Next Article in Journal
The Stability of Functional Equations with a New Direct Method
Previous Article in Journal
Regularity, Asymptotic Solutions and Travelling Waves Analysis in a Porous Medium System to Model the Interaction between Invasive and Invaded Species
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Order-of-Addition Orthogonal Arrays with High Strength

1
School of Statistics and Data Science, Qufu Normal University, Qufu 273165, China
2
School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China
*
Author to whom correspondence should be addressed.
Submission received: 5 March 2022 / Revised: 29 March 2022 / Accepted: 30 March 2022 / Published: 5 April 2022

Abstract

:
In order-of-addition experiments, the full order-of-addition designs are often unaffordable due to their large run sizes. The problem of finding efficient fractional OofA designs arises. The order-of-addition orthogonal arrays are a class of optimal fractional order-of-addition designs for the prevalent pair-wise ordering model, under a variety of widely used design criteria. In the literature, the studies on order-of-addition orthogonal arrays focused on strength 2 while the order-of-addition orthogonal arrays of higher strength have not been investigated yet. In this paper, we focus on order-of-addition orthogonal arrays of strength 3. First, the method of constructing order-of-addition orthogonal arrays of strength 3 is proposed. Second, a theoretical result that states that the order-of-addition orthogonal arrays of strength 3 have better balance properties than those of strength 2 is developed. Third, we provide thorough simulation studies which show that the constructed order-of-addition orthogonal arrays of strength 3 have desirable performance for estimating optimal orders of addition.

1. Introduction

In many experiments, the response is definitely affected by the order of processing of the materials or components. We call this class of experiments the order-of-addition (OofA) experiments. An example is the famous experiment of a lady testing tea in which two different orders, “tea preceding milk” and “milk preceding tea”, were tested [1]. To illustrate the characteristics of OofA experiments, we introduce one more example from [2]. In [2], three anti-tumor drugs (coded as c 1 , c 2 , and c 3 , respectively) were added into tumor cells either sequentially (following the six orders c 1 c 2 c 3 , c 1 c 3 c 2 , c 2 c 1 c 3 , c 2 c 3 c 1 , c 3 c 1 c 2 , and c 3 c 2 c 1 ) or simultaneously. The percentage of tumor inhibitions, a larger-the-better response, was measured at 12 h after the last drug was administrated. The largest response was yielded when the three anti-tumor drugs were administrated following the order c 2 c 3 c 1 rather than simultaneously. The OofA effect also matters in many other scientific disciplines including chemical science [3], bio-chemistry [4], food science [5], and manufacturing [6]. More applications of the order of addition can be found in [7,8] and the references therein.
Three prevalent models for the OofA problem have been proposed. Ref. [9] proposed the pair-wise ordering (PWO) model which will be detailed in Section 2. Ref. [2] proposed the component-position (CP) model which assumes that a component has different OofA effects when it is processed at different positions in an order. Ref. [8] proposed using the mapping-based universal Kriging model for OofA experiments with blocking. In this paper, we consider the OofA experiments without blocking effects which are not suitable for the the mapping-based universal Kriging model. Compared to the CP model, the PWO model has stronger interpretability and fewer parameters to be estimated, indicating less experimental cost. With this in mind, this paper carries out studies under the PWO model.
Suppose m components, denoted as c 1 , c 2 , , c m , are considered in an OofA experiment, there are m ! different orders. We call a design which consists of these m ! different orders the full OofA design. It is often unaffordable to perform OofA experiments by using full OofA designs especially when m is large. For example, when m = 6 , the full OofA design contains 6!(=720) different orders. Thus, the study on efficient fractional OofA designs becomes important. Under the PWO model, [10] proposed a class of fractional OofA designs called the OofA orthogonal arrays (OofA-OAs) which will be defined in Section 2. Ref. [11] proved that OofA-OAs are optimal for the PWO model under some widely used design criteria including D-criterion, where the D-criterion is defined as follows. Suppose X is a model matrix of a design under a certain model, N is the run size of X and m is the number of columns in X , then D-efficiency is defined as ( d e t ( X T X ) ) 1 / m / N , where the superscript T denotes transpose. A design with a larger D-efficiency is better. Ref. [11] provided a closed-form construction method for OofA-OAs of strength 2 which have quite large run sizes. Ref. [12] provided smaller OofA-OAs of strength 2 compared to those in [11] via block designs. Ref. [13] proposed a systematical construction method of OofA-OAs of strength 2 which further reduced the run sizes compared to the work in [11,12]. Ref. [2] proposed the component orthogonal arrays which are D-optimal for the CP model. Refs. [2,14,15] respectively proposed different methods of constructing the component orthogonal arrays. Some other work under the PWO model can be found in [16] which extended the PWO model by entertaining interactions of PWO factors, and [17] which proposed a class of minimal-point OofA designs that have good D-efficiencies for the PWO model.
Throughout the literature on efficient fractional OofA designs for the PWO model, there is no study on the OofA-OAs of strength 3 which are D-optimal for the PWO model while saving a considerable amount of experimental costs compared to the full OofA designs, and have better balance properties than those of strength 2, as will be proved in this paper. The contributions of this paper are threefold: (1) we first propose a method of constructing OofA-OAs of strength 3 which is capable of finding non-isomorphic OofA-OAs of strength 3; (2) some balance properties of OofA-OAs of strength 3 are developed; (3) thorough simulation studies are conducted which show that the constructed OofA-OAs of strength 3 have desirable performance on estimating the optimal orders of addition.
The rest of the paper is organized as follows. In Section 2, we introduce the formulation of PWO model and the definition of OofA-OAs. The isomorphism of OofA designs is also defined in this section. Section 3 gives a construction method of OofA-OAs of strength 3. Section 4 explores the balance properties of OofA-OAs of strength 3. The thorough simulation studies, which show that the constructed OofA-OAs of strength 3 have desirable performance on estimating optimal orders of addition, are included in Section 5. Section 6 includes results and discussions. The conclusions are given in Section 7. Some proofs and useful design tables are deferred to Appendix A and Appendix B, respectively.

2. Preliminaries

Denote O m as the full OofA design of m components, where the orders in O m are arranged in reversed lexicographical order. For example, the orders of O 3 are displayed in Table 1.
Suppose o k , k = 1 , 2 , , m ! , is the k-th order in O m . Denote τ ( o k ) as the observation arising from o k . The PWO model is established as
τ ( o k ) = β 0 + i = 1 m 1 j = i + 1 m β i j λ i j ( o k ) + ε ( o k ) ,
where, for i < j , λ i j ( o k ) = 1 if component c i precedes c j in o k , otherwise λ i j ( o k ) = 1 , ε ( o k ) N ( 0 , σ 2 ) for any o k , ε ( o k ) is independent of ε ( o l ) for k l , and β 0 , β i j s are unknown parameters to be estimated. For example when m = 3 , λ 12 ( c 1 c 2 c 3 ) = 1 as c 1 precedes c 2 and λ 12 ( c 2 c 3 c 1 ) = 1 as c 2 precedes c 1 . Let z i j = ( λ i j ( o 1 ) , λ i j ( o 2 ) , , λ i j ( o m ! ) ) T . We call z i j the PWO factor related to components c i and c j . Column juxtaposing z i j s, we call P m = ( z 12 , z 13 , , z ( m 1 ) m ) the full PWO design, where z i j is ahead of z k l if i < k ; or if i = k and j < l . For example, the PWO factors for m = 3 and full PWO design P 3 are displayed in Table 1. Denoting D as a fractional OofA design and P D as the fractional PWO design determined by the orders in D , we give the definition of the OofA-OA.
Definition 1.
An N-run fractional OofA design D is called an OofA-OA of strength t, denoted as OofA-OA ( N , m , t ) , if the ratios among the frequencies of all t-tuples in any t-column subarray of P D equal to the ratios among the frequencies of all t-tuples in the corresponding t-column subarray of P m .
Definition 2 defines isomorphic OofA designs.
Definition 2.
Two OofA designs are said to be isomorphic if one can be obtained from the other by relabeling components or permuting rows.
In [13], the authors showed that non-isomorphic OofA-OAs may have different performances in some situations. For example, under the CP model, the non-isomorphic OofA-OAs may have different D-efficiencies. This is not true for the isomorphic OofA-OAs. In this paper, the construction method we propose is capable of finding the non-isomorphic OofA-OAs of strength 3. For a detailed definition of the CP model, one is referred to [2].

3. Constructions of OofA-OAs of Strength 3

From Definition 1, in order to construct OofA-OAs of strength 3, we need to investigate the frequencies of the three-tuple ( a , b , c ) s, with a = ± 1 , b = ± 1 and c = ± 1 , in each of the three-column subarrays ( z i j , z k l , z v w ) s of P m , where z i j is ahead of z k l in P m , and z k l is ahead of z v w in P m . Note that m = 6 is the smallest m such that P m has the three-column subarrays ( z i j , z k l , z v w ) s with i , j , k , l , v , and w being mutually different. As shown in Table 2, for m 6 , there are 20 different types of ratios among the frequencies of the eight three-tuple ( a , b , c ) s, and the run size of an OofA-OA of strength 3 should be a multiple of 24. Lemma 1 formally summarizes these findings.
Lemma 1.
For m 6 , P m has 20 different types of ratios among the frequencies of the eight three-tuple ( a , b , c ) s, with a = ± 1 , b = ± 1 and c = ± 1 , as shown in Table 2, and the run size of an OofA-OA of strength 3 should be a multiple of 24.
Remark 1 below shows the frequencies of the eight three-tuple ( a , b , c ) s for P 4 and P 5 .
Remark 1.
In Table 2, the types t 1 - t 13 apply to P 4 and the types t 1 - t 19 apply to P 5 . The run sizes of OofA-OAs of strength 3 for m = 4 and m = 5 should also be multiples of 24.
In the following, we introduce the method of constructing OofA-OAs of strength 3. Denote ϕ i j , k l , v w ( , , ) as an m ! -dimensional vector in which the uth entry is 1 if the three-tuple ( , , ) appears in the uth row of the three-column subarray ( z i j , z k l , z v w ) of P m , and is 0 otherwise. The m ! -dimensional vectors ϕ i j , k l , v w ( , , + ) ,   ϕ i j , k l , v w ( , + , ) , ϕ i j , k l , v w ( , + , + ) ,   ϕ i j , k l , v w ( + , , ) , ϕ i j , k l , v w ( + , , + ) ,   ϕ i j , k l , v w ( + , + , ) , ϕ i j , k l , v w ( + , + , + ) are similarly defined. Let
Φ i j , k l , v w T = ( ϕ i j , k l , v w ( , , ) , ϕ i j , k l , v w ( , , + ) , ϕ i j , k l , v w ( , + , ) , ϕ i j , k l , v w ( , + , + ) , = ϕ i j , k l , v w ( + , , ) , ϕ i j , k l , v w ( + , , + ) , ϕ i j , k l , v w ( + , + , ) , ϕ i j , k l , v w ( + , + , + ) ) .
For m, there are m 2 3 such Φ i j , k l , v w s. Let Φ be the matrix generated by row-juxtaposing all the m 2 3 Φ i j , k l , v w s. For a fractional OofA design D of m components, let y k ( D ) = 1 if the order o k is in D and y k ( D ) = 0 otherwise, where k = 1 , 2 , , m ! . Let Y D = ( y 1 ( D ) , y 2 ( D ) , , y m ! ( D ) ) T . We establish a sufficient and necessary condition for D to be an OofA-OA of strength 3.
Theorem 1.
A fractional OofA design D is an OofA-OA ( N , m , 3 ) if and only if Y D is a solution of
Φ Y D = ( N / m ! ) vdiag ( Φ Φ T ) ,
where vdiag ( · ) is a column vector consisting of the diagonal elements of a matrix.
Theorem 1 shows that once we have a solution to (3), we can construct an OofA-OA of strength 3 according to this solution. Example 1 shows this point.
Example 1.
Let Y D be a 5!(=120)-dimensional vector which has entries 1s in its 1, 6, 16, 22, 26, 28, 40, 46, 51, 53, 57, 59, 66, 71, 75, 77, 81, 83, 95, 99, 101, 105, 107, and 120-th rows and 0s in the remainder of its rows. It can be verified that Y D is a solution of (3) with m = 5 and N = 24 . Then, an OofA-OA ( 24 , 5 , 3 ) can be constructed according to Y D . The resulting design is A 5.1 24 displayed in Table A1 of Appendix B.
It is an infeasible task to directly solve Equation (3), we employ 0–1 linear programming to find solutions. Corollary 1 below states this approach.
Corollary 1.
For a given c R m ! , an m ! -dimensional vector, if Y D is a solution of the 0–1 linear optimization problem,
min c T Y D s u b j e c t   t o : Φ Y D = ( N / m ! ) vdiag ( Φ Φ T ) , a n d   Y D { 0 , 1 } m ! ,
then the rows chosen according to Y D compose an OofA-OA ( N , m , 3 ) .
Remark 2.
For given m and N, if Equation (3) has solution(s), then the optimization problem (4) has solution(s) for any c . Note that our interest is to find the solution Y D instead of minimizing c T Y D . Any programming solver can be employed to find Y D s. Here, we use intlinprog “from Matlab. Given m, N and any c , intlinprog” reports one Y D of (4) unless (3) has no solution for the given m and N.
As an illustration, we apply Theorem 1 and Corollary 1 to finding OofA-OA ( N , m , 3 ) s with m = 5 , 6 and N = 24 , 48 , 72 . For given N and m, we use 2000 random c s to find different solutions of (3). With these different solutions, we display some non-isomorphic OofA-OAs of strength 3 which have larger relative D-efficiencies under the CP model, where the relative D-efficiency of a fractional OofA design is the ratio between the D-efficiency of this fractional OofA design and that of its corresponding full OofA design. By doing so, it shows that non-isomorphic OofA-OAs may have different D-efficiencies under the CP model as pointed out in [13].
With 2000 random c s, we found only one OofA-OA ( 24 , 5 , 3 ) , up to isomorphism, whose row numbers are displayed in Table A1 of Appendix B. The OofA-OA ( 24 , 5 , 3 ) A 5 , 1 24 provides relative D-efficiency 0 under the CP model. In order to find more non-isomorphic OofA-OA ( 24 , 5 , 3 ) s, another 8000 random c s are used to find solutions of (3). All the resulting OofA-OA ( 24 , 5 , 3 ) s are isomorphic to A 5 , 1 24 . We conjecture that there is only one OofA-OA ( 24 , 5 , 3 ) up to isomorphism. With 2000 random c s, in Table A2 and Table A4, 10 non-isomorphic OofA-OA ( N , 5 , 3 ) s with N = 48 , 72 alone with their relative D-efficiencies under the CP model are displayed, respectively. The OofA-OA ( 24 , 6 , 3 ) does not exist. When using intlinprog” to find solutions to (3) with m = 6 and N = 24 , it is reported that no solution can be found. With 2000 random c s, in Table A4 and Table A5, 10 non-isomorphic OofA-OA ( N , 6 , 3 ) s with N = 48 , 72 alone with their relative D-efficiencies under the CP model are displayed, respectively.

4. Some Properties of OofA-OAs of Strength 3

In [13], it is pointed out that when projecting an OofA-OA ( N , m , 2 ) onto any two components, the resulting design is an N / 2 -replication of O 2 , and when projecting an OofA-OA ( N , m , 2 ) onto its any three components, the resulting design is an N / 6 -replication of O 3 . As will be seen in Theorem 2 below, an OofA-OA ( N , m , 3 ) poses additional balance properties when it is projected onto its any four components.
Theorem 2.
For any OofA-OA ( N , m , 3 ) D ,
(i) 
when D is projected onto its any two components c i and c j , the resulting design is an N / 2 -replication of O 2 ;
(ii) 
when D is projected onto its any three components c i , c j , and c k , the resulting design is an N / 6 -replication of O 3 ;
(iii) 
when D is projected onto its any four components c i , c j , c k , and c l , the resulting design is an N / 24 -replication of O 4 .
Example 2 below illustrates the balance properties stated in Theorem 2.
Example 2.
The fractional OofA design
A 5.1 24 = 5 5 5 5 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 4 4 2 1 5 5 2 1 5 5 4 4 2 1 5 5 4 4 1 5 5 4 4 2 3 1 3 3 3 2 3 3 2 1 2 1 1 2 3 1 3 1 3 3 2 3 2 3 2 2 1 2 1 1 1 2 4 4 5 5 4 5 4 4 5 5 5 4 4 5 5 4 1 3 4 4 2 3 5 5 1 2 1 2 5 4 1 3 1 3 4 2 3 2 3 5 T
in Table A1 is an OofA-OA ( 24 , 5 , 3 ) , where we use the Arabic numbers 1 , 2 , 3 , 4 , 5 instead of c 1 , c 2 , c 3 , c 4 , c 5 to denote the components, respectively, to save space. Projecting the design A 5.1 24 onto the components 1 and 2, we obtain design
H 1 = 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 2 2 2 2 1 1 1 1 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2 T .
In H 1 , each order of the components 1 and 2 appears 12 times. Similar balance properties can be obtained when projecting A 5.1 24 onto other two components. Projecting the design A 5.1 24 onto the components 1, 2, and 3, we obtain design
H 2 = 3 1 2 1 3 2 2 1 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 2 2 3 3 1 1 3 3 2 1 2 1 2 1 3 1 3 1 1 3 2 3 2 2 1 3 1 2 2 3 1 2 1 2 1 2 1 2 1 3 1 3 3 2 3 2 3 3 T .
In H 2 , each order of the components 1, 2, and 3 appears 4 times. Similar balance properties can be obtained when projecting A 5.1 24 onto other three components. Projecting the design A 5.1 24 onto the components 1, 2, 3, and 4, we obtain design
H 3 = 4 4 2 1 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 3 1 3 3 3 2 2 1 2 1 4 4 2 1 3 1 4 4 1 3 2 4 4 2 2 2 1 2 1 1 3 3 4 4 2 1 1 2 4 4 3 1 3 4 4 3 2 3 1 3 4 4 2 3 1 2 1 2 1 2 4 4 1 3 1 3 4 2 3 2 3 4 T .
In H 3 , each order of the components 1, 2, 3, and 4 appears once. Similar balance properties can be obtained when projecting A 5.1 24 onto other four components.
The design A in Example 3 is an OofA-OA ( 24 , 5 , 2 ) but not an OofA-OA ( 24 , 5 , 3 ) . As will be seen, when projecting A onto the components 1, 2, 3, and 4, the resulting design does not have the balance properties stated in Theorem 2 (iii).
Example 3.
Projecting the design
A = 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1 1 1 1 1 4 3 3 2 1 5 3 2 2 1 5 5 4 2 1 5 4 3 1 5 4 3 2 2 2 4 2 1 2 1 2 5 1 3 2 1 1 4 4 4 3 1 5 4 5 2 4 3 3 1 4 3 4 2 5 1 3 5 1 4 5 5 2 3 1 4 3 3 3 5 5 5 1 2 1 4 3 3 1 3 5 2 4 2 2 1 5 1 5 5 4 2 2 4 3 4 T
onto the components 1, 2, 3, and 4 obtains
H 4 = 4 3 3 2 1 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1 1 1 1 1 2 4 2 1 2 1 3 2 2 1 2 1 4 2 1 4 4 3 1 4 4 3 2 2 3 1 4 3 4 2 2 1 1 3 1 4 1 4 4 3 3 1 3 3 3 2 4 3 1 2 1 4 3 3 1 3 3 2 4 2 2 1 2 1 1 4 4 2 2 4 3 4 T .
In H 4 , the order 1432 appears two times and the order 4321 appears once. Clearly, H 4 is not an O 4 and thus does not have the balance properties stated in Theorem 2 (iii).
Remark 3.
The balance properties in Theorem 2 make OofA-OAs of strength 3 useful in the situation where m 4 or more components are found inactive after experimentations. The OofA-OAs of strength 3 may have larger run sizes compared to OofA-OAs of strength 2. For example, when m = 5 , the smallest run size of the OofA-OAs of strength 2 is 12 while the smallest run size of the OofA-OAs of strength 3 is 24. Note that a larger design run size implies more observations. People may choose to use OofA-OAs of strength 2 or 3 according to their practical needs. When m 4 components are found inactive after experimentations, the OofA-OAs of strength 3 would be better choices.

5. Simulation Studies

We conducted thorough simulation studies to investigate the performances of the constructed OofA-OAs presented in Table A1, Table A2, Table A3, Table A4, Table A5. It was shown that the constructed OofA-OAs of strength 3 have the desirable capability of estimating the optimal orders of addition. For saving space, we only use the OofA-OA ( 24 , 5 , 3 ) A 5.1 24 (in Table A1) and OofA-OA ( 48 , 6 , 3 ) A 6.1 48 to illustrate the simulation studies we have conducted. The other OofA-OAs of strength 3 presented in Table A2, Table A3, Table A4, Table A5 have either close or better performance of estimating optimal orders of addition than A 5.1 24 and A 6.1 48 .
Without loss of generality, suppose the underling true optimal orders for m = 5 and m = 6 are
1 2 3 4 5   a n d
1 2 3 4 5 6 ,
respectively. Establish the PWO models for m = 5 and m = 6 as
τ ( o k ) = β 0 + i = 1 4 j = i + 1 5 β i j λ i j ( o k ) + + ε ( o k ) a n d
τ ( o k ) = β 0 + i = 1 5 j = i + 1 6 β i j λ i j ( o k ) + ε ( o k ) ,
respectively, where o k is an order in A 5.1 24 and A 6.1 48 , ε ( o k ) N ( 0 , σ 2 ) , and ε ( o k ) is independent of ε ( o l ) for k l . For both models (7) and (8), the values of β 0 are set to be 1 and the values of β i j s are set following the four scenarios
(S1)
all of the β i j s in models (7) and (8) equal to 0.5 ;
(S2)
all of the β i j s in models (7) and (8) equal to 1;
(S3)
all of the β i j s in models (7) and (8) equal to 3;
(S4)
all of the β i j s with 1 i 2 and 1 j 4 in models (7) and (8) equal to 0.5 , and the other β i j s in models (7) and (8) equal to 5.
For each scenario S 1 , S 2 , S 3 , and S 4 , the simulation procedure is designed as follows.
  • For each order o k of A 5.1 24 (or A 6.1 48 for m = 6 ), randomly draw ε ( o k ) from N ( 0 , σ ) with a given σ ( = 1 , 3 , 5 ).
  • Compute τ ( o k ) by model (7) (or model (8) for m = 6 ), where ε ( o k ) is the one obtained in Step 1, β 0 = 1 and β i j s are referred to each scenario of S 1 , S 2 , S 3 , and S 4 .
  • Fit model (7) (or model (8) for m = 6 ) to obatin a β i j s’ least squre estimations β ^ i j s by Y = ( τ ( o 1 ) , τ ( o 2 , , τ ( o N ) ) T and X = ( 1 N , P ) , where N = 24 (or N = 48 for A 6.1 48 ), o k s are from A 5.1 24 (or A 5.1 24 ), and P is the PWO design corresponding to A 5.1 24 (or A 6.1 48 ).
  • Test the significance of β i j s. For the two-sided alternative H 1 : β i j 0 , the p-value is evaluated by 2 × P r o b ( t > | β ^ i j c i j σ ^ | ) , where t follows the t-distribution with 13 (or 32) degrees of freedom for A 5.1 24 (or A 6.1 48 ), c i j is the diagonal entry of ( X T X ) 1 corresponding to β ^ i j , and the significance level is set to be 0.05 .
  • Let S = ( s 12 , s 13 , , s ( m 1 ) m ) , where s i j is the sign of β ^ i j if β i j is significant, and otherwise s i j = 0 .
  • The underlying order is correctly estimated if there is no element 1 in S . Repeat this simulation procedure 10,000 times, and summarize the frequency (out of 10,000) of correct estimations of the underlying optimal order.
The simulation results are displayed in Table 3 with different values of σ (= 1 , 3 , and 5).
From Table 3, the OofA-OAs(24,5,3) A 5.1 24 and OofA-OAs(48,6,3) A 6.1 48 have quite high frequecies (out 10,000) of correct estimations of the true underlying optimal orders while saving a significant experimental cost compared to the full OofA designs as shown in the second column of Table 3.

6. Results and Discussions

The OofA-OAs are a class of D-optimal fractional OofA designs under the prevalent PWO model. The OofA-OAs of strength 2 have been studied in a few studies, we defer to [11,12,13]. However, there is no study on the OofA-OAs of strength 3. This paper studies the OofA-OAs of strength 3 for the first time in the literature.
In Theorem 2, it is shown that the OofA-OAs of strength 3 have better balance properties than those of OofA-OAs of strength 2. These balance properties make OofA-OAs of strength 3 more useful when m 4 or more components are found inactive after experimentations. For such a motivation, we propose a systematical construction method for OofA-OAs of strength 3 in Theorem 1. The proposed construction method is capable of finding non-isomorphic OofA-OAs of strength 3, noting that non-isomorphic OofA-OAs may have different performances for other OofA models such as the CP model. In Table A1, Table A2, Table A3, Table A4, Table A5, non-isomorphic OofA-OAs of strength 3 are provided which provides quite high D-efficiencies under the CP model. When models are not prespecified, the OofA-OAs of strength 3 which can provide higher D-efficiencies for both PWO and CP models are desirable.
To further show the efficiencies of the constructed OofA-OAs of strength 3, thorough simulation studies are provided in Section 5. From Table 3, the constructed OofA-OAs of strength 3 can provide quite high frequencies (out of 10,000) of correct estimations of the true underlying orders. This indicates that the OofA-OAs of strength 3 are capable of estimating the optimal order of addition.

7. Conclusions

As a class of efficient fractional OofA designs, OofA-OAs are optimal for the PWO model under a variety of widely used design criteria [11]. In the literature, the studies on OofA-OAs were focused on strength 2 while OofA-OAs of strength 3 have not been studied yet. The high strength results in two major challenges of this work. The first one is the classification of three-column subarrays of P m (as shown in Table 2). As previously stated, P 6 is the smallest full PWO design to investigate the classification of the three-column subarrays of P m with respect to the ratios among the frequencies of the three-tuple ( a , b , c ) s with a = ± 1 , b = ± 1 and c = ± 1 . The PWO design P 6 has 6 2 3 = 455 three-column subarrays to be classified which is not so easy as the counterpart problem in the case of strength 2. One is referred to [10,11] for the classification of the two-column subarrays of P m . The second one is the derivation of Theorem 2. The derivation of Theorem 2 concerns analyses of an equation system consisting of 3640 equations, i.e., the equation system (3) for m = 6 . These large number of equations make the derivation of Theorem 2 more challengeable as indicated by the proof of Theorem 2.
Despite the challenges stated above, this paper provides a threefold contribution. First, this paper provides a method of constructing OofA-OAs of strength 3. This method is capable of finding non-isomorphic OofA-OAs of strength 3. Second, some balance properties of this class of designs are developed. It is shown that OofA-OAs of strength 3 have better balance properties than OofA-OAs of strength 2. For example, when projecting an OofA-OA of strength 3 onto any four components, all of the 24(=4!) orders in the resulting design appear equally often. This balance property is useful when m 4 components are found inactive after experimentations. For practical usage, some non-isomorphic OofA-OAs of strength 3 are also provided. Third, the thorough simulation studies are conducted which show that the constructed OofA-OAs of 3 are quite capable of estimating optimal orders of addition.

Author Contributions

Conceptualization, S.Z.; methodology, Z.D. and Y.Z.; writing—original draft preparation, S.Z. and Y.Z.; writing—review and editing, S.Z. and Y.Z.; All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11801331 and 12171277).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the reviewers for their valuable comments to improve the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
OofAOrder-of-addition
OofA-OAOrder-of-addition orthogonal array
PWOPair-wise ordering
CPComponent position

Appendix A. Proof of Theorems

Proof of Theorem 1. 
From the left hand of Equation (3), the entry ϕ i j , k l , v w ( a , b , c ) T Y D in Φ Y D is the number of the three-tuple ( a , b , c ) appearing in the three-column subarray of P D corresponding to ( z i j , z k l , z v w ) of P m .
From the right hand of Equation (3), we have
v d i a g ( Φ Φ T ) = ( v d i a g ( Φ 12 , 13 , 14 Φ 12 , 13 , 14 T ) T , v d i a g ( Φ 12 , 13 , 15 Φ 12 , 13 , 15 T ) T , , v d i a g ( Φ ( m 2 ) ( m 1 ) , ( m 2 ) m , ( m 1 ) m Φ ( m 2 ) ( m 1 ) , ( m 2 ) m , ( m 1 ) m T ) T ) T v d i a g ( Φ i j , k l , v w Φ i j , k l , v w T ) = ( ϕ i j , k l , v w ( , , ) T ϕ i j , k l , v w ( , , ) , ϕ i j , k l , v w ( , , + ) T ϕ i j , k l , v w ( , , + ) , , ϕ i j , k l , v w ( + , + , + ) T ϕ i j , k l , v w ( + , + , + ) ) T ,
where ϕ i j , k l , v w ( a , b , c ) T ϕ i j , k l , v w ( a , b , c ) is the number of three-tuple ( a , b , c ) in the three-column subarray ( z i j , z k l , z v w ) of P m .
According to Definition 1 and Lemma 1, if D is an OofA-OA ( N , m , 3 ) , there should be ϕ i j , k l , v w ( a , b , c ) T Y D = N / m ! ϕ i j , k l , v w ( a , b , c ) T ϕ i j , k l , v w ( a , b , c ) , i.e., Φ Y D = ( N / m ! ) vdiag ( Φ Φ T ) . This completes the proof. □
Proof of Theorem 2. 
The proof of Theorem 2 is challengeable and lengthy. To save space, we provide only the core techniques of proving Theorem 2. We first consider the case m = 6 . Denote Φ 6 as the coefficient matrix of (3) for m = 6 . Then, Equation (3) becomes
Φ 6 Y D = ( N / 6 ! ) vdiag ( Φ 6 Φ 6 T ) ,
where Y D = ( y 1 ( D ) , y 2 ( D ) , , y 6 ! ( D ) ) T . Applying Gauss–Jordan elimination to (A1), a triangular linear system of 326 equations is obtained. This triangular linear system needs considerably more space to be presented and thus is omit here. We present some of the equations in the triangular linear system to illustrate the remaining procedure of proving Theorem 2 for m = 6 , as follows:
y 306 y 344 y 347 y 348 y 357 y 358 y 360 y 429 y 430 y 432 y 463 y 464 y 465 y 466 y 467 y 468 y 471 y 472 y 474 y 477 y 478 y 480 y 570 y 573 y 574 y 576 y 584 y 587 y 588 y 597 y 598 y 600 y 626 y 627 y 628 y 629 2 y 630 y 632 y 635 y 636 y 637 y 638 y 639 y 640 y 641 y 642 y 643 2 y 644 y 645 y 646 2 y 647 2 y 648 y 656 y 659 y 660 y 669 y 670 y 672 y 679 y 680 y 681 y 682 y 683 y 684 y 687 y 688 y 690 y 693 y 694 y 696 y 703 2 y 704 y 705 y 706 2 y 707 2 y 708 y 711 y 712 y 714 2 y 717 2 y 718 2 y 720 = N / 8 ,
y 309 + y 343 + y 344 + y 345 + y 351 + y 429 + y 463 + y 464 + y 465 + y 471 + y 625 + y 626 + y 627 + y 628 + y 629 + y 630 + y 631 + y 632 + y 633 + y 637 + y 638 + y 639 + y 655 + y 656 + y 657 + y 663 + y 679 + y 680 + y 681 + y 687 = N / 24 ,
y 310 + y 346 + y 347 + y 348 + y 352 + y 430 + y 466 + y 467 + y 468 + y 472 + y 634 + y 635 + y 636 + y 640 + y 641 + y 642 + y 643 + y 644 + y 645 + y 646 + y 647 + y 648 + y 658 + y 659 + y 660 + y 664 + y 682 + y 683 + y 684 + y 688 = N / 24 ,
y 312 + y 354 + y 357 + y 358 + y 360 + y 432 + y 474 + y 477 + y 478 + y 480 + y 666 + y 669 + y 670 + y 672 + y 690 + y 693 + y 694 + y 696 + y 703 + y 704 + y 705 + y 706 + y 707 + y 708 + y 711 + y 712 + y 714 + y 717 + y 718 + y 720 = N / 24 ,
y 330 y 343 y 345 y 346 y 351 y 352 y 354 + y 546 + y 570 + y 573 + y 574 + y 576 y 625 y 627 y 628 y 631 y 633 y 634 y 637 y 638 y 639 y 640 y 641 y 642 y 655 y 657 y 658 y 663 y 664 y 666 y 679 y 680 y 681 y 682 y 683 y 684 y 687 y 688 y 690 y 693 y 694 y 696 = N / 24 ,
y 426 + y 429 + y 430 + y 432 + y 463 + y 465 + y 466 + y 471 + y 472 + y 474 y 546 y 549 y 550 y 552 y 583 y 585 y 586 y 591 y 592 y 594 + y 627 y 629 + y 637 + y 639 + y 640 y 643 y 645 y 646 + y 679 + y 681 + y 682 + y 687 + y 688 + y 690 y 703 y 705 y 706 y 711 y 712 y 714 = 0 ,
y 450 y 463 y 465 y 466 y 471 y 472 y 474 + y 546 + y 549 + y 550 + y 552 + y 570 y 625 y 626 y 627 y 631 y 632 y 633 y 634 y 635 y 636 y 637 y 639 y 640 y 655 y 656 y 657 y 658 y 659 y 660 y 663 y 664 y 666 y 669 y 670 y 672 y 679 y 681 y 682 y 687 y 688 y 690 = N / 24 ,
y 453 + y 463 + y 464 + y 467 + y 477 + y 573 + y 583 + y 584 + y 587 + y 597 + y 625 + y 626 + y 627 + y 628 + y 629 + y 630 + y 637 + y 638 + y 641 + y 643 + y 644 + y 647 + y 679 + y 680 + y 683 + y 693 + y 703 + y 704 + y 707 + y 717 = N / 24 ,
y 454 + y 465 + y 466 + y 468 + y 478 + y 574 + y 585 + y 586 + y 588 + y 598 + y 631 + y 632 + y 633 + y 634 + y 635 + y 636 + y 639 + y 640 + y 642 + y 645 + y 646 + y 648 + y 681 + y 682 + y 684 + y 694 + y 705 + y 706 + y 708 + y 718 = N / 24
y 456 + y 471 + y 472 + y 474 + y 480 + y 576 + y 591 + y 592 + y 594 + y 600 + y 655 + y 656 + y 657 + y 658 + y 659 + y 660 + y 663 + y 664 + y 666 + y 669 + y 670 + y 672 + y 687 + y 688 + y 690 + y 696 + y 711 + y 712 + y 714 + y 720 = N / 24 ,
where ( D ) is dropped from y i ( D ) for saving space. Summing up Equations (A2)–(A11), we obtain
y 306 + y 309 + y 310 + y 312 + y 330 + y 426 + y 429 + y 430 + y 432 + y 450 + y 453 + y 454 + y 456 + y 463 + y 464 + y 465 + y 466 + y 467 + y 468 + y 471 + y 472 + y 474 + y 477 + y 478 + y 480 + y 546 + y 570 + y 573 + y 574 + y 576 = N / 24 .
Checking the orders of O 6 , those with c 3 preceding c 1 , c 1 preceding c 5 , and c 5 preceding c 6 appear in the 306 , 309 , 310 , 312 , 330 , 426 , 429 , 430 , 432 , 450 , 453 , 454 , 456 , 463 , 464 , 465 , 466 , 467 , 468 , 471 , 472 , 474 , 477 , 478 , 480 , 546 , 570 , 573 , 574 , and 576-th rows. Therefore, Equation (A12) indicates that when projecting an OofA-OA ( N , 6 , 3 ) onto the components c 1 , c 3 , c 5 , and c 6 , the order c 3 c 1 c 5 c 6 appears N / 24 times in the resulting design. Similarly, by summing up some carefully chosen equations in the triangular linear system, the balance properties in (i), (ii), and (iii) can be verified.
For m 7 , let Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 be the submatrix of Φ corresponding to the components c i 1 , c i 2 , c i 3 , c i 4 , c i 5 , and c i 6 , i.e., Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 consists of 6 2 3 Φ i j , k l , v w s (defined as (2)) with i , j , k , l , v , w being taken from { i 1 , i 2 , i 3 , i 4 , i 5 , i 6 } , where 1 i 1 < i 2 < i 3 < i 4 < i 5 < i 6 m . Permute the rows in Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 such that Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 = ( Φ 6 , Φ 6 , , Φ 6 ) , an m ! / 6 ! -replication of Φ 6 . Corresponding to the permutation to the rows in Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 , permute the rows of Y D and denote it as Y i 1 , i 2 , i 3 , i 4 , i 5 , i 6 .
Equation (3) can be seen as a joint of the m 6 equations
Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 Y i 1 , i 2 , i 3 , i 4 , i 5 , i 6 = ( N / m ! ) vdiag ( Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 Φ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 T ) .
Rewrite Y i 1 , i 2 , i 3 , i 4 , i 5 , i 6 in (A13) as Y i 1 , i 2 , i 3 , i 4 , i 5 , i 6 = ( Y 1 , Y 2 , , Y m ! / 6 ! ) , then (A13) becomes
Φ 6 ( Y 1 + Y 2 + + Y m ! / 6 ! ) = ( N / 6 ! ) vdiag ( Φ 6 Φ 6 T ) .
Note that the ith entries in Y 1 , Y 2 , ,   Y ( m ! / 6 ! 1 ) and Y m ! / 6 ! correspond to the orders in which the components c i 1 , c i 2 , c i 3 , c i 4 , c i 5 and c i 6 are ordered in the same ordering regardless of the other components. Let Y * = ( y 1 * , y 2 * , , y 6 ! * ) T = Y 1 + Y 2 + + Y m ! / 6 ! , i.e., y i * is the sum of the ith entries in Y 1 , Y 2 , ,   Y ( m ! / 6 ! 1 ) and Y m ! / 6 ! , where i = 1 , 2 , , 720 . Equation (A14) can be written as
Φ 6 Y * = ( N / 6 ! ) vdiag ( Φ 6 Φ 6 T ) .
Clearly, applying Gauss–Jordan elimination to Equation (A15) obtains the same triangular linear system (on variables y i * s with i = 1 , 2 , , 720 ) as that of Equation (A1). Therefore, Theorem 2 holds for m 7 . Following the same line as that of the proof for m = 6 , it can be verified that Theorem 2 holds for m = 5 as well. This completes the proof. □

Appendix B. Some Useful Design Tables

Table A1. Row numbers of an OofA-OA(24,5,3).
Table A1. Row numbers of an OofA-OA(24,5,3).
123456789101112131415161718192021222324 D CP
A 5.1 24 161622262840465153575966717577818395991011051071200
DCP: the relative D-efficiency under the CP model.
Table A2. Row numbers of ten non-isomorphic OofA-OA(48,5,3)s.
Table A2. Row numbers of ten non-isomorphic OofA-OA(48,5,3)s.
A 5.1 48 A 5.2 48 A 5.3 48 A 5.4 48 A 5.5 48 A 5.6 48 A 5.7 48 A 5.8 48 A 5.9 48 A 5.10 48
11121111133
25444564256
38558688487
410879911910109
513101014111313111111
615131116121516151313
718161519131818171817
820201720181919201918
922222222212221222319
1023232426232323242524
1126262727272526272826
1228283030282830293029
1331333133323231323331
1436353235333636343534
1537373440363837383636
1638403841373939403938
1740444045424041434139
1844464346434344444341
1945484847474545484844
2048515150494746504945
2149535352524950515150
2253555754565254555454
2356565955585655575655
2458586057595858605860
2562626364636162626361
2663646565666363646562
2764676867676665686966
2868717270716867697168
2969727372756969727469
3071757773777172747574
3174787976807474757876
3276808378827676797979
3381818480847980818484
3483838581858482848687
3585858685868685868888
3690909088908888899089
3791919293919193929193
3894949694929294939495
3995959895989495969897
40989910199102989899100100
4199102103101103100100101102104
42103103106102105104103105105108
43106105107103108106108106107109
44110107109108110109110107109112
45112110111111112112112109112114
46116112113113113117115113114115
47117115116115117119116115117116
48120120118120120120120120119118
D CP 0.940.930.900.900.890.890.890.890.890.88
DCP: the relative D-efficiency under the CP model.
Table A3. Row numbers of ten non-isomorphic OofA-OA(72,5,3)s.
Table A3. Row numbers of ten non-isomorphic OofA-OA(72,5,3)s.
A 5.1 72 A 5.2 72 A 5.3 72 A 5.4 72 A 5.5 72 A 5.6 72 A 5.7 72 A 5.8 72 A 5.9 72 A 5.10 72
11212211111
23323333332
35445454554
46566585666
58897798879
6991198101091111
710101211101112121213
811121312121414141415
913131514131515161516
1015171715151816171617
1117181816171918181719
1218202117182020201921
1319212220192321212022
1422242321202423222223
1523252522242625252425
1626272725252726262526
1728292928292829272628
1830303030302930302830
1931323231313131323233
2033333332343435333435
2135343633353536363537
2236363735363637383839
2337373837373839403940
2438414040393941414041
2540424241414142424243
2641444342424444444345
2743454543444546454446
2845484746454748464647
2948494947484850494749
3049515049514951515050
3153535252535053535152
3254545354545254545254
3355555556555455555555
3456575857565657575656
3558595959575758595758
3660606060605859606060
3761626161616261626161
3863646364626362646263
3965656565646464656465
4066676666656865666666
4168696867676967676767
4269726970697070686869
4371747271727172707071
4474757473747373737172
4576767577767475757374
4678777678787677767575
4779807779797878777876
4881818180807980807978
4983828282818181818080
5084838384838482828181
5185858485858583838482
5286878686888887858684
5388898787898989878886
5490908990909090909088
5591929291919193929191
5694949392949394949293
5795969696969495959395
5898979797999597979596
599999981011009899999998
60102101991021019910010110099
61103102102103103100101102101100
62104103104104104101104103104102
63106105105106106103105105105104
64108107106108107106106107106105
65109108108109109108107108107106
66110110110110110109110111109108
67112112112111112111111113111110
68114113113114114113114114114112
69115114115116115114115115115115
70116115117117116116116117118117
71117117119118118117119119119119
72120119120119119120120120120120
D CP 0.970.970.970.960.960.960.960.950.950.95
DCP: the relative D-efficiency under the CP model.
Table A4. Row numbers of ten non-isomorphic OofA-OA(48,6,3)s.
Table A4. Row numbers of ten non-isomorphic OofA-OA(48,6,3)s.
A 6.1 48 A 6.2 48 A 6.3 48 A 6.4 48 A 6.5 48 A 6.6 48 A 6.7 48 A 6.8 48 A 6.9 48 A 6.10 48
13205154728151
212381529221846181518
330552240502052633442
436623557642670684756
580694172844273735366
69082677410545781066373
7919381110116708211677100
81191021171381228798126131106
9129113130140136115110131137128
10139122140146169133127177155143
11166147148162190142153191161158
12176175155177201145163194175168
13198182187188212167174208193192
14201188201193228192195225233208
15216194211234241204204237240223
16224213249247255279210245256229
17247222273263270285232258261263
18261232287271285291235267270267
19274269313287294312242293273273
20308280330311298320270298299290
21317290343318317329295312323312
22319302359322330341310315325328
23336304367351347378315324367339
24344318377365353392322343380345
25381337394371374398332355384379
26385342408377381403358368402387
27404348414395399413362370430401
28411363416401404418403388431411
29420372439439423433412395441425
30434396449449427450427441451441
31436450476472451458435455500462
32454468504484480497448470504465
33466470507501487517451496521488
34493483528525497522478501529494
35515516534541509523509524550518
36521529540549515531533537551532
37543560554567520533558551559539
38569567576574555579561554576556
39580571577596592598591573608584
40603584616601599617597585623586
41616599623622605634607608628593
42643601640627611637624613636608
43657663647646616644632622649623
44671669650650631651638636666643
45674679661666641656662638679667
46696692666686681689688688686688
47707700680701710714698691700691
48709706705707717716713720705720
D CP 0.770.770.750.740.720.700.700.690.680.67
DCP: the relative D-efficiency under the CP model.
Table A5. Row numbers of ten non-isomorphic OofA-OA(72,6,3)s.
Table A5. Row numbers of ten non-isomorphic OofA-OA(72,6,3)s.
A 72 6.1 A 6.2 72 A 6.3 72 A 6.4 72 A 6.5 72 A 6.6 72 A 6.7 72 A 6.8 72 A 6.9 72 A 6.10 72
131374657834
21220171025101314108
324262226422018272310
433413537512319293827
544485746533644364536
660556849663754425045
774567569756157536354
889628188776764638264
9969095911018781779574
10105100107981089393859989
11107110114112113111105100111103
12109134124116122114116109115115
13127139125122131116123120121120
14132144131135133134131130136133
15134147152142153148150143161138
16149166160167161160155154165141
17156176172177168169174158170154
18172177185181184183183165200157
19177186194189192189209169207163
20193188207197198193213173215183
21212203227202206196220192220188
22214206236210229216228199232216
23227215246221230219251216235228
24229227247226237233262223242235
25247252264229253247268239252246
26253254267246259256273243254249
27279265276249268266285250270272
28284285285268269272287263273286
29286293292293280287291287276295
30294297301295299298298293295311
31296305317298301301312296315318
32306318324321308317313301326319
33320322330329316320326320344334
34335328337333340337332328353344
35336340356337357338334343360360
36337347365345364350337359363369
37356348371360370360368377384379
38362361376366371367372395389392
39376374395373384371377397405397
40400376400378391377391401412403
41403382404392410392396415418412
42409395417420424396397425426418
43429408432422430404444430427427
44435439441428439426452445434434
45437450453448456440469458441453
46444463470453465450471462451472
47458467479463475458475474460480
48472473481475488473482498467495
49473481497480495476497501468509
50485497501492500483504505491517
51495501525494519492506519498522
52520507528511525514520524507533
53532524535516532525527538509539
54533530549524543540535548514541
55538543551530550542551550522545
56560565555532551560560554544558
57561569560555563565565556547562
58572580575560571576570574555579
59578586582579583579585578590581
60591598608598599581612594592594
61607603610599603595623609597612
62617620619614609612625626608627
63622622630622624625640630610633
64632625631631630630644636623645
65633650640647633634646653631647
66648661646654650660653658636651
67683687664659664663673676638653
68686690673665670684680685661674
69696692687675683686690693669678
70703706691684689705695694696689
71707711707698699707699697698694
72713715714712718710714710719698
D CP 0.870.870.860.860.860.850.840.840.840.84
DCP: the relative D-efficiency under the CP model.

References

  1. Fisher, R.A. The Design of Experiments; Oliver and Boyd: Edinburgh, UK, 1937. [Google Scholar]
  2. Yang, J.; Sun, F.; Xu, H. A component-position model, analysis and design for order-of-addition experiments. Technometrics 2021, 63, 212–224. [Google Scholar] [CrossRef]
  3. Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins. J. Food Sci. 1968, 33, 266–274. [Google Scholar] [CrossRef]
  4. Shinohara, A.; Ogawa, T. Stimulation by rad52 of yeast rad51-mediated recombination. Nature 1998, 391, 404. [Google Scholar] [CrossRef] [PubMed]
  5. Jourdain, L.S.; Schmitt, C.; Leser, M.E.; Murray, B.S.; Dickinson, E. Mixed layers of sodium caseinate+ dextran sulfate: Influence of order of addition to oil-water interface. Langmuir 2009, 25, 10026–10037. [Google Scholar] [CrossRef] [PubMed]
  6. Cheng, T.E.; Wang, G. Single machine scheduling with learning effect considerations. Ann. Oper. Res. 2000, 98, 273–290. [Google Scholar] [CrossRef]
  7. Lin, D.K.J.; Peng, J. Order-of-addition experiments: A review and some new thoughts. Qual. Eng. 2019, 31, 49–59. [Google Scholar] [CrossRef]
  8. Xiao, Q.; Xu, H. A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies. Comput. Stat. Data Anal. 2021, 157, 107155. [Google Scholar] [CrossRef]
  9. Van Nostrand, R.C. Design of experiments where the order of addition is important. In ASA Proceedings of the Section on Physical and Engineering Sciences; American Statistical Association: Alexandria, VA, USA, 1995; pp. 155–160. [Google Scholar]
  10. Voelkel, J.G. The designs of order-of-addition experiments. J. Qual. Technol. 2019, 51, 230–241. [Google Scholar] [CrossRef]
  11. Peng, J.; Mukerjee, R.; Lin, D.K.J. Design of order-of-addition experiments. Biometrika 2019, 106, 683–694. [Google Scholar] [CrossRef] [Green Version]
  12. Chen, J.; Mukerjee, R.; Lin, D.K.J. Construction of optimal fractional order-of-addition designs via block designs. Stat. Probab. Lett. 2020, 161, 108728. [Google Scholar] [CrossRef]
  13. Zhao, Y.; Lin, D.K.J.; Liu, M.Q. Optimal designs for order-of-addition experiments. Comput. Stat. Data Anal. 2022, 165, 107320. [Google Scholar] [CrossRef]
  14. Zhao, Y.; Li, Z.; Zhao, S.L. A new method of finding component orthogonal arrays for order-of-addition experiments. Metrika 2021, 84, 805–824. [Google Scholar] [CrossRef]
  15. Huang, H. Construction of component orthogonal arrays with any number of components. J. Stat. Plan. Inference 2021, 213, 72–79. [Google Scholar] [CrossRef]
  16. Mee, R.W. Order-of-addition modeling. Stat. Sin. 2020, 30, 1543–1559. [Google Scholar] [CrossRef]
  17. Zhao, Y.; Lin, D.K.J.; Liu, M.Q. Designs for order-of-addition experiments. J. Appl. Stat. 2020, 48, 1475–1495. [Google Scholar] [CrossRef]
Table 1. Full OofA design O 3 and full PWO design P 3 .
Table 1. Full OofA design O 3 and full PWO design P 3 .
PWO Factors ( P 3 )
O 3 z 12 z 13 z 23
c 3 c 2 c 1 1 1 1
c 3 c 1 c 2 1 1 1
c 2 c 3 c 1 1 1 1
c 2 c 1 c 3 1 11
c 1 c 3 c 2 11 1
c 1 c 2 c 3 111
Table 2. Classifications of three-column subarrays of P m .
Table 2. Classifications of three-column subarrays of P m .
Type T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ( z i j , z k l , z v w ) Examples
t 1 m ! 6 m ! 6 0 m ! 6 m ! 6 0 m ! 6 m ! 6 i = k , j = v , l = w 12 13 23
t 2 5 m ! 24 m ! 24 m ! 8 m ! 8 m ! 8 m ! 8 m ! 24 5 m ! 24 j = w , k = v 14 23 24
t 3 5 m ! 24 m ! 8 m ! 8 m ! 24 m ! 24 m ! 8 m ! 8 5 m ! 24 i = k , j = w 13 14 23
t 4 m ! 24 m ! 8 5 m ! 24 m ! 8 m ! 8 5 m ! 24 m ! 8 m ! 24 j = k , l = v 12 23 34
t 5 m ! 12 m ! 4 m ! 12 m ! 12 m ! 12 m ! 12 m ! 4 m ! 12 j = l = v 13 23 34
t 6 m ! 12 m ! 12 m ! 12 m ! 4 m ! 4 m ! 12 m ! 12 m ! 12 j = k = v 12 23 24
t 7 m ! 8 5 m ! 24 m ! 24 m ! 8 m ! 8 m ! 24 5 m ! 24 m ! 8 i = k , j = v 12 13 24
t 8 m ! 8 5 m ! 24 m ! 8 m ! 24 m ! 24 m ! 8 5 m ! 24 m ! 8 i = k , l = v 12 13 34
t 9 m ! 8 m ! 24 m ! 8 5 m ! 24 5 m ! 24 m ! 8 m ! 24 m ! 8 j = k , l = w 12 24 34
t 10 m ! 8 m ! 8 5 m ! 24 m ! 24 m ! 24 5 m ! 24 m ! 8 m ! 8 j = w , l = v 14 23 34
t 11 m ! 8 m ! 8 m ! 24 5 m ! 24 5 m ! 24 m ! 24 m ! 8 m ! 8 j = v , l = w 13 24 34
t 12 5 m ! 24 m ! 8 m ! 24 m ! 8 m ! 8 m ! 24 m ! 8 5 m ! 24 i = k , l = w or
j = l , k = v
12 14 34
13 23 25
t 13 m ! 4 m ! 12 m ! 12 m ! 12 m ! 12 m ! 12 m ! 12 m ! 4 i = k = v or
j = l = w
12 13 14
14 24 34
t 14 m ! 6 m ! 6 m ! 12 m ! 12 m ! 12 m ! 12 m ! 6 m ! 6 i = k or
j = l
12 13 45
13 23 45
t 15 m ! 6 m ! 12 m ! 12 m ! 6 m ! 6 m ! 12 m ! 12 m ! 6 k = v or
l = w
12 34 35
12 35 45
t 16 m ! 6 m ! 12 m ! 6 m ! 12 m ! 12 m ! 6 m ! 12 m ! 6 j = w 14 25 34
t 17 m ! 12 m ! 6 m ! 6 m ! 12 m ! 12 m ! 6 m ! 6 m ! 12 l = v 12 34 45
t 18 m ! 12 m ! 6 m ! 12 m ! 6 m ! 6 m ! 12 m ! 6 m ! 12 j = v 13 24 35
t 19 m ! 12 m ! 12 m ! 6 m ! 6 m ! 6 m ! 6 m ! 12 m ! 12 j = k 12 23 45
t 20 m ! 8 m ! 8 m ! 8 m ! 8 m ! 8 m ! 8 m ! 8 m ! 8 *12 34 56
Note: T1, T2, T3, T4, T5, T6, T7, T8 represent the three-tuples (−, −, −), (−, −, +), (−, +, −), (−, +, +), (+, −, −), (+, −, +), (+, +, −), and (+, +, +), respectively; for each ti, all the equal numbers among i, j, k, l, v, w are displayed in column “zij, zkl, zvw”, and * means that i, j, k, l, v, w are mutually different.
Table 3. The frequencies of correct estimations for the true underling orders.
Table 3. The frequencies of correct estimations for the true underling orders.
Designs m 2 + 1 / m ! σ S 1 S 2 S 3 S 4
10.999110.997
A 5.1 24 0.2 ( 24 / 120 ) 30.993110.986
50.9970.9960.9940.990
110.99610.993
A 6.1 48 0.07 ( 48 / 720 ) 30.9610.99410.985
50.9550.9900.9950.973
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhao, S.; Dong, Z.; Zhao, Y. Order-of-Addition Orthogonal Arrays with High Strength. Mathematics 2022, 10, 1187. https://0-doi-org.brum.beds.ac.uk/10.3390/math10071187

AMA Style

Zhao S, Dong Z, Zhao Y. Order-of-Addition Orthogonal Arrays with High Strength. Mathematics. 2022; 10(7):1187. https://0-doi-org.brum.beds.ac.uk/10.3390/math10071187

Chicago/Turabian Style

Zhao, Shengli, Zehui Dong, and Yuna Zhao. 2022. "Order-of-Addition Orthogonal Arrays with High Strength" Mathematics 10, no. 7: 1187. https://0-doi-org.brum.beds.ac.uk/10.3390/math10071187

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop