2 (VEGFR-2), is approved in the treatment of advanced and pretreated GC. However, no predictive biomarkers for ramucirumab have been identified so far. Micro RNAs (miRNAs) are a class of evolutionarily-conserved single-stranded non-coding RNAs that play an important role (via post-transcriptional regulation) in essentially all biologic processes, such as cell proliferation, differentiation, apoptosis, survival, invasion, and migration. In our review, we aimed to analyze the available data on the role of angiogenesis-related miRNAs in GC. Full article
Show Figures

Figure 1

Open AccessArticle
In Vivo Hepatoprotective and Nephroprotective Activity of Acylated Iridoid Glycosides from Scrophularia hepericifolia
Biology 2021, 10(2), 145; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020145 - 12 Feb 2021
Viewed by 553
Abstract
Phytochemical investigation of the chloroform fraction obtained from Scrophularia hypericifolia aerial parts led to the isolation of nine acylated iridoid glycosides. The new compounds were identified as 6-O-α-L(2″-acetyl, 3″,4″-di-O-trans-cinnamoyl) rhamnopyranosyl-6′-acetyl catalpol (6′-acetyl hypericifolin A) (1), 6-O-α-L(2″, 4″-diacetyl, 3″-O-trans [...] Read more.
Phytochemical investigation of the chloroform fraction obtained from Scrophularia hypericifolia aerial parts led to the isolation of nine acylated iridoid glycosides. The new compounds were identified as 6-O-α-L(2″-acetyl, 3″,4″-di-O-trans-cinnamoyl) rhamnopyranosyl-6′-acetyl catalpol (6′-acetyl hypericifolin A) (1), 6-O-α-L(2″, 4″-diacetyl, 3″-O-trans-cinnamoyl) rhamnopyranosyl-6′-acetyl catalpol (6′-acetyl hypericifolin B) (2), 6-O-α-L(2″-acetyl, 3″,4″-di-O-trans-cinnamoyl) rhamnopyranosyl catalpol (hypericifolin A) (3) and 6-O-α-L(2″, 4″-diacetyl, 3″-O-trans-cinnamoyl) rhamnopyranosyl catalpol (hypericifolin B) (4). Previously reported compounds were identified as laterioside (5), 8-O-acetylharpagide (6), 6-O-α-L(4′-O-trans-cinnamoyl) rhamnopyranosyl catalpol (7), lagotisoside D (8) and harpagoside (9). Identification achieved via analyses of physical and spectral data including 1D, 2D NMR and High Resolution Electrospray Ionization Mass spectroscopy (HRESIMS). Compounds 24 and 6 were subjected to biological evaluation against paracetamol-induced toxicity. The biochemical parameters aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyl transpeptidase (GGT) as well as total bilirubin were used to access the liver condition. Measurement of serum levels of urea, creatinine, sodium and potassium cations were indicators for kidney condition. Liver and kidney samples were subjected to histopathological study. The best protection was found in the group treated with 3 followed by 4 and 6, while 2 was almost inactive. Full article
Show Figures

Figure 1

Open AccessArticle
Course of Self-Reported Dysphagia, Voice Impairment and Pain in Head and Neck Cancer Survivors
Biology 2021, 10(2), 144; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020144 - 11 Feb 2021
Viewed by 557
Abstract
Background: Head and neck cancer (HNC)-specific symptoms have a substantial impact on health-related quality of life. The aim of this study was to determine whether self-reported dysphagia, voice problems and pain of HNC patients changed over time and whether specific clinical or sociodemographic [...] Read more.
Background: Head and neck cancer (HNC)-specific symptoms have a substantial impact on health-related quality of life. The aim of this study was to determine whether self-reported dysphagia, voice problems and pain of HNC patients changed over time and whether specific clinical or sociodemographic variables were associated with these symptoms. Methods: HNC patients (n = 299) in an outpatient setting answered questionnaires (Eating Assessment Tool-10; questions from the EORTC QLQ-C30 and EORTC H&N35) on dysphagia, voice problems and pain, collected with the software “OncoFunction” at three different timepoints (t1–t3) after diagnosis. The mean score changes from t1 to t3 were expressed in terms of effect sizes d. The impact of sociodemographic and clinical factors on the course of the variables was tested with multivariate analyses of variance. Results: Dysphagia, voice impairment and pain in HNC survivors significantly improved over a period of approximately 14 months after diagnosis. Tumor site, stage, treatment modality, occupational state and ECOG state were significantly correlated with self-reported functional outcome. The pain level of the HNC patients was rather low. Conclusions: Patients suffer from functional impairments after HNC treatment, but an improvement in self-reported symptoms could be demonstrated within this time period. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

Open AccessArticle
Structural Aspects of Potential Endocrine-Disrupting Activity of Stereoisomers for a Common Pesticide Permethrin against Androgen Receptor
Biology 2021, 10(2), 143; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020143 - 11 Feb 2021
Viewed by 374
Abstract
Endocrine-disrupting chemicals (EDCs) are a serious global public health and environmental concern. Pyrethroids are insecticide chemicals that are extensively used for crop protection and household purposes but have been identified as EDCs. On account of their ubiquitous environmental presence, human exposure occurs via [...] Read more.
Endocrine-disrupting chemicals (EDCs) are a serious global public health and environmental concern. Pyrethroids are insecticide chemicals that are extensively used for crop protection and household purposes but have been identified as EDCs. On account of their ubiquitous environmental presence, human exposure occurs via food, dermal, or inhalation routes and is associated with health problems, including reproductive dysfunction. Permethrin is the most commonly used pyrethroid, and with two chiral centers in its structure, it has four stereoisomeric forms (two enantiomer pairs), i.e., permethrin (1R,3R)-cis, permethrin (1R,3S)-trans, permethrin (1S,3S)-cis, and permethrin (1S,3R)-trans. The current study was performed for predicting the potential endocrine-disrupting activity of the aforementioned four stereoisomers of permethrin against the androgen receptor (AR). The structural binding characterization and binding energy estimations in the AR binding pocket were done using induced fit docking. The structural binding data indicated that all stereoisomers were placed stably in the AR binding pocket and that the estimated binding energy values were comparable to the AR native ligand, except for permethrin (1S,3S)-cis. Furthermore, the commonality in the amino acid interactions to that of the AR native ligand and the binding energy values suggested the potential AR-disrupting activity of all the stereoisomers; however, stereoselective differences were not observed. Taken together, the results suggest that human exposure to permethrin, either as a racemate mixture or in individual stereoisomer form, could potentially interfere with AR function, which may lead to male reproductive dysfunction. Full article
Show Figures

Figure 1

Open AccessArticle
A Shorter Equilibration Period Improves Post-Warming Outcomes after Vitrification and in Straw Dilution of In Vitro-Produced Bovine Embryos
Biology 2021, 10(2), 142; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020142 - 10 Feb 2021
Viewed by 448
Abstract
This study was designed to the optimize vitrification and in-straw warming protocol of in vitro-produced bovine embryos by comparing two different equilibration periods, short equilibrium (SE: 3 min) and long equilibrium (LE: 12 min). Outcomes recorded in vitrified day seven (D7) and day [...] Read more.
This study was designed to the optimize vitrification and in-straw warming protocol of in vitro-produced bovine embryos by comparing two different equilibration periods, short equilibrium (SE: 3 min) and long equilibrium (LE: 12 min). Outcomes recorded in vitrified day seven (D7) and day eight (D8) expanded blastocysts were survival and hatching rates, cell counts, apoptosis rate, and gene expression. While survival rates at 3 and 24 h post-warming were reduced (p < 0.05) after vitrification, the hatching rates of D7 embryos vitrified after SE were similar to the rates recorded in fresh non-vitrified blastocysts. The hatching rates of vitrified D8 blastocysts were lower (p < 0.05) than of fresh controls regardless of treatment. Total cell count, and inner cell mass and trophectoderm cell counts were similar in hatched D7 blastocysts vitrified after SE and fresh blastocysts, while vitrified D8 blastocysts yielded lower values regardless of treatment. The apoptosis rate was significantly higher in both treatment groups compared to fresh controls, although rates were lower for SE than LE. No differences emerged in BAX, AQP3, CX43, and IFNτ gene expression between the treatments, whereas a significantly greater abundance of BCL2L1 and SOD1 transcripts was observed in blastocysts vitrified after SE. A shorter equilibration vitrification protocol was found to improve post-warming outcomes and time efficiency after in-straw warming/dilution. Full article
Show Figures

Figure 1

Open AccessArticle
Cytochalasin B-Induced Membrane Vesicles from Human Mesenchymal Stem Cells Overexpressing IL2 Are Able to Stimulate CD8+ T-Killers to Kill Human Triple Negative Breast Cancer Cells
Biology 2021, 10(2), 141; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020141 - 10 Feb 2021
Viewed by 499
Abstract
Interleukin 2 (IL2) was one of the first cytokines used for cancer treatment due to its ability to stimulate anti-cancer immunity. However, recombinant IL2-based therapy is associated with high systemic toxicity and activation of regulatory T-cells, which are associated with the pro-tumor immune [...] Read more.
Interleukin 2 (IL2) was one of the first cytokines used for cancer treatment due to its ability to stimulate anti-cancer immunity. However, recombinant IL2-based therapy is associated with high systemic toxicity and activation of regulatory T-cells, which are associated with the pro-tumor immune response. One of the current trends for the delivery of anticancer agents is the use of extracellular vesicles (EVs), which can carry and transfer biologically active cargos into cells. The use of EVs can increase the efficacy of IL2-based anti-tumor therapy whilst reducing systemic toxicity. In this study, human adipose tissue-derived mesenchymal stem cells (hADSCs) were transduced with lentivirus encoding IL2 (hADSCs-IL2). Membrane vesicles were isolated from hADSCs-IL2 using cytochalasin B (CIMVs-IL2). The effect of hADSCs-IL2 and CIMVs-IL2 on the activation and proliferation of human peripheral blood mononuclear cells (PBMCs) as well as the cytotoxicity of activated PBMCs against human triple negative cancer MDA-MB-231 and MDA-MB-436 cells were evaluated. The effect of CIMVs-IL2 on murine PBMCs was also evaluated in vivo. CIMVs-IL2 failed to suppress the proliferation of human PBMCs as opposed to hADSCs-IL2. However, CIMVs-IL2 were able to activate human CD8+ T-killers, which in turn, killed MDA-MB-231 cells more effectively than hADSCs-IL2-activated CD8+ T-killers. This immunomodulating effect of CIMVs-IL2 appears specific to human CD8+ T-killer cells, as the same effect was not observed on murine CD8+ T-cells. In conclusion, the use of CIMVs-IL2 has the potential to provide a more effective anti-cancer therapy. This compelling evidence supports further studies to evaluate CIMVs-IL2 effectiveness, using cancer mouse models with a reconstituted human immune system. Full article
(This article belongs to the Special Issue Extracellular Vesicles: From Biomarkers to Therapeutic Tools)
Show Figures

Figure 1

Open AccessReview
On Origin and Evolution of the Antibody Molecule
Biology 2021, 10(2), 140; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020140 - 10 Feb 2021
Viewed by 595
Abstract
The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two [...] Read more.
The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two types of Ig domains: the variable domain, which provides the capability to recognize and bind a potentially infinite range of foreign substances, and the constant domains, which exert the effector functions. In the last 20 years, advances in our understanding of the molecular mechanisms and structural features of antibody in mammals and in a variety of other organisms have uncovered the underlying principles and complexity of this fundamental molecule. One notable evolutionary topic is the origin and evolution of antibody. Many aspects have been clearly stated, but some others remain limited or obscure. By considering a wide range of prokaryotic and eukaryotic organisms through a literature survey about the topic, we have provided an integrated view of the emergence of antibodies in evolution and underlined the very ancient origins. Full article
Show Figures

Figure 1

Open AccessArticle
Anthocyanins Are Key Regulators of Drought Stress Tolerance in Tobacco
Biology 2021, 10(2), 139; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10020139 - 10 Feb 2021
Cited by 1 | Viewed by 793
Abstract
Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate [...] Read more.
Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate specialized metabolites that are often correlated with their ability to cope with the stress. Among them, anthocyanins are the most studied intermediates of the phenylpropanoid pathway. However, their role in plant response to abiotic stresses is still under discussion. To better understand the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, we used transgenic tobacco plants (AN1), which over-accumulated anthocyanins in all tissues. AN1 plants showed an altered phenotype in terms of leaf gas exchanges, leaf morphology, anatomy and metabolic profile, which conferred them with a higher drought tolerance compared to the wild-type plants. These results provide important insights for understanding the functional reason for anthocyanin accumulation in plants under stress. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop