Next Article in Journal
A Multi-View Ensemble Width-Depth Neural Network for Short-Term Wind Power Forecasting
Next Article in Special Issue
Stability, Periodicity, and Related Problems in Fractional-Order Systems
Previous Article in Journal
Classification of Complete Regular Minimal Surfaces in ℝn with Total Curvature −6π
Previous Article in Special Issue
On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence of Solutions for Coupled Higher-Order Fractional Integro-Differential Equations with Nonlocal Integral and Multi-Point Boundary Conditions Depending on Lower-Order Fractional Derivatives and Integrals

by
Muthaiah Subramanian
1,†,
Jehad Alzabut
2,3,†,
Mohamed I. Abbas
4,†,
Chatthai Thaiprayoon
5,6,*,† and
Weerawat Sudsutad
7,†
1
Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore 641407, India
2
Deparment of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
Department of Industrial Engineering, OSTİM Technical University, 06374 Ankara, Turkey
4
Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
5
Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
6
Center of Excellence in Mathematics, CHE, Sri Ayutthaya Road, Bangkok 10400, Thailand
7
Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Submission received: 15 April 2022 / Revised: 12 May 2022 / Accepted: 20 May 2022 / Published: 25 May 2022

Abstract

:
In this article, we investigate the existence and uniqueness of solutions for a nonlinear coupled system of Liouville–Caputo type fractional integro-differential equations supplemented with non-local discrete and integral boundary conditions. The nonlinearity relies both on the unknown functions and their fractional derivatives and integrals in the lower order. The consequence of existence is obtained utilizing the alternative of Leray–Schauder, while the result of uniqueness is based on the concept of Banach contraction mapping. We introduced the concept of unification in the present work with varying parameters of the multi-point and classical integral boundary conditions. With the help of examples, the main results are well demonstrated.

1. Introduction

In the mathematical modeling of many real-world problems, the study of coupled systems of fractional orders of differential equations (FDEs) has gained significant attention; for example, chaotic system synchronization [1,2], anomalous diffusion [3], ecological models [4], etc. We refer to some papers for some recent results on coupled systems with FDEs [5,6,7,8,9,10,11,12,13]. The use of fractional calculus methods is quite prominent in the mathematical modeling of various processes and phenomena. The main reason is that fractional operators, unlike integer operators, are non-local and able to trace the past effects of the phenomena involved; see [14,15,16,17,18,19] for examples and details. Some researchers have addressed the problem of fractional boundary value problems (BVPs), and a significant trend can be seen in the recent literature; for example, see [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] and the references cited therein. A few authors have recently started investigating coupled fractional BVPs. Ahmad et al. [38] discussed the solvability of the following coupled FDEs with integral boundary conditions:
C D q x ( t ) = f ( t , x ( t ) , y ( t ) ) , C D p y ( t ) = h ( t , x ( t ) , y ( t ) ) , x ( 0 ) = α 0 ξ x ( s ) d s , x ( 1 ) = β 0 1 g ( x ( s ) ) d s , y ( 0 ) = α 1 0 θ y ( s ) d s , y ( 1 ) = β 1 0 1 g ( y ( s ) ) d s , t [ 0 , 1 ] , 1 < q , p 2 , 0 ξ , θ 1 ,
where C D q , C D p denote the Caputo fractional derivatives (CFDs) of order q, p, f, h: [ 0 , 1 ] × R × R R are given continuous functions, and α , β , α 1 , β 1 are real constants. The FDEs with integral and ordinary-fractional flux boundary conditions
C D α x ( t ) = f ( t , x ( t ) , y ( t ) ) , C D β y ( t ) = h ( t , x ( t ) , y ( t ) ) , x ( 0 ) + x ( 1 ) = a 0 1 x ( s ) d s , x ( 0 ) = b C D γ x ( 1 ) , y ( 0 ) + y ( 1 ) = a 1 0 1 y ( s ) d s , y ( 0 ) = b 1 C D δ y ( 1 ) , t [ 0 , 1 ] , 1 < α , β 2 , 0 < γ , δ 1 ,
were discussed in [39], where C D α , C D β , C D γ , C D δ denote the CFDs of order α , β , γ , δ , f, h: [ 0 , 1 ] × R 2 R , are given continuous functions, and a, b, a 1 , b 1 are real constants. Ahmad et al. analyzed in [40] the existence results for coupled system of FDEs:
D α u ( t ) = f ( t , v ( t ) , D p v ( t ) ) , D β v ( t ) = g ( t , u ( t ) , D q u ( t ) ) , u ( 0 ) = 0 , u ( 1 ) = γ u ( η ) , v ( 0 ) = 0 , v ( 1 ) = γ v ( η ) , 0 < t < 1 , 1 < α , β < 2 , 0 < η < 1 ,
where D α , D β , D p , D q denote the Riemann–Liouville fractional derivatives of order α , β , p, q, f, g : [ 0 , 1 ] × R 2 R are given continuous functions, and γ is the real constant. Agarwal et al. [41] analyzed the results with discrete and integral boundary conditions of the existence of coupled fractional-order systems. In fractional BVP involving the Caputo derivatives, Subramanian et al. [42] studied coupled non-local slit-strip conditions.
In this article, we are investigating the existence of solutions for nonlinear coupled Caputo fractional integro-differential equations,
C D ϱ u ( τ ) = f ( τ , u ( τ ) , v ( τ ) , C D ς 1 v ( τ ) , I ξ v ( τ ) ) , τ [ 0 , T ] : = U , C D ς v ( τ ) = g ( τ , u ( τ ) , C D ϱ 1 u ( τ ) , I ζ u ( τ ) , v ( τ ) ) , τ [ 0 , T ] : = U ,
supplemented by nonlocal integral and multi-point boundary conditions,
u ( 0 ) = ψ 1 ( v ) , u ( 0 ) = ϵ 1 0 ν 1 v ( θ ) d θ , u ( 0 ) = 0 , · · · , u n 2 ( 0 ) = 0 , u ( T ) = λ 1 0 δ 1 v ( θ ) d θ + μ 1 j = 1 k 2 ϖ j v ( ϑ j ) , v ( 0 ) = ψ 2 ( u ) , v ( 0 ) = ϵ 2 0 ν 2 u ( θ ) d θ , v ( 0 ) = 0 , · · · , v n 2 ( 0 ) = 0 , v ( T ) = λ 2 0 δ 2 u ( θ ) d θ + μ 2 j = 1 k 2 ω j u ( φ j ) ,
where C D ϱ , C D ς , C D ϱ 1 , C D ς 1 are the Caputo fractional derivatives of order n 1 < ϱ , ς < n , 0 < ϱ 1 , ς 1 < 1 , I ζ , I ξ are the Riemann–Liouville fractional integrals of order ζ , ξ > 0 , f, g: U × R 4 R , ψ 1 , ψ 2 : C ( U , R ) R are given continuous functions, 0 < ν 1 < ν 2 < δ 1 < δ 2 < ϑ 1 < φ 1 < · · · < ϑ n 2 < φ n 2 < T , and ϵ i , λ i , μ i ( i = 1 , 2 ) , ϖ j , ω j ( j = 1 , 2 , , k 2 ) are positive real constants.
The rest of the article is assembled appropriately. In Section 2, we retrieve those concepts for a good reference and prove an auxiliary lemma, which provides the basis for solving the problem. Section 3 presents the primary outcomes, while Section 4, Section 5 and Section 6 provide examples, some important observations, and closing remarks, respectively.

2. Preliminaries

Firstly, we remember some fundamental fractional calculus definitions.
Definition 1.
The fractional integral of order α with the lower limit zero for a function f is defined as
I ϱ f ( τ ) = 1 Γ ( ϱ ) 0 τ f ( s ) ( τ s ) 1 ϱ d s , τ > 0 , ϱ > 0 ,
provided that the right-hand side is point-wise defined on [0.∞), where Γ ( · ) is the gamma function, which is defined by Γ ( ϱ ) = 0 τ ϱ 1 e τ d τ .
Definition 2.
The Riemann–Liouville fractional derivative of order ϱ > 0 , n 1 < ϱ < n , n N is defined as
D 0 + ϱ f ( τ ) = 1 Γ ( n ϱ ) d d τ n 0 τ ( τ s ) n ϱ 1 f ( s ) d s , τ > 0 ,
where the function f has an absolutely continuous derivative up to order ( n 1 ) .
Definition 3.
The Caputo derivative of order ϱ [ n 1 , n ) for a function f : [ 0 , ) ( R ) can be written as
C D 0 + ϱ f ( τ ) = D 0 + ϱ f ( τ ) k = 0 n 1 τ k k ! f ( k ) ( 0 ) , τ > 0 , n 1 < ϱ < n .
Note that the Caputo fractional derivative of order ϱ [ n 1 , n ) exists almost everywhere on [ 0 , ) if f AC n ( [ 0 , ) , ( R ) ) .
Remark 1.
If f C n [ 0 , ) , then
C D 0 + ϱ f ^ ( τ ) = 1 Γ ( n ϱ ) 0 τ f ( n ) ( s ) ( τ s ) ϱ + 1 n d s = I n ϱ f ( n ) ( τ ) , τ > 0 , n 1 < ϱ < n .
Lemma 1.
For any f ^ , g ^ C [ 0 , T ] , the solution of the linear system of FDEs
C D ϱ u ( τ ) = f ^ ( τ ) , τ U , C D ς v ( τ ) = g ^ ( τ ) , τ U ,
supplemented with the boundary conditions (2) is equivalent to the system of integral equations
u ( τ ) = 1 Γ ( ϱ ) 0 τ ( τ θ ) ϱ 1 f ^ ( θ ) d θ + ψ 1 ( v ) [ 1 + κ 1 Λ 4 ( τ ) Λ 3 ( τ ) ] + ψ 2 ( u ) [ κ 2 Λ 3 ( τ ) Λ 4 ( τ ) ] + Λ 2 ( τ ) ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 f ^ ( σ ) d σ d θ + Λ 1 ( τ ) ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 g ^ ( σ ) d σ d θ + Λ 4 ( τ ) [ λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 f ^ ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 f ^ ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 g ^ ( θ ) d θ ] + Λ 3 ( τ ) [ λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 g ^ ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 g ^ ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 f ^ ( θ ) d θ ] ,
and
v ( τ ) = 1 Γ ( ς ) 0 τ ( τ θ ) ς 1 g ^ ( θ ) d θ + ψ 2 ( u ) [ 1 + κ 2 Λ 7 ( τ ) Λ 8 ( τ ) ] + ψ 1 ( v ) [ κ 1 Λ 8 ( τ ) Λ 7 ( τ ) ] + Λ 5 ( τ ) ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 g ^ ( σ ) d σ d θ + Λ 6 ( τ ) ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 f ^ ( σ ) d σ d θ + Λ 7 ( τ ) [ λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 g ^ ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 g ^ ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 f ^ ( θ ) d θ ] + Λ 8 ( τ ) [ λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 f ^ ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 f ^ ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 g ^ ( θ ) d θ ] ,
where
ξ 1 = λ 1 δ 1 2 2 + μ 1 j = 1 k 2 ϖ j ϑ j , ξ 2 = λ 1 δ 1 n n + μ 1 j = 1 k 2 ϖ j ϑ j n 1 , ξ 3 = λ 2 δ 2 2 2 + μ 2 j = 1 k 2 ω j φ j , ξ 4 = λ 2 δ 2 n n + μ 2 j = 1 k 2 ω j φ j n 1 ,
γ ^ 1 = 1 ν 1 ν 2 ϵ 1 ϵ 2 , γ ^ 2 = T 2 ξ 1 ξ 3 , γ ^ 3 = T n ξ 1 ξ 4 , γ ^ 4 = T n 1 ξ 3 ξ 4 T , γ ^ 5 = ξ 1 T n 1 T ξ 2 , γ ^ 6 = T n ξ 2 ξ 3 ,
υ 1 = γ ^ 2 ν 1 ν 2 n 1 ϵ 1 ϵ 2 + γ ^ 1 γ ^ 3 , υ 2 = γ ^ 2 ν 2 n 1 ϵ 2 + γ ^ 1 γ ^ 4 , υ 3 = γ ^ 2 ν 1 n 1 ϵ 1 + γ ^ 1 γ ^ 5 , υ 4 = γ ^ 2 ν 1 n 1 ν 2 ϵ 1 ϵ 2 + γ ^ 1 γ ^ 6 , υ = υ 2 υ 3 υ 1 υ 4 0 ,
η 1 = 1 + ( ν 1 ν 2 n 1 ϵ 2 β 1 ν 1 n 1 β 5 ) ϵ 1 υ , η 2 = ϵ 1 ν 1 + ( ν 1 ν 2 n 1 ϵ 2 β 2 ν 1 n 1 β 6 ) ϵ 1 υ , η 3 = ( ν 1 ν 2 n 1 ϵ 2 β 3 ν 1 n 1 β 7 ) ϵ 1 υ , η 4 = ( ν 1 ν 2 n 1 ϵ 2 β 4 ν 1 n 1 β 8 ) ϵ 1 υ , η 5 = ϵ 2 ν 2 + ( ν 2 n 1 β 1 ϵ 1 ν 1 n 1 ν 2 β 5 ) ϵ 2 υ , η 6 = 1 + ( ν 2 n 1 β 2 ϵ 1 ν 1 n 1 ν 2 β 6 ) ϵ 2 υ , η 7 = ( ν 2 n 1 β 3 ϵ 1 ν 1 n 1 ν 2 β 7 ) ϵ 2 υ , η 8 = ( ν 2 n 1 β 4 ϵ 1 ν 1 n 1 β 8 ν 2 ) ϵ 2 υ ,
β 1 = γ ^ 2 ( υ 4 υ 3 ϵ 2 ν 2 ) , β 2 = ( υ 4 ϵ 1 ν 1 υ 3 ) γ ^ 2 , β 3 = ( υ 3 ξ 3 υ 4 T ) γ ^ 1 , β 4 = γ ^ 1 ( υ 3 T υ 4 ξ 1 ) , β 5 = ( υ 2 υ 1 ϵ 2 ν 2 ) γ ^ 2 , β 6 = ( υ 2 ϵ 1 ν 1 υ 1 ) γ ^ 2 , β 7 = ( υ 1 ξ 3 υ 2 T ) γ ^ 1 , β 8 = γ ^ 1 ( υ 1 T υ 2 ξ 1 ) ,
κ 1 = λ 2 δ 2 + μ 2 j = 1 k 2 ω j , κ 2 = λ 1 δ 1 + μ 1 j = 1 k 2 ϖ j ,
Λ 1 ( τ ) = τ η 1 γ ^ 1 + τ n 1 β 1 υ , Λ 2 ( τ ) = τ η 2 γ ^ 1 + τ n 1 β 2 υ , Λ 3 ( τ ) = τ η 3 γ ^ 1 + τ n 1 β 3 υ , Λ 4 ( τ ) = τ η 4 γ ^ 1 + τ n 1 β 4 υ , Λ 5 ( τ ) = τ η 5 γ ^ 1 τ n 1 β 5 υ , Λ 6 ( τ ) = τ η 6 γ ^ 1 τ n 1 β 6 υ , Λ 7 ( τ ) = τ η 7 γ ^ 1 τ n 1 β 7 υ , Λ 8 ( τ ) = τ η 8 γ ^ 1 τ n 1 β 8 υ .
Proof. 
Solving the FDEs (6) in a standard manner, we get
y ( τ ) = 0 τ ( τ θ ) ϱ 1 Γ ( ϱ ) f ^ ( θ ) d θ + a 0 + a 1 τ + · · · + a n 1 τ n 1 ,
z ( τ ) = 0 τ ( τ θ ) ς 1 Γ ( ς ) g ^ ( θ ) d θ + b 0 + b 1 τ + · · · + b n 1 τ n 1 ,
where a i , b i R , i = 0 , 1 , 2 , · · · , n 1 , are arbitrary constants. Using the boundary conditions (2) in (16) and (17) together with notations (9)–(15), we obtain a 0 = ϕ 1 ( z ) , b 0 = ϕ 2 ( y ) , and
a 1 b 1 ϵ 1 ν 1 b n 1 ϵ 1 ν 1 n 1 = ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 g ^ ( σ ) d σ d θ ,
b 1 a 1 ν 2 ϵ 2 a n 1 ϵ 2 ν 2 n 1 = ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 f ^ ( σ ) d σ d θ ,
a 1 T + a n 1 T n 1 b 1 ξ 1 b n 1 ξ 2 = λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 g ^ ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 g ^ ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 f ^ ( θ ) d θ + κ 2 ϕ 2 ( y ) ϕ 1 ( z ) ,
b 1 T + b n 1 T n 1 a 1 ξ 3 a n 1 ξ 4 = λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 f ^ ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 f ^ ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 g ^ ( θ ) d θ + κ 1 ϕ 1 ( z ) ϕ 2 ( y ) .
Solving the system (18)–(21) for a 1 , a n 1 , b 1 and b n 1 , we get
a 1 = 1 γ ^ 1 [ η 1 ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 g ^ ( σ ) d σ d θ + η 2 ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 f ^ ( σ ) d σ d θ + η 3 ( λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 g ^ ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 g ^ ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 f ^ ( θ ) d θ + κ 2 ϕ 2 ( y ) ϕ 1 ( z ) ) + η 4 ( λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 f ^ ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 f ^ ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 g ^ ( θ ) d θ + κ 1 ϕ 1 ( z ) ϕ 2 ( y ) ) ] , b 1 = 1 γ ^ 1 [ η 5 ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 g ^ ( σ ) d σ d θ + η 6 ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 f ^ ( σ ) d σ d θ + η 7 ( λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 g ^ ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 g ^ ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 f ^ ( θ ) d θ + κ 2 ϕ 2 ( y ) ϕ 1 ( z ) ) + η 8 ( λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 f ^ ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 f ^ ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 g ^ ( θ ) d θ + κ 1 ϕ 1 ( z ) ϕ 2 ( y ) ) ] , a n 1 = 1 υ [ β 1 ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 g ^ ( σ ) d σ d θ + β 2 ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 f ^ ( σ ) d σ d θ + β 3 ( λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 g ^ ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 g ^ ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 f ^ ( θ ) d θ + κ 2 ϕ 2 ( y ) ϕ 1 ( z ) ) + β 4 ( λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 f ^ ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 f ^ ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 g ^ ( θ ) d θ + κ 1 ϕ 1 ( z ) ϕ 2 ( y ) ) ] , b n 1 = 1 υ [ β 5 ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 g ^ ( σ ) d σ d θ + β 6 ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 f ^ ( σ ) d σ d θ + β 7 ( λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 g ^ ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 g ^ ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 f ^ ( θ ) d θ + κ 2 ϕ 2 ( y ) ϕ 1 ( z ) ) + β 8 ( λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 f ^ ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 f ^ ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 g ^ ( θ ) d θ + κ 1 ϕ 1 ( z ) ϕ 2 ( y ) ) ] ,
where γ ^ 1 , υ, η i and β i i = 1 , 2 , · · · , 8 , are given by (10)–(13) respectively. Substituting the values of a 0 , a 1 , a n 1 , b 0 , b 1 and b n 1 , in (16) and (17), we obtain the solutions (7) and (8). □

3. Existence and Uniqueness Results

We define space G = { u | u C ( U , R ) , C D ϱ 1 u C ( U , R ) } equipped with norm u G = u + C D ϱ 1 u = sup τ U | u ( τ ) | + sup τ U | C D ϱ 1 u ( τ ) | . Furthermore, H = { v | v C ( U , R ) , C D ς 1 v C ( U , R ) } equipped with norm v H = v + C D ς 1 v = sup τ U | v ( τ ) | + sup τ U | C D ς 1 v ( τ ) | . Obviously ( G , · G ) and ( H , · H ) are Banach spaces, and thus the product space ( G × H , · G × H ) is a Banach space with norm ( u , v ) G × H = u G + v H for ( u , v ) G × H .
Using Lemma 1, we consider an operator Π : G × H G × H as
Π ( u , v ) ( τ ) = ( Π 1 ( u , v ) ( τ ) , Π 2 ( u , v ) ( τ ) ) ,
where
Π 1 ( u , v ) ( τ ) = 1 Γ ( ϱ ) 0 τ ( τ θ ) ϱ 1 S ^ u ( θ ) d θ + ψ 1 ( v ) [ 1 + κ 1 Λ 4 ( τ ) Λ 3 ( τ ) ] + ψ 2 ( u ) [ κ 2 Λ 3 ( τ ) Λ 4 ( τ ) ] + Λ 2 ( τ ) ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 S ^ u ( σ ) d σ d θ + Λ 1 ( τ ) ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 S ˜ v ( σ ) d σ d θ + Λ 4 ( τ ) [ λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 S ^ u ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 S ^ u ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 S ˜ v ( θ ) d θ ] + Λ 3 ( τ ) [ λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 S ˜ v ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 S ˜ v ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 S ^ u ( θ ) d θ ] ,
and
Π 2 ( u , v ) ( τ ) = 1 Γ ( ς ) 0 τ ( τ θ ) ς 1 S ˜ v ( θ ) d θ + ψ 2 ( u ) [ 1 + κ 2 Λ 7 ( τ ) Λ 8 ( τ ) ] + ψ 1 ( v ) [ κ 1 Λ 8 ( τ ) Λ 7 ( τ ) ] + Λ 5 ( τ ) ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 S ˜ v ( σ ) d σ d θ + Λ 6 ( τ ) ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 S ^ u ( σ ) d σ d θ + Λ 7 ( τ ) [ λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 S ˜ v ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 S ˜ v ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 S ^ u ( θ ) d θ ] + Λ 8 ( τ ) [ λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 S ^ u ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 S ^ u ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 S ˜ v ( θ ) d θ ] .
where
S ^ u ( τ ) = f ( τ , u ( τ ) , v ( τ ) , C D ς 1 v ( τ ) , I ξ v ( τ ) ) , τ U , S ˜ v ( τ ) = g ( τ , u ( τ ) , C D ϱ 1 u ( τ ) , I ζ u ( τ ) , v ( τ ) ) , τ U ,
and Λ i ( i = 1 , 2 , · · · , 8 ) are given by (15). Suitable for computation, we represent
Δ 1 = 1 Γ ( ϱ + 1 ) T ϱ ( 1 + Λ ¯ 3 ) + Λ ¯ 2 ϵ 2 ν 2 ϱ + Λ ¯ 4 λ 2 δ 2 ϱ + 1 ( ϱ + 1 ) + μ 2 j = 1 k 2 ω j φ j ϱ ,
Δ 2 = 1 Γ ( ς + 1 ) T ς Λ ¯ 4 + Λ ¯ 1 ϵ 1 ν 1 ς + Λ ¯ 3 λ 1 δ 1 ς + 1 ( ς + 1 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς ,
Δ 3 = 1 Γ ( ϱ + 1 ) T ϱ Λ ¯ 7 + Λ ¯ 6 ϵ 2 ν 2 ϱ + Λ ¯ 8 λ 2 δ 2 ϱ + 1 ( ϱ + 1 ) + μ 2 j = 1 k 2 ω j φ j ϱ ,
Δ 4 = 1 Γ ( ς + 1 ) T ς ( 1 + Λ ¯ 8 ) + Λ ¯ 5 ϵ 1 ν 1 ς + Λ ¯ 7 λ 1 δ 1 ς + 1 ( ς + 1 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς ,
Δ ^ 1 = 1 Γ ( ϱ + 1 ) ϱ T ϱ 1 + Λ ¯ 3 T ϱ + Λ ¯ 2 ϵ 2 ν 2 ϱ + Λ ¯ 4 λ 2 δ 2 ϱ + 1 ( ϱ + 1 ) + μ 2 j = 1 k 2 ω j φ j ϱ ,
Δ ^ 2 = 1 Γ ( ς + 1 ) T ς Λ ¯ 4 + Λ ¯ 1 ϵ 1 ν 1 ς + Λ ¯ 3 λ 1 δ 1 ς + 1 ( ς + 1 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς ,
Δ ^ 3 = 1 Γ ( ϱ + 1 ) T ϱ Λ ¯ 7 + Λ ¯ 6 ϵ 2 ν 2 ϱ + Λ ¯ 8 λ 2 δ 2 ϱ + 1 ( ϱ + 1 ) + μ 2 j = 1 k 2 ω j φ j ϱ ,
Δ ^ 4 = 1 Γ ( ς + 1 ) ς T ς 1 + Λ ¯ 8 T ς + Λ ¯ 5 ϵ 1 ν 1 ς + Λ ¯ 7 λ 1 δ 1 ς + 1 ( ς + 1 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς ,
Φ 1 = Δ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Δ ^ 1 + Δ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Δ ^ 3 r 0 + Δ 2 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Δ ^ 2 + Δ 4 + T 1 ς 1 Γ ( 2 ς 1 ) Δ ^ 4 s 0 ,
Φ 2 = Δ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Δ ^ 1 + Δ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Δ ^ 3 r 1 + Δ 2 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Δ ^ 2 + Δ 4 + T 1 ς 1 Γ ( 2 ς 1 ) Δ ^ 4 max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) + κ 2 Λ ¯ 3 + Λ ¯ 4 + T 1 ϱ 1 ( κ 2 Λ ¯ 3 + Λ ¯ 4 ) Γ ( 2 ϱ 1 ) + 1 + κ 2 Λ ¯ 7 + Λ ¯ 8 + T 1 ς 1 ( κ 2 Λ ¯ 7 + Λ ¯ 8 ) Γ ( 2 ς 1 ) W 2 ,
Φ 3 = Δ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Δ ^ 1 + Δ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Δ ^ 3 max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) + Δ 2 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Δ ^ 2 + Δ 4 + T 1 ς 1 Γ ( 2 ς 1 ) Δ ^ 4 s 4 + 1 + κ 1 Λ ¯ 4 + Λ ¯ 3 + T 1 ϱ 1 ( κ 1 Λ ¯ 4 + Λ ¯ 3 ) Γ ( 2 ϱ 1 ) + κ 1 Λ ¯ 8 + Λ ¯ 7 + T 1 ς 1 ( κ 1 Λ ¯ 8 + Λ ¯ 7 ) Γ ( 2 ς 1 ) W 1 ,
Ψ 1 = Δ 1 ι 1 V 1 + Δ 2 ι 2 V 2 + ( 1 + κ 1 Λ ¯ 4 + Λ ¯ 3 ) V 1 + ( κ 2 Λ ¯ 3 + Λ ¯ 4 ) V 2 ,
Ψ 2 = Δ ^ 1 ι 1 V 1 + Δ ^ 2 ι 2 V 2 + ( κ 1 Λ ¯ 4 + Λ ¯ 3 ) V 1 + ( κ 2 Λ ¯ 3 + Λ ¯ 4 ) V 2 ,
Ψ 3 = Δ 4 ι 2 V 2 + Δ 3 ι 1 V 1 + ( 1 + κ 2 Λ ¯ 7 + Λ ¯ 8 ) V 2 + ( κ 1 Λ ¯ 8 + Λ ¯ 7 ) V 1 ,
Ψ 4 = Δ ^ 4 ι 2 V 2 + Δ ^ 3 ι 1 V 1 + ( κ 2 Λ ¯ 7 + Λ ¯ 8 ) V 2 + ( κ 1 Λ ¯ 8 + Λ ¯ 7 ) V 1 ,
P 1 = Δ 1 T 1 + Δ 2 T 2 , P 2 = Δ ^ 1 T 1 + Δ ^ 2 T 2 , P 3 = Δ 4 T 2 + Δ 3 T 1 , P 4 = Δ ^ 4 T 2 + Δ ^ 3 T 1 ,
P ¯ = P 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) P 2 , P ^ = P 3 + T 1 ς 1 Γ ( 2 ς 1 ) P 4 ,
Ψ = Ψ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Ψ 2 , Ψ ^ = Ψ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Ψ 4 T 1 = sup τ U f ( τ , 0 , 0 , 0 , 0 ) < , T 2 = sup τ U g ( τ , 0 , 0 , 0 , 0 ) < ,
ι 1 = 1 + T ξ Γ ( ξ + 1 ) , ι 2 = 1 + T ζ Γ ( ζ + 1 ) ,
where Λ ¯ i = max τ H | Λ i ( τ ) | and Λ ¯ i = max τ H | Λ i ( τ ) | i = 1 , 2 , · · · , 8 . We need the following assumptions in the forthcoming analysis: f, g : U × R 4 R and ψ 1 , ψ 2 : C ( U , R ) R are continuous functions ψ 1 ( 0 ) = ψ 2 ( 0 ) = 0 .
( F 1 )
There exist positive constants r i and s i 0 , r 0 > 0 , s 0 > 0 , w i R , i = 1 , 2 , 3 , 4 .
| f ( τ , w 1 , w 2 , w 3 , w 4 ) | r 0 + r 1 | w 1 | + r 2 | w 2 | + r 3 | w 3 | + r 4 | w 4 | , | g ( τ , w 1 , w 2 , w 3 , w 4 ) | s 0 + s 1 | w 1 | + s 2 | w 2 | + s 3 | w 3 | + s 4 | w 4 | .
( F 2 )
There exists positive constants W 1 , W 2 > 0 ,
| ψ 1 ( v ) | W 1 v , | ψ 2 ( u ) | W 2 u , u , v C ( U , R ) .
( F 3 )
There exist positive constants V i , i = 1 , 2 , ∀ τ U and r i , s i R ( i = 1 , 2 , 3 , 4 ) , we have
| f ( τ , r 1 , r 2 , r 3 , r 4 ) f ( τ , s 1 , s 2 , s 3 , s 4 ) | V 1 | r 1 s 1 | + | r 2 s 2 | + | r 3 s 3 | + | r 4 s 4 | , | g ( τ , r 1 , r 2 , r 3 , r 4 ) g ( τ , s 1 , s 2 , s 3 , s 4 ) | V 2 | r 1 s 1 | + | r 2 s 2 | + | r 3 s 3 | + | r 4 s 4 | .
( F 4 )
There exist positive constants V i ( i = 1 , 2 ) such that
| ψ 1 ( r 1 ) ψ 1 ( r 2 ) | V 1 r 1 r 2 , | ψ 2 ( r 1 ) ψ 2 ( r 2 ) | V 2 r 1 r 2 ,
r 1 , r 2 R .
Theorem 1.
Assume that ( F 1 ) and ( F 2 ) hold. Further, if Φ ^ = min { Φ 2 , Φ 3 } < 1 , then the problem (1) and (2) has at least one solution on U .
Proof. 
In the first step, we show that operator Π : G × H G × H is completely continuous. Operator Π is continuous by the continuity of f, g, ψ 1 , ψ 2 functions. Let Ω G × H be bounded. Then, ∃ positive constants L f and L g such that
| S ^ u ( τ ) | = | f ( τ , u ( τ ) , v ( τ ) , C D ς 1 v ( τ ) , I ξ v ( τ ) ) | L f | S ˜ v ( τ ) | = | g ( τ , u ( τ ) , C D ϱ 1 u ( τ ) , I ζ u ( τ ) , v ( τ ) ) | L g ,
( u , v ) Ω , and constants L ψ 1 , L ψ 2 > 0 such that | ψ 1 ( v ) | L ψ 1 , | ψ 2 ( u ) | L ψ 2 , u , v C ( U , R ) . Then, for any ( u , v ) Ω , we have
| Π 1 ( u , v ) ( τ ) | 1 Γ ( ϱ ) 0 τ ( τ θ ) ϱ 1 | S ^ u ( θ ) | d θ + | ψ 1 ( v ) | [ 1 + κ 1 | Λ 4 ( τ ) | + | Λ 3 ( τ ) | ] + | ψ 2 ( u ) | [ κ 2 | Λ 3 ( τ ) | + | Λ 4 ( τ ) | ] + | Λ 2 ( τ ) | ϵ 2 Γ ( ϱ 1 ) 0 ν 2 0 θ ( θ σ ) ϱ 2 | S ^ u ( σ ) d σ d θ + | Λ 1 ( τ ) | ϵ 1 Γ ( ς 1 ) 0 ν 1 0 θ ( θ σ ) ς 2 | S ˜ v ( σ ) d σ d θ + | Λ 4 ( τ ) | [ λ 2 Γ ( ϱ ) 0 δ 2 0 θ ( θ σ ) ϱ 1 | S ^ u ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 φ j ( φ j θ ) ϱ 1 | S ^ u ( θ ) | d θ + 1 Γ ( ς ) 0 T ( T θ ) ς 1 | S ˜ v ( θ ) | d θ ] + | Λ 3 ( τ ) | [ λ 1 Γ ( ς ) 0 δ 1 0 θ ( θ σ ) ς 1 | S ˜ v ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 | S ˜ v ( θ ) | d θ + 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 | S ^ u ( θ ) | d θ ] Δ 1 L f + Δ 2 L g + [ 1 + κ 1 Λ 4 ¯ + Λ 3 ¯ ] L ψ 1 + [ κ 2 Λ 3 ¯ + Λ 4 ¯ ] L ψ 2 .
Likewise, we get | Π 1 ( u , v ) ( τ ) | Δ ^ 1 L f + Δ ^ 2 L g + [ κ 1 Λ ¯ 4 + Λ ¯ 3 ] L ψ 1 + [ κ 2 Λ ¯ 3 + Λ ¯ 4 ] L ψ 2 , which implies that | C D ϱ 1 Π 1 ( u , v ) ( τ ) | T 1 ϱ 1 Γ ( 2 ϱ 1 ) ( Δ ^ 1 L f + Δ ^ 2 L g + [ κ 1 Λ ¯ 4 + Λ ¯ 3 ] L ψ 1 + [ κ 2 Λ ¯ 3 + Λ ¯ 4 ] L ψ 2 ) . Thus, we have
Π 1 ( u , v ) G Δ 1 L f + Δ 2 L g + [ 1 + κ 1 Λ 4 ¯ + Λ 3 ¯ ] L ψ 1 + [ κ 2 Λ 3 ¯ + Λ 4 ¯ ] L ψ 2 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) ( Δ ^ 1 L f + Δ ^ 2 L g + [ κ 1 Λ ¯ 4 + Λ ¯ 3 ] L ψ 1 + [ κ 2 Λ ¯ 3 + Λ ¯ 4 ] L ψ 2 ) .
We obtain that, equivalently, | Π 2 ( u , v ) ( τ ) | Δ 4 L g + Δ 3 L f + [ 1 + κ 2 Λ ¯ 7 + Λ ¯ 8 ] L ψ 2 + [ κ 1 Λ ¯ 8 + Λ ¯ 7 ] L ψ 1 , and | Π 2 ( u , v ) ( τ ) | Δ ^ 4 L g + Δ ^ 3 L f + [ κ 2 Λ ¯ 7 + Λ ¯ 8 ] L ψ 2 + [ κ 1 Λ ¯ 8 + Λ ¯ 7 ] L ψ 1 , which implies that | C D ς 1 Π 2 ( u , v ) ( τ ) | T 1 ς 1 Γ ( 2 ς 1 ) ( Δ ^ 4 L g + Δ ^ 3 L f + [ κ 2 Λ ¯ 7 + Λ ¯ 8 ] L ψ 2 + [ κ 1 Λ ¯ 8 + Λ ¯ 7 ] L ψ 1 ) . Thus, we have
Π 2 ( u , v ) H Δ 4 L g + Δ 3 L f + [ 1 + κ 2 Λ ¯ 7 + Λ ¯ 8 ] L ψ 2 + [ κ 1 Λ ¯ 8 + Λ ¯ 7 ] L ψ 1 + T 1 ς 1 Γ ( 2 ς 1 ) ( Δ ^ 4 L g + Δ ^ 3 L f + [ κ 2 Λ ¯ 7 + Λ ¯ 8 ] L ψ 2 + [ κ 1 Λ ¯ 8 + Λ ¯ 7 ] L ψ 1 ) .
Thus, Π is uniformly bounded by (44) and (45). Operator Π must be shown to be equicontinuous.
For τ 1 , τ 2 U with τ 1 < τ 2 , we have
| Π 1 ( u , v ) ( τ 2 ) Π 1 ( u , v ) ( τ 1 ) | L f Γ ( ϱ + 1 ) [ ( τ 2 τ 1 ) ϱ + ( τ 2 ϱ τ 1 ϱ ) ] + | ψ 1 ( v ) | κ 1 ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) + ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) + | ψ 2 ( u ) | κ 2 ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) + ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) + ( | Λ 2 ( τ 2 ) Λ 2 ( τ 1 ) | ) ϵ 2 ν 2 ϱ L f Γ ( ϱ + 1 ) + ( | Λ 1 ( τ 2 ) Λ 1 ( τ 1 ) | ) ϵ 1 ν 1 ς L g Γ ( ς + 1 ) + ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) λ 2 δ 2 ϱ + 1 L f Γ ( ϱ + 2 ) + μ 2 j = 1 k 2 ω j ( φ j ) ϱ L f Γ ( ϱ + 1 ) + T ς L g Γ ( ς + 1 ) + ( Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) ) λ 1 δ 1 ς + 1 L g Γ ( ς + 2 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς L g Γ ( ς + 1 ) + T ϱ L f Γ ( ϱ + 1 ) ,
and
| Π 1 ( u , v ) ( τ 2 ) Π 1 ( u , v ) ( τ 1 ) | 0 τ 1 [ ( τ 2 θ ) ϱ 2 ( τ 1 θ ) ϱ 2 ] Γ ( ϱ 1 ) × f ( θ , u ( θ ) , v ( θ ) , C D ς 1 v ( θ ) , I ξ v ( θ ) ) d θ + τ 1 τ 2 ( τ 2 θ ) ϱ 2 Γ ( ϱ 1 ) f ( θ , u ( θ ) , v ( θ ) , C D ς 1 v ( θ ) , I ξ v ( θ ) ) d θ + | ψ 1 ( v ) | κ 1 ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) + ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) + | ψ 2 ( u ) | κ 2 ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) + ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) + ( | Λ 2 ( τ 2 ) Λ 2 ( τ 1 ) | ) ϵ 2 ν 2 ϱ L f Γ ( ϱ + 1 ) + ( | Λ 1 ( τ 2 ) Λ 1 ( τ 1 ) | ) ϵ 1 ν 1 ς L g Γ ( ς + 1 ) + ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) λ 2 δ 2 ϱ + 1 L f Γ ( ϱ + 2 ) + μ 2 j = 1 k 2 ω j ( φ j ) ϱ L f Γ ( ϱ + 1 ) + T ς L g Γ ( ς + 1 ) + ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) λ 1 δ 1 ς + 1 L g Γ ( ς + 2 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς L g Γ ( ς + 1 ) + T ϱ L f Γ ( ϱ + 1 ) .
Thus, we have
| C D ϱ 1 Π 1 ( u , v ) ( τ 2 ) C D ϱ 1 Π 1 ( u , v ) ( τ 1 ) | T 1 ϱ 1 Γ ( 2 ϱ 1 ) { L f Γ ( ϱ ) [ ( τ 2 τ 1 ) ϱ 1 + ( τ 2 ϱ 1 τ 1 ϱ 1 ) ] + | ψ 1 ( v ) | κ 1 ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) + ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) + | ψ 2 ( u ) | κ 2 ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) + ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) + ( | Λ 2 ( τ 2 ) Λ 2 ( τ 1 ) | ) ϵ 2 ν 2 ϱ L f Γ ( ϱ + 1 ) + ( | Λ 1 ( τ 2 ) Λ 1 ( τ 1 ) | ) ϵ 1 ν 1 ς L g Γ ( ς + 1 ) + ( | Λ 4 ( τ 2 ) Λ 4 ( τ 1 ) | ) λ 2 δ 2 ϱ + 1 L f Γ ( ϱ + 2 ) + μ 2 j = 1 k 2 ω j ( φ j ) ϱ L f Γ ( ϱ + 1 ) + T ς L g Γ ( ς + 1 ) + ( | Λ 3 ( τ 2 ) Λ 3 ( τ 1 ) | ) λ 1 δ 1 ς + 1 L g Γ ( ς + 2 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς L g Γ ( ς + 1 ) + T ϱ L f Γ ( ϱ + 1 ) } .
Thus, we obtain Π 1 ( u , v ) ( τ 2 ) Π 1 ( u , v ) ( τ 1 ) G 0 independent of u and v as τ 2 τ 1 . According to the above, we get
| Π 2 ( u , v ) ( τ 2 ) Π 2 ( u , v ) ( τ 1 ) | L g Γ ( ς + 1 ) [ ( τ 2 τ 1 ) ς + ( τ 2 ς τ 1 ς ) ] + | ψ 2 ( u ) | κ 2 ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) + ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) + | ψ 1 ( v ) | κ 1 ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) + ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) + ( | Λ 5 ( τ 2 ) Λ 5 ( τ 1 ) | ) ϵ 1 ν 1 ς L g Γ ( ς + 1 ) + ( | Λ 6 ( τ 2 ) Λ 6 ( τ 1 ) | ) ϵ 2 ν 2 ϱ L f Γ ( ϱ + 1 ) + ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) λ 1 δ 1 ς + 1 L g Γ ( ς + 2 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς L g Γ ( ς + 1 ) + T ϱ L f Γ ( ϱ + 1 ) + ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) λ 2 δ 2 ϱ + 1 L f Γ ( ϱ + 2 ) + μ 2 j = 1 k 2 ω j ( φ j ) ϱ L f Γ ( ϱ + 1 ) + T ς L g Γ ( ς + 1 ) ,
and
| Π 2 ( u , v ) ( τ 2 ) Π 2 ( u , v ) ( τ 1 ) | 0 τ 1 [ ( τ 2 θ ) ς 2 ( τ 1 θ ) ς 2 ] Γ ( ς 1 ) × g ( θ , u ( θ ) , C D ϱ 1 u ( θ ) , I ζ u ( θ ) , v ( θ ) ) d θ + τ 1 τ 2 ( τ 2 θ ) ς 2 Γ ( ς 1 ) g ( θ , u ( θ ) , C D ϱ 1 u ( θ ) , I ζ u ( θ ) , v ( θ ) ) d θ + | ψ 2 ( u ) | κ 2 ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) + ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) + | ψ 1 ( v ) | κ 1 ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) + ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) + ( | Λ 5 ( τ 2 ) Λ 5 ( τ 1 ) | ) ϵ 1 ν 1 ς L g Γ ( ς + 1 ) + ( | Λ 6 ( τ 2 ) Λ 6 ( τ 1 ) | ) ϵ 2 ν 2 ϱ L f Γ ( ϱ + 1 ) + ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) λ 1 δ 1 ς + 1 L g Γ ( ς + 2 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς L g Γ ( ς + 1 ) + T ϱ L f Γ ( ϱ + 1 ) + ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) λ 2 δ 2 ϱ + 1 L f Γ ( ϱ + 2 ) + μ 2 j = 1 k 2 ω j ( φ j ) ϱ L f Γ ( ϱ + 1 ) + T ς L g Γ ( ς + 1 ) .
Consequently, we have
| C D ς 1 Π 2 ( u , v ) ( τ 2 ) C D ς 1 Π 2 ( u , v ) ( τ 1 ) | T 1 ς 1 Γ ( 2 ς 1 ) { L g Γ ( ς + 1 ) [ ( τ 2 τ 1 ) ς + ( τ 2 ς τ 1 ς ) ] + | ψ 2 ( u ) | κ 2 ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) + ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) + | ψ 1 ( v ) | κ 1 ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) + ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) + ( | Λ 5 ( τ 2 ) Λ 5 ( τ 1 ) | ) ϵ 1 ν 1 ς L g Γ ( ς + 1 ) + ( | Λ 6 ( τ 2 ) Λ 6 ( τ 1 ) | ) ϵ 2 ν 2 ϱ L f Γ ( ϱ + 1 ) + ( | Λ 7 ( τ 2 ) Λ 7 ( τ 1 ) | ) λ 1 δ 1 ς + 1 L g Γ ( ς + 2 ) + μ 1 j = 1 k 2 ϖ j ϑ j ς L g Γ ( ς + 1 ) + T ϱ L f Γ ( ϱ + 1 ) + ( | Λ 8 ( τ 2 ) Λ 8 ( τ 1 ) | ) λ 2 δ 2 ϱ + 1 L f Γ ( ϱ + 2 ) + μ 2 j = 1 k 2 ω j ( φ j ) ϱ L f Γ ( ϱ + 1 ) + T ς L g Γ ( ς + 1 ) } ,
which means that Π 2 ( u , v ) ( τ 2 ) Π 2 ( u , v ) ( τ 1 ) H 0 independent of u and v as τ 2 τ 1 . Hence, the operator Π ( u , v ) is equicontinuous, and thus it is completely continuous by Lemma (see Lemma 1.2 [15]). Next, we demonstrate that the set Φ = { ( u , v ) G × H | ( u , v ) = η Π ( u , v ) , 0 < η < 1 } is bounded. Let ( u , v ) Φ ; then, ( u , v ) = η Π ( u , v ) , and for any τ U , we have u ( τ ) = η Π 1 ( u , v ) ( τ ) , v ( τ ) = η Π 2 ( u , v ) ( τ ) . Thus,
| u ( τ ) | G Δ 1 r 0 + r 1 u G + max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) v H + Δ 2 s 0 + max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) u G + s 4 v H + 1 + κ 1 | Λ ¯ 4 | + | Λ ¯ 3 | W 1 v H + κ 2 | Λ ¯ 3 | + | Λ ¯ 4 | W 2 u G ,
| u ( τ ) | Δ ^ 1 r 0 + r 1 u G + max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) v H + Δ ^ 2 s 0 + max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) u G + s 4 v H + κ 1 | Λ ¯ 4 | + | Λ ¯ 3 | W 1 v H + κ 2 | Λ ¯ 3 | + | Λ ¯ 4 | W 2 u G ,
| C D ϱ 1 u ( τ ) | T 1 ϱ 1 Γ ( 2 ϱ 1 ) { Δ ^ 1 r 0 + r 1 u G + max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) v H + Δ ^ 2 s 0 + max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) u G + s 4 v H + κ 1 | Λ ¯ 4 | + | Λ ¯ 3 | W 1 v H + κ 2 | Λ ¯ 3 | + | Λ ¯ 4 | W 2 u G } .
Hence, we have
u Δ 1 r 0 + r 1 u G + max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) v H + Δ 2 s 0 + max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) u G + s 4 v H + 1 + κ 1 | Λ ¯ 4 | + | Λ ¯ 3 | W 1 v H + κ 2 | Λ ¯ 3 | + | Λ ¯ 4 | W 2 u G + T 1 ϱ 1 Γ ( 2 ϱ 1 ) { Δ ^ 1 r 0 + r 1 u G + max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) v H + Δ ^ 2 s 0 + max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) u G + s 4 v H + κ 1 | Λ ¯ 4 | + | Λ ¯ 3 | W 1 v H + κ 2 | Λ ¯ 3 | + | Λ ¯ 4 | W 2 u G } .
According to the above, we get
v Δ 4 s 0 + max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) u G + s 4 v H + Δ 3 r 0 + r 1 u G + max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) v H + 1 + κ 2 | Λ ¯ 7 | + | Λ ¯ 8 | W 2 u G + κ 1 | Λ ¯ 8 | + | Λ ¯ 7 | W 1 v H + T 1 ς 1 Γ ( 2 ς 1 ) { Δ ^ 4 s 0 + max { s 1 , s 2 } + s 3 T ζ Γ ( ζ + 1 ) u G + s 4 v H + Δ ^ 3 r 0 + r 1 u G + max { r 2 , r 3 } + r 4 T ξ Γ ( ξ + 1 ) v H + κ 2 | Λ ¯ 7 | + | Λ ¯ 8 | W 2 u G + κ 1 | Λ ¯ 8 | + | Λ ¯ 7 | W 1 v H } .
Using the above inequalities in combination with the notations (46) and (47), we deduce the result below. u + v Φ 1 + min { Φ 2 , Φ 3 } ( u , v ) G × H , which leads to ( u , v ) G × H Φ 1 1 min { Φ 2 , Φ 3 } . This concludes that the set min { Φ 2 , Φ 3 } is bounded. Therefore, operator Π has at least one fixed point by Theorem (see Theorem 1.9 [15]), which means the system (1)–(2) has at least one solutions on U . □
Theorem 2.
Assume that ( F 3 ) and ( F 4 ) holds. Additionally, if
Ψ + Ψ ^ < 1 ,
where Ψ , Ψ ^ are defined by (42), then on U there is a unique solution to the problems (1) and (2).
Proof. 
Let us fix this ε ^ max P ¯ + P ^ 1 ( Ψ + Ψ ^ ) , where Ψ , Ψ ^ and P ¯ , P ^ are respectively given by (41) and (42), and show that Π B ε ^ B ε ^ , where the operator Π is given by (22) and B ε ^ = { ( u , v ) G × H : ( u , v ) ε ^ } . For ( u , v ) B ε ^ , τ H , we have
| S ^ u ( τ ) | = | f ( τ , u ( τ ) , v ( τ ) , C D ς 1 v ( τ ) , I ξ v ( τ ) ) | V 1 ι 1 ( u , v ) G × H + T 1 V 1 ι 1 ε ^ + T 1 , | S ˜ v ( τ ) | = | g ( τ , u ( τ ) , C D ϱ 1 u ( τ ) , I ζ u ( τ ) , v ( τ ) ) | V 2 ι 2 ( u , v ) G × H + T 2 V 2 ι 2 ε ^ + T 2 , | ψ 1 ( v ) | V 1 ε ^ , | ψ 2 ( u ) | V 2 ε ^ ,
which lead to
| Π 1 ( u , v ) ( τ ) | Ψ 1 ε ^ + P 1 ,
where Ψ 1 and P 1 are given by (36) and (40). With the above notes, we get
| Π 1 ( u , v ) ( τ ) | Ψ 2 ε ^ + P 2 ,
which means that
| C D ϱ 1 Π 1 ( u , v ) ( τ ) | T 1 ϱ 1 Γ ( 2 ϱ 1 ) Ψ 2 ε ^ + P 2 .
Thus, we get
Π 1 ( u , v ) G Ψ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Ψ 2 ε ^ + P 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) P 2 .
Similarly, we get
| Π 2 ( u , v ) ( τ ) | Ψ 3 ε ^ + P 3 ,
where Ψ 3 and P 3 are given by (38) and (40). With the above notes, we get
| Π 2 ( u , v ) ( τ ) | Ψ 4 ε ^ + P 4 ,
which means that
| C D ς 1 Π 2 ( u , v ) ( τ ) | T 1 ς 1 Γ ( 2 ς 1 ) Ψ 4 ε ^ + P 4 .
Hence, we have
Π 2 ( u , v ) H Ψ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Ψ 4 ε ^ + P 3 + T 1 ς 1 Γ ( 2 ς 1 ) P 4 .
So, (49) and (50) follow Π ( u , v ) G × H ε ^ , and thus, Π B ε ^ B ε ^ .
Now, for ( u 1 , v 1 ) , ( u 2 , v 2 ) G × H and any τ U , we have
| Π 1 ( u 1 , v 1 ) ( τ ) Π 1 ( u 2 , v 2 ) ( τ ) | Ψ 1 ( u 1 u 2 G + v 1 v 2 H ) .
Next, we find that
| Π 1 ( u 1 , v 1 ) ( τ ) Π 1 ( u 2 , v 2 ) ( τ ) | Ψ 2 ( u 1 u 2 G + v 1 v 2 H ) .
Thus, we have
| C D ϱ 1 Π 1 ( u 1 , v 1 ) ( τ ) C D ϱ 1 Π 1 ( u 2 , v 2 ) ( τ ) | T 1 ϱ 1 Γ ( 2 ϱ 1 ) Ψ 2 ( u 1 u 2 G + v 1 v 2 H ) ,
Hence, we get
Π 1 ( u 1 , v 1 ) Π 1 ( u 2 , v 2 ) G Ψ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Ψ 2 ( u 1 u 2 G + v 1 v 2 H ) .
Similarly, we have
Π 2 ( u 1 , v 1 ) Π 2 ( u 2 , v 2 ) H Ψ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Ψ 4 ( u 1 u 2 G + v 1 v 2 H ) .
So, (51) and (52) follow
Π ( u 1 , v 1 ) Π ( u 2 , v 2 ) G × H Ψ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Ψ 2 + Ψ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Ψ 4 ( u 1 u 2 G + v 1 v 2 H ) .
It follows that, in view of the condition (48), the operator Π is a contraction. Thus, by Theorem (see Theorem 1.2.2 [14]), the system (1) and (2) has a unique solution on U . □

4. Examples

Example 1.
Consider the system of Caputo type FIDEs given by
C D 68 25 u ( τ ) = f ( τ , u ( τ ) , v ( τ ) , C D 44 25 v ( τ ) , I 46 25 v ( τ ) ) , C D 62 25 v ( τ ) = g ( τ , u ( τ ) , C D 73 50 u ( τ ) , I 39 25 u ( τ ) , v ( τ ) ) ,
subject to the boundary conditions
u ( 0 ) = ψ 1 ( v ) , u ( 0 ) = ϵ 1 0 ν 1 v ( θ ) d θ , u ( T ) = λ 1 0 δ 1 v ( θ ) d θ + μ 1 j = 1 k 2 ϖ j v ( ϑ j ) , v ( 0 ) = ψ 2 ( u ) , v ( 0 ) = ϵ 2 0 ν 2 u ( θ ) d θ , v ( T ) = λ 2 0 δ 2 u ( θ ) d θ + μ 2 j = 1 k 2 ω j u ( φ j ) .
Here, ϱ = 68 25 , ς = 62 25 , ϱ 1 = 73 50 , ς 1 = 44 25 , ξ = 46 25 , ζ = 39 25 , T = 1 , δ 1 = 1 8 , δ 2 = 37 200 , ϑ 1 = 37 250 , ϑ 2 = 79 500 , ϑ 3 = 47 250 , ϑ 4 = 11 50 , φ 1 = 113 500 , φ 2 = 59 250 , φ 3 = 6 25 , φ 4 = 49 200 , ϖ 1 = 1 160 , ϖ 2 = 58 625 , ϖ 3 = 29 400 , ϖ 4 = 21 250 , ω 1 = 17 200 , ω 2 = 12 125 , ω 3 = 19 250 , ω 4 = 7 125 , λ 1 = 1 80 , λ 2 = 7 200 , μ 1 = 9 400 , μ 2 = 23 500 , ϵ 1 = 11 400 , ϵ 2 = 19 500 , ν 1 = 53 200 , ν 2 = 133 500 . We consider the functions,
| f ( τ , u 1 , u 2 , u 3 , u 4 ) | 1 20 ( τ 2 + 1 ) + 1 70 ( 2 + τ ) 2 2 u 2 + | u 1 | 1 + | u 1 | + sin u 3 700 + arctan u 4 140 ( 3 + τ ) , | g ( τ , u 1 , u 2 , u 3 , u 4 ) | 1 ( τ 4 + 1 ) 2 + 1 150 ( 1 + τ 2 ) u 2 3 + 3 u 1 + cos u 3 800 + | u 4 | 400 ( 1 + | u 4 | ) , | ψ 1 ( v ) | 1 110 v , | ψ 2 ( u ) | 1 600 u .
Clearly
| f ( τ , u 1 , u 2 , u 3 , u 4 ) | 1 20 + 1 140 | u 1 | + 1 70 | u 2 | + 1 700 | u 3 | + 1 420 | u 4 | , | g ( τ , u 1 , u 2 , u 3 , u 4 ) | 1 2 + 1 50 | u 1 | + 1 450 | u 2 | + 1 800 | u 3 | + 1 400 | u 4 | , | ψ 1 ( v ) | 1 110 v , | ψ 2 ( u ) | 1 600 u .
With the given data, we find that r 0 = 1 20 , r 1 = 1 140 , r 2 = 1 70 , r 3 = 1 700 , r 4 = 1 420 , s 0 = 1 2 , s 1 = 1 50 , s 2 = 1 450 , s 3 = 1 800 , s 4 = 1 400 , Δ 1 = 0.46845200402823617 , Δ 2 = 0.0007227881649342847 , Δ 3 = 0.0011251030301272463 , Δ 4 = 0.6151822290610394 , Δ ^ 1 = 0.8713184743902467 , Δ ^ 2 = 0.0014641295646385377 , Δ ^ 3 = 0.00186307333192 , Δ ^ 4 = 1.0704190784503973 , we find that Φ ^ = m i n { Φ 1 , Φ 2 } < 1 . Thus, the assumption of Theorem 1 holds and the problem (53) and (54) has at least one solution on [ 0 , 1 ] .
Example 2.
We consider the functions
| f ( τ , u 1 , u 2 , u 3 , u 4 ) | 1 9 τ 2 + 64 3 τ + 1 + cos ( u 1 + u 2 ) + | u 3 | | u 3 | + 1 + arctan u 4 , | g ( τ , u 1 , u 2 , u 3 , u 4 ) | 1 24 36 + τ 2 τ 2 τ + 2 + u 2 + | u 1 | 1 + | u 1 | + sin u 3 + | u 4 | , | ψ 1 ( v ) | 1 110 v , | ψ 2 ( u ) | 1 60 u .
Using the given data, it is found that V 1 = 1 72 , V 2 = 1 144 , V 1 = 1 110 , V 2 = 1 60 , Δ 1 = 0.46845200402823617 , Δ 2 = 0.0007227881649342847 , Δ 3 = 0.0011251030301272463 , Δ 4 = 0.6151822290610394 , Δ ^ 1 = 0.8713184743902467 , Δ ^ 2 = 0.0014641295646385377 , Δ ^ 3 = 0.00186307333192 , Δ ^ 4 = 1.0704190784503973 , with Ψ 1 + T 1 ϱ 1 Γ ( 2 ϱ 1 ) Ψ 2 0.05140181873251667 , and Ψ 3 + T 1 ς 1 Γ ( 2 ς 1 ) Ψ 4 0.05324949686716335 ; hence, the Theorem 2 is satisfied, and here the problem (53)–(54) has a unique solution on [ 0 , 1 ] .

5. A Variant of a Problem

Note that the boundary conditions (1) include the strips of different lengths when modifying the strips in boundary conditions to the same lengths (1); then, the problem reduces to the form
u ( 0 ) = ψ 1 ( v ) , u ( 0 ) = ϵ 1 0 ν v ( θ ) d θ , u ( 0 ) = 0 , · · · , u n 2 ( 0 ) = 0 , u ( T ) = λ 1 0 δ v ( θ ) d θ + μ 1 j = 1 k 2 ϖ j v ( ϑ j ) , v ( 0 ) = ψ 2 ( u ) , v ( 0 ) = ϵ 2 0 ν u ( θ ) d θ , v ( 0 ) = 0 , · · · , v n 2 ( 0 ) = 0 , v ( T ) = λ 2 0 δ u ( θ ) d θ + μ 2 j = 1 k 2 ω j u ( ϑ j ) .
Concerning the problem (1) with (55) instead of (2), we obtained the operator Π ^ : G × H G × H defined by
Π ^ ( u , v ) ( τ ) = ( Π ^ 1 ( u , v ) ( τ ) , Π ^ 2 ( u , v ) ( τ ) ) ,
where
Π ^ 1 ( u , v ) ( τ ) = 1 Γ ( ϱ ) 0 τ ( τ θ ) ϱ 1 Q ^ u ( θ ) d θ + ψ 1 ( v ) [ 1 + κ 1 Λ 4 ( τ ) Λ 3 ( τ ) ] + ψ 2 ( u ) [ κ 2 Λ 3 ( τ ) Λ 4 ( τ ) ] + Λ 2 ( τ ) ϵ 2 Γ ( ϱ 1 ) 0 ν 0 θ ( θ σ ) ϱ 2 Q ^ u ( σ ) d σ d θ + Λ 1 ( τ ) ϵ 1 Γ ( ς 1 ) 0 ν 0 θ ( θ σ ) ς 2 Q ˜ v ( σ ) d σ d θ + Λ 4 ( τ ) [ λ 2 Γ ( ϱ ) 0 δ 0 θ ( θ σ ) ϱ 1 Q ^ u ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 ϑ j ( ϑ j θ ) ϱ 1 Q ^ u ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 Q ˜ v ( θ ) d θ ] + Λ 3 ( τ ) [ λ 1 Γ ( ς ) 0 δ 0 θ ( θ σ ) ς 1 Q ˜ v ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 Q ˜ v ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 Q ^ u ( θ ) d θ ] ,
and
Π ^ 2 ( u , v ) ( τ ) = 1 Γ ( ς ) 0 τ ( τ θ ) ς 1 Q ˜ v ( θ ) d θ + ψ 2 ( u ) [ 1 + κ 2 Λ 7 ( τ ) Λ 8 ( τ ) ] + ψ 1 ( v ) [ κ 1 Λ 8 ( τ ) Λ 7 ( τ ) ] + Λ 5 ( τ ) ϵ 1 Γ ( ς 1 ) 0 ν 0 θ ( θ σ ) ς 2 Q ˜ v ( σ ) d σ d θ + Λ 6 ( τ ) ϵ 2 Γ ( ϱ 1 ) 0 ν 0 θ ( θ σ ) ϱ 2 Q ^ u ( σ ) d σ d θ + Λ 7 ( τ ) [ λ 1 Γ ( ς ) 0 δ 0 θ ( θ σ ) ς 1 Q ˜ v ( σ ) d σ d θ + μ 1 j = 1 k 2 ϖ j Γ ( ς ) 0 ϑ j ( ϑ j θ ) ς 1 Q ˜ v ( θ ) d θ 1 Γ ( ϱ ) 0 T ( T θ ) ϱ 1 Q ^ u ( θ ) d θ ] + Λ 8 ( τ ) [ λ 2 Γ ( ϱ ) 0 δ 0 θ ( θ σ ) ϱ 1 Q ^ u ( σ ) d σ d θ + μ 2 j = 1 k 2 ω j Γ ( ϱ ) 0 ϑ j ( ϑ j θ ) ϱ 1 Q ^ u ( θ ) d θ 1 Γ ( ς ) 0 T ( T θ ) ς 1 Q ˜ v ( θ ) d θ ] .
where
Q ^ u ( τ ) = f ( τ , u ( τ ) , v ( τ ) , C D ς 1 v ( τ ) , I ξ v ( τ ) ) , τ U , Q ˜ v ( τ ) = g ( τ , u ( τ ) , C D ϱ 1 u ( τ ) , I ζ u ( τ ) , v ( τ ) ) , τ U .
and
ξ 1 = λ 1 δ 2 2 + μ 1 j = 1 k 2 ϖ j ϑ j , ξ 2 = λ 1 δ n n + μ 1 j = 1 k 2 ϖ j ϑ j n 1 , ξ 3 = λ 2 δ 2 2 + μ 2 j = 1 k 2 ω j ϑ j , ξ 4 = λ 2 δ n n + μ 2 j = 1 k 2 ω j ϑ j n 1 , γ ^ 1 = 1 ν 2 ϵ 1 ϵ 2 , γ ^ 2 = T 2 ξ 1 ξ 3 , γ ^ 3 = T n ξ 1 ξ 4 , γ ^ 4 = T n 1 ξ 3 ξ 4 T , γ ^ 5 = ξ 1 T n 1 T ξ 2 , γ ^ 6 = T n ξ 2 ξ 3 , υ 1 = γ ^ 2 ν n ϵ 1 ϵ 2 + γ ^ 1 γ ^ 3 , υ 2 = γ ^ 2 ν n 1 ϵ 2 + γ ^ 1 γ ^ 4 , υ 3 = γ ^ 2 ν n 1 ϵ 1 + γ ^ 1 γ ^ 5 , υ 4 = γ ^ 2 ν n ϵ 1 ϵ 2 + γ ^ 1 γ ^ 6 , υ = υ 2 υ 3 υ 1 υ 4 0 , η 1 = 1 + ( ν n ϵ 2 β 1 ν n 1 β 5 ) ϵ 1 υ , η 2 = ϵ 1 ν + ( ν n ϵ 2 β 2 ν n 1 β 6 ) ϵ 1 υ , η 3 = ( ν n ϵ 2 β 3 ν n 1 β 7 ) ϵ 1 υ , η 4 = ( ν n ϵ 2 β 4 ν n 1 β 8 ) ϵ 1 υ , η 5 = ϵ 2 ν + ( ν n 1 β 1 ϵ 1 ν n β 5 ) ϵ 2 υ , η 6 = 1 + ( ν n 1 β 2 ϵ 1 ν n β 6 ) ϵ 2 υ , η 7 = ( ν n 1 β 3 ϵ 1 ν n β 7 ) ϵ 2 υ , η 8 = ( ν n 1 β 4 ϵ 1 ν n β 8 ) ϵ 2 υ , β 1 = γ ^ 2 ( υ 4 υ 3 ϵ 2 ν ) , β 2 = ( υ 4 ϵ 1 ν υ 3 ) γ ^ 2 , β 3 = ( υ 3 ξ 3 υ 4 T ) γ ^ 1 , β 4 = γ ^ 1 ( υ 3 T υ 4 ξ 1 ) , β 5 = ( υ 2 υ 1 ϵ 2 ν ) γ ^ 2 , β 6 = ( υ 2 ϵ 1 ν υ 1 ) γ ^ 2 , β 7 = ( υ 1 ξ 3 υ 2 T ) γ ^ 1 , β 8 = γ ^ 1 ( υ 1 T υ 2 ξ 1 ) , κ 1 = λ 2 δ + μ 2 j = 1 k 2 ω j , κ 2 = λ 1 δ + μ 1 j = 1 k 2 ϖ j , Λ 1 ( τ ) = τ η 1 γ ^ 1 + τ n 1 β 1 υ , Λ 2 ( τ ) = τ η 2 γ ^ 1 + τ n 1 β 2 υ , Λ 3 ( τ ) = τ η 3 γ ^ 1 + τ n 1 β 3 υ , Λ 4 ( τ ) = τ η 4 γ ^ 1 + τ n 1 β 4 υ , Λ 5 ( τ ) = τ η 5 γ ^ 1 τ n 1 β 5 υ , Λ 6 ( τ ) = τ η 6 γ ^ 1 τ n 1 β 6 υ , Λ 7 ( τ ) = τ η 7 γ ^ 1 τ n 1 β 7 υ , Λ 8 ( τ ) = τ η 8 γ ^ 1 τ n 1 β 8 υ .

6. Discussion

For Caputo form FIDEs, we examined the consequences of existence and uniqueness supplemented by non-local multi-point and integral boundary conditions by Leray–Schauder’s alternative and Banach’s fixed-point theorem. By fixing the parameters ( ϵ 1 , ϵ 2 , λ 1 , λ 2 , μ 1 , μ 2 ) involved in the problem (1) and (2), our results correspond to certain specific problems. Suppose that taking λ 1 = λ 2 = μ 1 = μ 2 = 0 in the results provided, we are given the problems (1) with the form
u ( 0 ) = ψ 1 ( v ) , u ( 0 ) = ϵ 1 0 ν 1 v ( θ ) d θ , u ( 0 ) = 0 , · · · , u n 2 ( 0 ) = 0 , u ( T ) = 0 , v ( 0 ) = ψ 2 ( u ) , v ( 0 ) = ϵ 2 0 ν 2 u ( θ ) d θ , v ( 0 ) = 0 , · · · , v n 2 ( 0 ) = 0 , v ( T ) = 0 ,
while the results are
u ( 0 ) = ψ 1 ( v ) , u ( 0 ) = 0 , · · · , u n 2 ( 0 ) = 0 , u ( T ) = λ 1 0 δ 1 v ( θ ) d θ + μ 1 j = 1 k 2 ϖ j v ( ϑ j ) , v ( 0 ) = ψ 2 ( u ) , v ( 0 ) = 0 , · · · , v n 2 ( 0 ) = 0 v ( T ) = λ 2 0 δ 2 u ( θ ) d θ + μ 2 j = 1 k 2 ω j u ( φ j ) ,
followed by ϵ 1 = ϵ 2 = 0 . Using the methods used in the previous section, we can solve the above-related problems (1) and (2).

Author Contributions

Conceptualization, M.S., J.A. and M.I.A.; methodology and validation, M.S., J.A. and M.I.A.; investigation and formal analysis, C.T., J.A. and W.S.; resources, M.S.; data curation, M.I.A.; writing—original draft preparation, M.S. and J.A.; writing—review and editing, C.T. and W.S.; funding acquisition, C.T. and J.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was financially supported by the Faculty of Science, Burapha University, Thailand (Grant no. SC06/2564).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Alzabut is thankful and grateful to Prince Sultan University and OSTİM Technical University for their endless support. C. Thaiprayoon would like to gratefully acknowledge Burapha University and the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Rd., Bangkok, 10400, Thailand, for supporting this research.

Conflicts of Interest

The authors have stated that they have no competing interest.

References

  1. Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D. LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 2013, 72, 301–309. [Google Scholar] [CrossRef]
  2. Ge, Z.M.; Ou, C.Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 2008, 35, 705–717. [Google Scholar] [CrossRef]
  3. Sokolov, I.M.; Klafter, J.; Blumen, A. Fractional kinetics. Phys. Today 2002, 55, 48–54. [Google Scholar] [CrossRef]
  4. Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
  5. Jiang, C.; Zada, A.; Şenel, M.T.; Li, T. Synchronization of bidirectional N-coupled fractional-order chaotic systems with ring connection based on antisymmetric structure. Adv. Differ. Equ. 2019, 2019, 456. [Google Scholar] [CrossRef] [Green Version]
  6. Wang, J.; Zada, A.; Waheed, H. Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem. Math. Methods Appl. Sci. 2019, 42, 6706–6732. [Google Scholar] [CrossRef]
  7. Ali, Z.; Zada, A.; Shah, K. On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malays. Math. Sci. Soc. 2019, 42, 2681–2699. [Google Scholar] [CrossRef]
  8. Shah, K.; Khan, R.A.; Baleanu, D. Study of implicit type coupled system of non-integer order differential equations with antiperiodic boundary conditions. Math. Methods Appl. Sci. 2019, 42, 2033–2042. [Google Scholar]
  9. Ali, A.; Shah, K.; Jarad, F.; Gupta, V.; Abdeljawad, T. Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations. Adv. Differ. Equ. 2019, 2019, 101. [Google Scholar] [CrossRef] [Green Version]
  10. Subramanian, M.; Kumar, A.R.V.; Gopal, T.N. A writ large analysis of complex order coupled differential equations in the ourse of coupled non-local multi-point boundary conditions. Adv. Stud. Contemp. Math. 2019, 29, 505–520. [Google Scholar]
  11. Muthaiah, S.; Baleanu, D.; Thangaraj, N.G. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Math. 2020, 6, 168. [Google Scholar] [CrossRef]
  12. Subramanian, M.; Zada, A. Existence and uniqueness of solutions for coupled systems of Liouville-Caputo type fractional integrodifferential equations with Erdélyi-Kober integral conditions. Int. J. Nonlinear Sci. Numer. Simul. 2020, 22, 543–557. [Google Scholar] [CrossRef]
  13. Matar, M.M.; Amra, I.A.; Alzabut, J. Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions. Bound. Value Probl. 2020, 2020, 140. [Google Scholar] [CrossRef]
  14. Smart, D.R. Fixed Point Theorems; Cambridge University Press: London, UK, 1980; Volume 66. [Google Scholar]
  15. Yong, Z.; Jinrong, W.; Lu, Z. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2016. [Google Scholar]
  16. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  17. Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  18. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
  19. Valério, D.; Machado, J.T.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef] [Green Version]
  20. Subramanian, M.; Kumar, A.R.V.; Gopal, T.N. Analysis of fractional boundary value problem with non-local integral strip boundary conditions. Nonlinear Stud. 2019, 26, 445–454. [Google Scholar]
  21. Subramanian, M.; Kumar, A.R.V.; Gopal, T.N. Analysis of fractional boundary value problem with non local flux multi-point conditions on a Caputo fractional differential equation. Mathematica 2019, 64, 511–527. [Google Scholar] [CrossRef]
  22. Muthaiah, S.; Murugesan, M.; Thangaraj, N.G. Fractional Differential Equations Involving Hadamard Fractional Derivatives with Nonlocal Multi-point Boundary Conditions. Discontinuity Nonlinearity Complex. 2020, 9, 421–431. [Google Scholar]
  23. Muthaiah, S.; Muthu, S.; Murugesan, M.; Thangaraj, N.G. On generalized Caputo fractional differential equations and inclusions with non-local generalized fractional integral boundary conditions. Malaya J. Mat. 2020, 8, 1099–1109. [Google Scholar]
  24. Muthaiah, S.; Murugesan, M.; Thangaraj, N.G. Existence of Solutions for Nonlocal Boundary Value Problem of Hadamard Fractional Differential Equations. Adv. Theory Nonlinear Anal. Its Appl. 2020, 3, 162–173. [Google Scholar] [CrossRef] [Green Version]
  25. Ali, Z.; Zada, A.; Shah, K. Existence and stability analysis of three point boundary value problem. Int. J. Appl. Comput. Math. 2017, 3, 651–664. [Google Scholar] [CrossRef]
  26. Zada, A.; Rizwan, R.; Xu, J.; Fu, Z. On implicit impulsive Langevin equation involving mixed order derivatives. Adv. Differ. Equ. 2019, 2019, 489. [Google Scholar] [CrossRef]
  27. Shah, K.; Ali, A.; Bushnaq, S. Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math. Methods Appl. Sci. 2018, 41, 8329–8343. [Google Scholar] [CrossRef]
  28. Subramanian, M.; Baleanu, D. Stability and Existence Analysis to a Coupled System of Caputo Type Fractional Differential Equations with Erdelyi-Kober Integral Boundary Conditions. Appl. Math. 2020, 14, 415–424. [Google Scholar]
  29. Subramanian, M.; Kumar, A.R.V.; Gopal, T.N. A strategic view on the consequences of classical integral sub-strips and coupled nonlocal multi-point boundary conditions on a combined Caputo fractional differential equation. Proc. Jangjeon Math. Soc. 2019, 22, 437–453. [Google Scholar]
  30. Muthaiah, S.; Baleanu, D. Existence of Solutions for Nonlinear Fractional Differential Equations and Inclusions Depending on Lower-Order Fractional Derivatives. Axioms 2020, 9, 44. [Google Scholar] [CrossRef]
  31. Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Aqlan, M.H. A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr. J. Math. 2017, 14, 227. [Google Scholar] [CrossRef]
  32. Shah, K.; Wang, J.; Khalil, H.; Khan, R.A. Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations. Adv. Differ. Equ. 2018, 2018, 149. [Google Scholar] [CrossRef] [Green Version]
  33. Li, Y.; Shah, K.; Khan, R.A. Iterative technique for coupled integral boundary value problem of non-integer order differential equations. Adv. Differ. Equ. 2017, 2017, 251. [Google Scholar] [CrossRef]
  34. Shah, K.; Khalil, H.; Khan, R.A. Upper and lower solutions to a coupled system of nonlinear fractional differential equations. Prog. Fract. Differ. Appl. 2015, 1, 010102. [Google Scholar] [CrossRef]
  35. Subramanian, M.; Manigandan, M.; Tunç, C.; Gopal, T.; Alzabut, J. On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order. J. Taibah Univ. Sci. 2022, 16, 1–23. [Google Scholar] [CrossRef]
  36. Etemad, S.; Tellab, B.; Alzabut, J.; Rezapour, S.; Abbas, M.I. Approximate solutions and Hyers–Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform. Adv. Differ. Equ. 2021, 2021, 428. [Google Scholar] [CrossRef]
  37. Baghani, H.; Alzabut, J.; Farokhi-Ostad, J.; Nieto, J.J. Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1731–1741. [Google Scholar] [CrossRef]
  38. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. On solvability of a coupled system of fractional differential equations supplemented with a new kind of flux type integral boundary conditions. J. Comput. Anal. Appl. 2018, 24, 1304–1312. [Google Scholar]
  39. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Fractional differential equations with integral and ordinary-fractional flux boundary conditions. J. Comput. Anal. Appl. 2016, 52, 52–61. [Google Scholar]
  40. Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef] [Green Version]
  41. Agarwal, R.P.; Ahmad, B.; Garout, D.; Alsaedi, A. Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions. Chaos Solitons Fractals 2017, 102, 149–161. [Google Scholar] [CrossRef]
  42. Subramanian, M.; Kumar, A.R.V.; Gopal, T.N. Influence of coupled nonlocal slit-strip conditions involving Caputo derivative in fractional boundary value problem. Discontinuity Nonlinearity Complex. 2019, 8, 429–445. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Subramanian, M.; Alzabut, J.; Abbas, M.I.; Thaiprayoon, C.; Sudsutad, W. Existence of Solutions for Coupled Higher-Order Fractional Integro-Differential Equations with Nonlocal Integral and Multi-Point Boundary Conditions Depending on Lower-Order Fractional Derivatives and Integrals. Mathematics 2022, 10, 1823. https://0-doi-org.brum.beds.ac.uk/10.3390/math10111823

AMA Style

Subramanian M, Alzabut J, Abbas MI, Thaiprayoon C, Sudsutad W. Existence of Solutions for Coupled Higher-Order Fractional Integro-Differential Equations with Nonlocal Integral and Multi-Point Boundary Conditions Depending on Lower-Order Fractional Derivatives and Integrals. Mathematics. 2022; 10(11):1823. https://0-doi-org.brum.beds.ac.uk/10.3390/math10111823

Chicago/Turabian Style

Subramanian, Muthaiah, Jehad Alzabut, Mohamed I. Abbas, Chatthai Thaiprayoon, and Weerawat Sudsutad. 2022. "Existence of Solutions for Coupled Higher-Order Fractional Integro-Differential Equations with Nonlocal Integral and Multi-Point Boundary Conditions Depending on Lower-Order Fractional Derivatives and Integrals" Mathematics 10, no. 11: 1823. https://0-doi-org.brum.beds.ac.uk/10.3390/math10111823

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop