Previous Issue
Volume 13, June
 
 

J. Sens. Actuator Netw., Volume 13, Issue 4 (August 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 1222 KiB  
Article
A Nature-Inspired Partial Distance-Based Clustering Algorithm
by Mohammed El Habib Kahla, Mounir Beggas, Abdelkader Laouid and Mohammad Hammoudeh
J. Sens. Actuator Netw. 2024, 13(4), 36; https://0-doi-org.brum.beds.ac.uk/10.3390/jsan13040036 - 21 Jun 2024
Viewed by 233
Abstract
In the rapidly advancing landscape of digital technologies, clustering plays a critical role in the domains of artificial intelligence and big data. Clustering is essential for extracting meaningful insights and patterns from large, intricate datasets. Despite the efficacy of traditional clustering techniques in [...] Read more.
In the rapidly advancing landscape of digital technologies, clustering plays a critical role in the domains of artificial intelligence and big data. Clustering is essential for extracting meaningful insights and patterns from large, intricate datasets. Despite the efficacy of traditional clustering techniques in handling diverse data types and sizes, they encounter challenges posed by the increasing volume and dimensionality of data, as well as the complex structures inherent in high-dimensional spaces. This research recognizes the constraints of conventional clustering methods, including sensitivity to initial centroids, dependence on prior knowledge of cluster counts, and scalability issues, particularly in large datasets and Internet of Things implementations. In response to these challenges, we propose a K-level clustering algorithm inspired by the collective behavior of fish locomotion. K-level introduces a novel clustering approach based on greedy merging driven by distances in stages. This iterative process efficiently establishes hierarchical structures without the need for exhaustive computations. K-level gives users enhanced control over computational complexity, enabling them to specify the number of clusters merged simultaneously. This flexibility ensures accurate and efficient hierarchical clustering across diverse data types, offering a scalable solution for processing extensive datasets within a reasonable timeframe. The internal validation metrics, including the Silhouette Score, Davies–Bouldin Index, and Calinski–Harabasz Index, are utilized to evaluate the K-level algorithm across various types of datasets. Additionally, comparisons are made with rivals in the literature, including UPGMA, CLINK, UPGMC, SLINK, and K-means. The experiments and analyses show that the proposed algorithm overcomes many of the limitations of existing clustering methods, presenting scalable and adaptable clustering in the dynamic landscape of evolving data challenges. Full article
Show Figures

Figure 1

26 pages, 10517 KiB  
Article
Estimation of Vehicle Traffic Parameters Using an Optical Distance Sensor for Use in Smart City Road Infrastructure
by Rafał Burdzik, Ireneusz Celiński, Minvydas Ragulskis, Vinayak Ranjan and Jonas Matijošius
J. Sens. Actuator Netw. 2024, 13(4), 35; https://0-doi-org.brum.beds.ac.uk/10.3390/jsan13040035 - 21 Jun 2024
Viewed by 241
Abstract
In recent decades, the dynamics of road vehicle traffic have significantly evolved, compelling traffic engineers to develop innovative traffic monitoring solutions, especially for dense road networks. Traditional methods for measuring traffic volume along road sections may no longer suffice for modern traffic control [...] Read more.
In recent decades, the dynamics of road vehicle traffic have significantly evolved, compelling traffic engineers to develop innovative traffic monitoring solutions, especially for dense road networks. Traditional methods for measuring traffic volume along road sections may no longer suffice for modern traffic control systems. This is particularly true for induction loops, a widely used method since the last century. In contrast, measuring techniques using microwaves or visible light offer better accuracy but are often hindered by the high cost of sensors. This paper presents new techniques for measuring traffic flow and other parameters that adapt to changing traffic dynamics using low-cost optical distance sensors. Our study demonstrates that the integration of multiple monitoring approaches enhances measurement accuracy, contingent on the dynamics and specific characteristics of the traffic. The results indicate that cheap optical distance sensors are particularly well suited for use in smart city road networks. Full article
(This article belongs to the Section Network Services and Applications)
Show Figures

Figure 1

Previous Issue
Back to TopTop