Next Article in Journal
Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme
Next Article in Special Issue
Multipolar Intuitionistic Fuzzy Set with Finite Degree and Its Application in BCK/BCI-Algebras
Previous Article in Journal
Optimal Uncertain Controls for Cash Holding Problems
Previous Article in Special Issue
Approximation Properties in Felbin Fuzzy Normed Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multipolar Fuzzy p-Ideals of BCI-Algebras

by
Mohammad Mohseni Takallo
1,
Sun Shin Ahn
2,*,
Rajab Ali Borzooei
1 and
Young Bae Jun
1,3
1
Department of Mathematics, Shahid Beheshti University, Tehran 1983963113, Iran
2
Department of Mathematics Education, Dongguk University, Seoul 04620, Korea
3
Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
*
Author to whom correspondence should be addressed.
Submission received: 8 October 2019 / Revised: 7 November 2019 / Accepted: 9 November 2019 / Published: 12 November 2019
(This article belongs to the Special Issue Fuzziness and Mathematical Logic )

Abstract

:
The notion of (normal) m-polar ( , ) -fuzzy p-ideals of BCI-algebras is introduced, and several properties are investigated. Relations between an m-polar ( , ) -fuzzy ideal and an m-polar ( , ) -fuzzy p-ideal are displayed, and conditions for an m-polar ( , ) -fuzzy ideal to be an m-polar ( , ) -fuzzy p-ideal are provided. Characterization of m-polar ( , ) -fuzzy p-ideals are considered. Given an m-polar ( , ) -fuzzy ideal (resp., m-polar ( , ) -fuzzy p-ideal), a normal m-polar ( , ) -fuzzy ideal (resp., normal m-polar ( , ) -fuzzy p-ideal) is established. Using an m-polar ( , ) -fuzzy ideal, the quotient structure of BCI-algebras is constructed.

1. Introduction

Fuzzy sets, which were introduced by Zadeh [1], deal with possibilistic uncertainty and are connected with imprecision of states, perceptions, and preferences. Since the introduction of fuzzy sets by Zadeh, fuzzy set theory has become an active area of research in various fields such as statistics, graph theory, medical and life science, engineering, business and social science, computer networks, decision making, artificial intelligence, pattern recognition, robotics, and automata theory, etc. BCK/BCI-algebras, which are created from two distinct approaches, set theory and proposition calculus, first appeared in the mathematical literature in 1966 (see [2,3]). BCK and BCI algebras describe fragments of propositional calculus involving implications known as BCK and BCI logics. The various attributes of BCK/BCI-algebra are considered in [4,5,6,7,8]. Ideal theory in BCI-algebras, in particular p-ideal, is studied in [9]. As an extension of fuzzy sets, Zhang [10] introduced the notion of bipolar fuzzy sets. Bipolar fuzzy information is applied in many (algebraic) structures, for instance, Γ -semihypergroups (see [11]), finite state machines (see [12,13,14,15]), (ordered) semigroups (see [16,17,18,19]), and (hyper) BCK/BCI-algebras (see [20,21,22,23,24,25]). In many real problems, information sometimes comes from multi-factors, and there are many multi-attribute data that cannot be processed using existing anomalies (e.g., fuzzy anomalies and bipolar fuzzy anomalies, etc.). In 2014, Chen et al. [26] introduced an m-polar fuzzy set, which is an extension of bipolar fuzzy sets. m-polar fuzzy sets have been applied to decision-making problems (see [27]), graph theory (see [28,29,30,31]), and BCK/BCI-algebra (see [32]).
In this paper, we introduce the notion of (normal) m-polar ( , ) -fuzzy p-ideals of BCI-algebras and investigate several properties. We discuss relations between an m-polar ( , ) -fuzzy ideal and an m-polar ( , ) -fuzzy p-ideal. We provide conditions for an m-polar ( , ) -fuzzy ideal to be an m-polar ( , ) -fuzzy p-ideal. We consider the characterization of m-polar ( , ) -fuzzy p-ideals. Given an m-polar ( , ) -fuzzy ideal (resp., m-polar ( , ) -fuzzy p-ideal), we define a normal m-polar ( , ) -fuzzy ideal (resp., normal m-polar ( , ) -fuzzy p-ideal). Using an m-polar ( , ) -fuzzy ideal, we construct the quotient structure of BCI-algebras.

2. Preliminaries

First, we would like to briefly present the basic concept for use in this paper.
By a BCI-algebra, we mean a set X with a binary operation * and a special element 0 that satisfies the following conditions:
(I)
( u , w , v X ) ( ( ( u w ) ( u v ) ) ( v w ) = 0 ) ,
(II)
( u , w X ) ( ( u ( u w ) ) w = 0 ) ,
(III)
( u X ) ( u u = 0 ) ,
(IV)
( u , w X ) ( u w = 0 , w u = 0 u = w ) .
If a BCI-algebra X satisfies the following identity:
(V)
( u X ) ( 0 u = 0 ) ,
Then X is called a B C K -algebra. Any BCK/BCI-algebra X satisfies the following conditions:
( u X ) u 0 = u ,
( u , w , v X ) u w u v w v , v w v u ,
( u , w , v X ) ( u w ) v = ( u v ) w ,
where u w if and only if u w = 0 . A subset S of a BCK/BCI-algebra X is called a subalgebra of X if u w S for all u , w S . A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies
0 I ,
( u X ) w I u w I u I .
A subset I of a BCI-algebra X is called a p-ideal of X if it satisfies (4) and
( u , w , v X ) ( u v ) ( w v ) I , w I u I .
Every BCI-algebra X satisfies the following assertions (see [9]).
( u , w , v X ) ( 0 ( 0 ( ( u v ) ( w v ) ) ) = ( 0 w ) ( 0 u ) ) .
( u , w X ) ( 0 ( 0 ( u w ) ) = ( 0 w ) ( 0 u ) ) .
( u , w X ) ( k N ) ( 0 ( u w ) k = ( 0 u k ) ( 0 w k ) ) .
See the books [7] and [8] for more information on BCK/BCI-algebras.
By an m-polar fuzzy set (briefly, mp-fuzzy set) on a set X (see [26]), we mean a function ^ : X [ 0 , 1 ] m . The membership value of every element y X is denoted by
^ ( y ) = ( π 1 ^ ) ( y ) , ( π 2 ^ ) ( y ) , , ( π m ^ ) ( y ) ,
where π i : [ 0 , 1 ] m [ 0 , 1 ] is the i-th projection for all i = 1 , 2 , , m .
Given an mp-fuzzy set on a set X, we consider the set
U ( ^ , t ^ ) : = { y X ^ ( y ) t ^ } ,
that is,
U ( ^ , t ^ ) : = { y X ( π 1 ^ ) ( y ) t 1 , ( π 2 ^ ) ( y ) t 2 , , ( π m ^ ) ( y ) t m } ,
which is called an m-polar level set of ^ .
By an mp-fuzzy point on a set X, we mean an mp-fuzzy set ^ on X of the form
^ ( z ) = r ^ = ( r 1 , r 2 , , r m ) ( 0 , 1 ] m if z = y , 0 ^ = ( 0 , 0 , , 0 ) if z y ,
and it is denoted by y r ^ . We say that y is the support of y r ^ and r ^ is the value of y r ^ .
We say that an mp-fuzzy point y r ^ is contained in an mp-fuzzy set ^ , denoted by y r ^ ^ , if ^ ( y ) r ^ , that is, ( π i ^ ) ( y ) r i for all i = 1 , 2 , , m .
An mp-fuzzy set ^ on a BCK/BCI-algebra X is called an m-polar fuzzy ideal (briefly, mp-fuzzy ideal) of X (see [32] Definition 3.7) if the following conditions are valid.
( y X ) ^ ( 0 ) ^ ( y ) ,
( y , z X ) ^ ( y ) inf { ^ ( y z ) , ^ ( z ) } ,
that is,
( y X ) ( π i ^ ) ( 0 ) ( π i ^ ) ( y ) ,
( y , z X ) ( π i ^ ) ( y ) inf { ( π i ^ ) ( y z ) , ( π i ^ ) ( z ) } ,
for all i = 1 , 2 , , m .
We display an example of an mp-fuzzy ideal that is given by Al-Masarwah and Ahmad.
Example 1
([32]). Let X = { 0 , a , 1 , 2 , 3 } be a BCI-algebra with a binary operation “*”, which is given in the following Cayley table.
*0 a 123
000321
aa0321
111032
222103
333210
Define a 4-polar fuzzy set ^ on X as follows:
^ : X [ 0 , 1 ] 4 , y ( 0.5 , 0.6 , 0.6 , 0.7 ) if y = 0 , ( 0.4 , 0.5 , 0.5 , 0.7 ) if y = a , ( 0.2 , 0.3 , 0.3 , 0.2 ) if y = 1 , 3 , ( 0.3 , 0.4 , 0.4 , 0.5 ) if y = 2 .
Then ^ is a 4-polar ( , ) -fuzzy ideal of X.

3. m -Polar Fuzzy p -Ideals

In a BCK/BCI-algebra, the mp-fuzzy ideal is characterized as follows.
Lemma 1.
An mp-fuzzy set ^ on a BCK/BCI-algebra X is an mp-fuzzy ideal of X if and only if the following conditions are valid.
( y X ) ( r ^ [ 0 , 1 ] m ) y r ^ ^ 0 r ^ ^ ,
( y , z X ) ( r ^ , t ^ [ 0 , 1 ] m ) ( y z ) r ^ ^ , z t ^ ^ y inf { r ^ , t ^ } ^ .
Proof. 
Straightforward. □
If an mp-fuzzy set ^ on a BCK/BCI-algebra X satisfies two conditions (17) and (18), we say that ^ is an m-polar ( , ) -fuzzy ideal of X.
Lemma 1 shows that an mp-fuzzy ideal and an m-polar ( , ) -fuzzy ideal are in agreement.
Definition 1.
An mp-fuzzy set ^ on a BCI-algebra X is called an m-polar ( , ) -fuzzy p-ideal of X if it satisfies (17) and
( y , z , x X ) ( r ^ , t ^ [ 0 , 1 ] m ) ( ( y x ) ( z x ) ) r ^ ^ , z t ^ ^ y inf { r ^ , t ^ } ^ .
It is easy to show that the condition (19) is equivalent to the following condition:
( y , z , x X ) ^ ( y ) inf { ^ ( ( y x ) ( z x ) ) , ^ ( z ) } ,
that is,
( π i ^ ) ( y ) inf { ( π i ^ ) ( ( y x ) ( z x ) ) , ( π i ^ ) ( z ) }
for all y , z , x X and i = 1 , 2 , , m .
Example 2.
Let X = { 0 , 1 , 2 , 3 } be a set with a binary operation “*”, which is given in Table 1.
Then X is a BCI-algebra (see [7]). Define a 5-polar fuzzy set ^ on X as follows:
^ : X [ 0 , 1 ] 5 , y ( 0.7 , 0.6 , 0.8 , 0.5 , 0.9 ) if y = 0 , ( 0.5 , 0.6 , 0.7 , 0.4 , 0.7 ) if y = 1 , ( 0.3 , 0.4 , 0.6 , 0.2 , 0.5 ) if y = 2 , ( 0.3 , 0.4 , 0.6 , 0.2 , 0.5 ) if y = 3 .
It is routine to check that ^ is a 5-polar ( , ) -fuzzy p-ideal of X.
Theorem 1.
Let I be a subset of a BCI-algebra X, and let ^ I be an mp-fuzzy set on X defined by
^ I : X [ 0 , 1 ] m , y 1 ^ if y I , 0 ^ otherwise .
Then ^ I is an m-polar ( , ) -fuzzy ideal (resp., m-polar ( , ) -fuzzy p-ideal) of X if and only if I is an ideal (resp., p-ideal) of X.
Proof. 
Straightforward. □
Proposition 1.
Every m-polar ( , ) -fuzzy p-ideal ^ of a BCI-algebra X satisfies the following inequalities:
( y X ) ( ^ ( y ) ^ ( 0 ( 0 y ) ) ) ,
that is, ( π i ^ ) ( y ) ( π i ^ ) ( 0 ( 0 y ) ) for all y X and i = 1 , 2 , , m .
Proof. 
In (20), if we change x to y and z to 0, then
^ ( y ) inf { ^ ( ( y y ) ( 0 y ) ) , ^ ( 0 ) } = inf { ^ ( 0 ( 0 y ) ) , ^ ( 0 ) } = ^ ( 0 ( 0 y ) )
for all y X . □
Theorem 2.
In a BCI-algebra, every m-polar ( , ) -fuzzy p-ideal is an m-polar ( , ) -fuzzy ideal.
Proof. 
Let ^ be an m-polar ( , ) -fuzzy p-ideal of a BCI-algebra X. Since y 0 = y for all y X , it follows from (20) that
^ ( y ) inf { ^ ( ( y 0 ) ( z 0 ) ) , ^ ( z ) } = inf { ^ ( y z ) , ^ ( z ) }
for all y , z X . Therefore, ^ is an m-polar ( , ) -fuzzy ideal of a BCI-algebra X.  □
Proposition 2.
Every m-polar ( , ) -fuzzy p-ideal ^ of a BCI-algebra X satisfies the following inequalities.
( y , z , x X ) ( ^ ( y z ) ^ ( ( y x ) ( z x ) ) ) ,
that is, ( π i ^ ) ( y z ) ( π i ^ ) ( ( y x ) ( z x ) ) , for all y , z , x X and i = 1 , 2 , , m .
Proof. 
Let ^ be an m-polar ( , ) -fuzzy p-ideal of X. Then it is an m-polar ( , ) -fuzzy ideal of X by Theorem 2. For any y , z , x X , we have ( ( y x ) ( z x ) ) ( y z ) = 0 . Hence,
^ ( ( y x ) ( z x ) ) inf { ^ ( ( ( y x ) ( z x ) ) ( y z ) ) , ^ ( y z ) } = inf { ^ ( 0 ) , ^ ( y z ) } = ^ ( y z )
for all y , z , x X . □
The following example shows that an m-polar ( , ) -fuzzy ideal may not be an m-polar ( , ) -fuzzy p-ideal.
Example 3.
Let X = { 0 , 1 , a , b , c } be a set with a binary operation “*”, which is given in Table 2.
Then X is a BCI-algebra (see [7]). Define a 3-polar fuzzy set ^ on X as follows:
^ : X [ 0 , 1 ] 3 , y ( 0.7 , 0.9 , 0.6 ) if y = 0 , ( 0.5 , 0.8 , 0.6 ) if y = 1 , ( 0.3 , 0.4 , 0.2 ) if y = a , ( 0.4 , 0.6 , 0.5 ) if y = b , ( 0.3 , 0.4 , 0.2 ) if y = c .
It is easy to verify that ^ is a 3-polar ( , ) -fuzzy ideal of X. But it is not a 3-polar ( , ) -fuzzy p-ideal of X since ( π 2 ^ ) ( 1 ) = 0 . 8 < 0 . 9 = inf { ( π 2 ^ ) ( ( 1 a ) ( 0 a ) ) , ( π 2 ^ ) ( 0 ) } .
We provide conditions for an m-polar ( , ) -fuzzy ideal to be an m-polar ( , ) -fuzzy p-ideal.
Theorem 3.
Let ^ be an m-polar ( , ) -fuzzy ideal of a BCI-algebra X. If ^ satisfies the inequality
( y , z , x X ) ( ^ ( y z ) ^ ( ( y x ) ( z x ) ) ) ,
then ^ is an m-polar ( , ) -fuzzy p-ideal of X.
Proof. 
Combining (14) and (24), we get
^ ( y ) inf { ^ ( y z ) , ^ ( z ) } inf { ^ ( ( y x ) ( z x ) ) , ^ ( z ) }
for all y , z , x X . □
Lemma 2.
Let X be a BCI-algebra. Then every m-polar ( , ) -fuzzy ideal of X satisfies the following inequality
( y X ) ( ^ ( y ) ^ ( 0 ( 0 y ) ) ) .
That is, ( π i ^ ) ( y ) ( π i ^ ) ( 0 ( 0 y ) ) for all y X and i = 1 , 2 , , m .
Proof. 
Using (13) and (14), we have
^ ( 0 ( 0 y ) ) inf { ^ ( ( 0 ( 0 y ) ) y ) , ^ ( y ) } = inf { ^ ( 0 ) , ^ ( y ) } = ^ ( y )
for all y X . □
Theorem 4.
Let ^ be an m-polar ( , ) -fuzzy ideal of a BCI-algebra X. If ^ satisfies the inequality
( y X ) ( ^ ( 0 ( 0 y ) ) ^ ( y ) ) ,
that is, ( π i ^ ) ( 0 ( 0 y ) ) ( π i ^ ) ( y ) for all y X and i = 1 , 2 , , m , then ^ is an m-polar ( , ) -fuzzy p-ideal of X.
Proof. 
For any y , z , x X and i = 1 , 2 , , m , we have
( π i ^ ) ( ( y x ) ( z x ) ) ( π i ^ ) ( 0 ( 0 ( ( y x ) ( z x ) ) ) ) = ( π i ^ ) ( ( 0 z ) ( 0 y ) ) = ( π i ^ ) ( 0 ( 0 ( y z ) ) ) ( π i ^ ) ( y z ) ,
and hence, ^ ( ( y x ) ( z x ) ) ^ ( y z ) for all y , z , x X . Therefore, ^ is an m-polar ( , ) -fuzzy p-ideal of X by Theorem 3. □
Theorem 5.
Let ^ be an mp-fuzzy set on a BCI-algebra X. Then the following assertions are equivalent.
(1)
^ is an m-polar ( , ) -fuzzy p-ideal of X.
(2)
The m-polar level set U ( ^ , r ^ ) of ^ is a p-ideal of X for all r ^ [ 0 , 1 ] m .
Proof. 
Assume that ^ is an m-polar ( , ) -fuzzy p-ideal of X and let r ^ = ( r 1 , r 2 , , r m ) ( 0 , 1 ] m . It is clear that 0 U ( ^ , r ^ ) . Let y , z , x X be such that ( y x ) ( z x ) U ( ^ , r ^ ) and z U ( ^ , r ^ ) . Then ( π i ^ ) ( ( y x ) ( z x ) ) r i and ( π i ^ ) ( z ) r i . It follows from (21) that
( π i ^ ) ( y ) inf { ( π i ^ ) ( ( y x ) ( z x ) ) , ( π i ^ ) ( z ) } r i
for i = 1 , 2 , , m . Hence, y U ( ^ , r ^ ) , and therefore U ( ^ , r ^ ) is a p-ideal of X.
Conversely, suppose that the m-polar level set U ( ^ , r ^ ) of ^ is a p-ideal of X for all r ^ [ 0 , 1 ] m . If ^ ( 0 ) < ^ ( a ) for some a X and taking r ^ : = ^ ( a ) , then a U ( ^ , r ^ ) and 0 U ( ^ , r ^ ) . This is a contradiction, and so ^ ( 0 ) ^ ( y ) for all y X . Now, suppose that there exist a , b , c X such that ^ ( a ) < inf { ^ ( ( a c ) ( b c ) ) , ^ ( b ) } . If we take
r ^ : = inf { ^ ( ( a c ) ( b c ) ) , ^ ( b ) } ,
then ( a c ) ( b c ) U ( ^ , r ^ ) and b U ( ^ , r ^ ) . Since U ( ^ , r ^ ) of ^ is a p-ideal of X, it follows that a U ( ^ , r ^ ) . Hence, ^ ( a ) r ^ , which is a contradiction. Thus ^ ( y ) inf { ^ ( ( y x ) ( z x ) ) , ^ ( z ) } for all y , z , x X . Therefore, ^ is an m-polar ( , ) -fuzzy p-ideal of X. □
Corollary 1.
Let ^ be an mp-fuzzy set on a BCI-algebra X. If ^ is an m-polar ( , ) -fuzzy p-ideal of X, then the set
I : = { y X ^ ( y ) = ^ ( 0 ) }
is a p-ideal and hence, an ideal of X.
In Example 2, we used definition to check that ^ is a 5-polar fuzzy p-ideal. Theorem 5 is a nice tool to verify that an mp-fuzzy set in a BCI-algebra X is an m-polar ( , ) -fuzzy p-ideal of X. Note that the m-polar level set of ^ can be represented as follows:
U ( ^ , t ^ ) = i { 1 , 2 , , m } U i ( ^ , t ^ ) ,
where U i ( ^ , t ^ ) = { y X ( π i ^ ) ( y ) t i } for i = 1 , 2 , , m . In Example 2, we have
U 1 ( ^ , t ^ ) = if t 1 ( 0.7 , 1 ] , { 0 } if t 1 ( 0.5 , 0.7 ] , { 0 , 1 } if t 1 ( 0.3 , 0.5 ] , X if t 1 [ 0 , 0.3 ] , U 2 ( ^ , t ^ ) = if t 1 ( 0.6 , 1 ] , { 0 , 1 } if t 1 ( 0.4 , 0.6 ] , X if t 1 [ 0 , 0.4 ] ,
U 3 ( ^ , t ^ ) = if t 1 ( 0.8 , 1 ] , { 0 } if t 1 ( 0.7 , 0.8 ] , { 0 , 1 } if t 1 ( 0.6 , 0.7 ] , X if t 1 [ 0 , 0.6 ] , U 4 ( ^ , t ^ ) = if t 1 ( 0.5 , 1 ] , { 0 } if t 1 ( 0.4 , 0.5 ] , { 0 , 1 } if t 1 ( 0.2 , 0.4 ] , X if t 1 [ 0 , 0.2 ] ,
U 5 ( ^ , t ^ ) = if t 1 ( 0.9 , 1 ] , { 0 } if t 1 ( 0.7 , 0.9 ] , { 0 , 1 } if t 1 ( 0.5 , 0.7 ] , X if t 1 [ 0 , 0.5 ] .
Recall that U i ( ^ , t ^ ) is a p-ideal of X for all i = 1 , 2 , 3 , 4 , 5 . Thus U ( ^ , t ^ ) is a p-ideal of X, which implies from Theorem 5 that ^ is a 5-polar ( , ) -fuzzy p-ideal of X.
Theorem 6.
Let ^ be an mp-fuzzy set on a BCI-algebra X, and let f : X X be an epimorphism. If ^ is an m-polar ( , ) -fuzzy p-ideal of X, then so is the composition ^ f .
Proof. 
Let y , z X . Then ( ^ f ) ( y ) = ^ ( f ( y ) ) ^ ( 0 ) = ^ ( f ( 0 ) ) = ( ^ f ) ( 0 ) and
( ^ f ) ( y ) = ^ ( f ( y ) ) inf { ^ ( f ( y ) x ) , ^ ( x ) } = inf { ^ ( f ( y ) f ( z ) ) , ^ ( f ( z ) ) } = inf { ^ ( f ( y z ) ) , ^ ( f ( z ) ) } = inf { ( ^ f ) ( y z ) , ( ^ f ) ( z ) } .
Hence, ^ f is an m-polar ( , ) -fuzzy ideal of X. Now, we have
( π i ( ^ f ) ) ( y ) = π i ( ( ^ f ) ( y ) ) = π i ( ^ ( f ( y ) ) ) = ( π i ^ ) ( f ( y ) ) ( π i ^ ) ( 0 ( 0 f ( x ) ) ) = ( π i ^ ) ( f ( 0 ) ( f ( 0 ) f ( y ) ) ) = ( π i ^ ) ( f ( 0 ( 0 y ) ) ) = ( π i ( ^ f ) ) ( 0 ( 0 y ) )
for all y X . Therefore, ^ f is an m-polar ( , ) -fuzzy p-ideal of X by Theorem 4. □
Definition 2.
An m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) ^ of a BCI-algebra X is said to be normal if there exists y X such that ^ ( y ) = 1 ^ , that is, ( π i ^ ) ( y ) = 1 for all i = 1 , 2 , , m .
Example 4.
The m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) ^ I in Theorem 1 is normal.
We note that if an m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) ^ of a BCI-algebra X is normal, then ^ ( 0 ) = 1 ^ . Thus, we have the following characterization.
Theorem 7.
An m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) ^ of a BCI-algebra X is normal if and only if ^ ( 0 ) = 1 ^ , that is, ( π i ^ ) ( 0 ) = 1 for all i = 1 , 2 , , m .
Using a non-normal m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal), we provide a way to make a normal m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal).
Theorem 8.
If ^ is an m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) of a BCI-algebra X, then the mp-fuzzy set ^ + on X defined by
^ + : X [ 0 , 1 ] m , y 1 ^ + ^ ( y ) ^ ( 0 ) ,
that is, ( π i ^ ) + ( y ) = 1 + ( π i ^ ) ( y ) ( π i ^ ) ( 0 ) for i = 1 , 2 , , m , is a normal m-polar ( , ) -fuzzy ideal (resp. normal m-polar ( , ) -fuzzy p-ideal) of X containing ^ .
Proof. 
Assume that ^ is an m-polar ( , ) -fuzzy ideal of X. For any y , z X , we have
( π i ^ ) ( 0 ) = 1 + ( π i ^ ) ( 0 ) ( π i ^ ) ( 0 ) = 1 ( π i ^ ) ( y )
and
( π i ^ ) + ( y ) = 1 + ( π i ^ ) ( y ) ( π i ^ ) ( 0 ) 1 + inf { ( π i ^ ) ( y y ) , ( π i ^ ) ( z ) } ( π i ^ ) ( 0 ) = inf { 1 + ( π i ^ ) ( y z ) ( π i ^ ) ( 0 ) , 1 + ( π i ^ ) ( z ) ( π i ^ ) ( 0 ) } = inf { ( π i ^ ) + ( y z ) , ( π i ^ ) + ( z ) }
for all for i = 1 , 2 , , m . This shows that ^ + is an m-polar ( , ) -fuzzy ideal of X, and it is normal by Theorem 7. Suppose that ^ is an m-polar ( , ) -fuzzy p-ideal of X. Then ^ + is an m-polar ( , ) -fuzzy ideal of X by Theorem 2. For any y X , we get
( π i ^ ) + ( y ) = 1 + ( π i ^ ) ( y ) ( π i ^ ) ( 0 ) 1 + ( π i ^ ) ( 0 ( 0 y ) ) ( π i ^ ) ( 0 ) = ( π i ^ ) + ( 0 ( 0 y ) )
for all for i = 1 , 2 , , m . It follows from Theorem 4 that ^ + is an m-polar ( , ) -fuzzy p-ideal of X. It is clear that ^ is contained in ^ + . □
The following example illustrates Theorem 8.
Example 5.
(1) Consider the 3-polar ( , ) -fuzzy ideal ^ , which is not normal, of X in Example 3. Then ^ + is given as follows:
^ + : X [ 0 , 1 ] 3 , y ( 1 , 1 , 1 ) if y = 0 , ( 0.8 , 0.9 , 1 ) if y = 1 , ( 0.6 , 0.5 , 0.6 ) if y = a , ( 0.7 , 0.7 , 0.9 ) if y = b , ( 0.6 , 0.5 , 0.6 ) if y = c ,
and it is a normal 3-polar ( , ) -fuzzy ideal of X that contains ^ .
(2) If we take the 5-polar ( , ) -fuzzy p-ideal ^ of X in Example 2, then it is not normal and ^ + is given as follows:
^ + : X [ 0 , 1 ] 5 , y ( 1 , 1 , 1 , 1 , 1 ) if y = 0 , ( 0.8 , 1 , 0.9 , 0.9 , 0.8 ) if y = 1 , ( 0.8 , 0.8 , 0.9 , 0.8 , 0.8 ) if y = 2 , ( 0.8 , 0.8 , 0.9 , 0.8 , 0.8 ) if y = 3 ,
which is a normal 5-polar ( , ) -fuzzy p-ideal of X containing ^ .
Theorem 9.
Let ^ be an m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) of a BCI-algebra X. Then ^ is normal if and only if ^ + = ^ .
Proof. 
The sufficiency is clear. Assume that ^ is normal. Then
( π i ^ ) + ( y ) = 1 + ( π i ^ ) ( y ) ( π i ^ ) ( 0 ) = ( π i ^ ) ( y )
for all y X by Theorem 7, completing the proof. □
Corollary 2.
Let ^ be an m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) of a BCI-algebra X. If ^ is normal, then ( ^ + ) + = ^ .
Theorem 10.
Let ^ be an m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) of a BCI-algebra X. If there exists an m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) ϑ ^ of X satisfying ϑ ^ + ^ , then ^ is normal and ^ + = ^ .
Proof. 
Straightforward. □
Theorem 11.
Let X be a BCI-algebra, and let ^ be a non-constant normal m-polar ( , ) -fuzzy ideal (resp. m-polar ( , ) -fuzzy p-ideal) of X which is maximal in the poset of normal m-polar ( , ) -fuzzy ideals (resp. m-polar ( , ) -fuzzy p-ideals) under set inclusion. Then ^ has the values 0 ^ and 1 ^ only.
Proof. 
Since ^ is normal, we have ^ ( 0 ) = 1 ^ . Let y X be such that ^ ( y ) 1 ^ . It is sufficient to show that ^ ( y ) = 0 ^ . If ^ ( y ) 0 ^ , then there exists a X such that 0 ^ < ^ ( a ) < 1 ^ . Let ϑ ^ be an mp-fuzzy set on X given by
ϑ ^ : X [ 0 , 1 ] m , y 1 2 ^ ( y ) + ^ ( a ) .
It is clear that ϑ ^ is well-defined. For any y , z X , we have
ϑ ^ ( 0 ) = 1 2 ^ ( 0 ) + ^ ( a ) = 1 2 1 ^ + ^ ( a ) 1 2 ^ ( y ) + ^ ( a ) = ϑ ^ ( y )
and
ϑ ^ ( y ) = 1 2 ^ ( y ) + ^ ( a ) 1 2 inf ^ ( y z ) , ^ ( z ) + ^ ( a ) = 1 2 inf { ^ ( y z ) + ^ ( a ) , ^ ( z ) + ^ ( a ) } = inf 1 2 ( ^ ( y z ) + ^ ( a ) ) , 1 2 ( ^ ( z ) + ^ ( a ) ) = inf ϑ ^ ( y z ) , ϑ ^ ( z ) .
Hence, ϑ ^ is an m-polar ( , ) -fuzzy ideal of X. In addition, we have
ϑ ^ ( y ) = 1 2 ^ ( y ) + ^ ( a ) 1 2 ^ ( 0 ( 0 y ) ) + ^ ( a ) = ϑ ^ ( 0 ( 0 y ) )
for all y X . Hence, ϑ ^ is an m-polar ( , ) -fuzzy p-ideal of X by Theorem 4. Now, we get
ϑ ^ + ( y ) = 1 ^ + ϑ ^ ( y ) ϑ ^ ( 0 ) = 1 ^ + 1 2 ^ ( y ) + ^ ( a ) 1 2 ^ ( 0 ) + ^ ( a ) = 1 2 1 ^ + ^ ( y ) ,
and so ϑ ^ + ( 0 ) = 1 2 1 ^ + ^ ( 0 ) = 1 ^ , which shows that ϑ ^ is normal. Note that
ϑ ^ + ( 0 ) = 1 ^ > ϑ ^ + ( a ) = 1 2 1 ^ + ^ ( a ) > ^ ( a ) .
Hence, ϑ ^ + is non-constant and ^ is not maximal, which is a contradiction. Therefore, ^ has the values 0 ^ and 1 ^ only. □

4. Quotient BCI-Algebras via m -Polar ( , ) -Fuzzy Ideals

Lemma 3
([32] Proposition 3.9). Every m-polar ( , ) -fuzzy ideal of a BCI-algebra is order reversing.
Let ^ be an m-polar ( , ) -fuzzy ideal of a BCI-algebra X. Define a binary relation ≈ on X related to ^ by
y z ^ ( 0 ( y z ) k ) > 0 , ^ ( 0 ( z y ) k ) > 0 ,
that is,
y z ( π i ^ ) ( 0 ( y z ) k ) > 0 , ( π i ^ ) ( 0 ( z y ) k ) > 0
for all y , z X , i = 1 , 2 , , m and a natural number k.
Lemma 4.
The relation ≈ is a congruence on X.
Proof. 
It is clear that ≈ is reflexive and symmetric. Assume that y z and z x . Then ( π i ^ ) ( 0 ( y z ) k ) > 0 , ( π i ^ ) ( 0 ( z y ) k ) > 0 , ( π i ^ ) ( 0 ( z x ) k ) > 0 , and ( π i ^ ) ( 0 ( x z ) k ) > 0 for a natural number k. Since
( 0 ( y x ) k ) ( 0 ( y z ) k ) = ( ( 0 y k ) ( 0 x k ) ) ( ( 0 y k ) ( 0 z k ) ) ( 0 z k ) ( 0 x k ) = 0 ( z x ) k
by (9) and (I), it follows from Lemma 3 that
( π i ^ ) ( ( 0 ( y x ) k ) ( 0 ( y z ) k ) ) ( π i ^ ) ( 0 ( z x ) k ) > 0 .
Since ^ is an m-polar ( , ) -fuzzy ideal of X, we have
( π i ^ ) ( 0 ( y x ) k ) inf { ( π i ^ ) ( ( 0 ( y x ) k ) ( 0 ( y z ) k ) ) , ( π i ^ ) ( 0 ( y z ) k ) } > 0 .
By a similar way, we have ( π i ^ ) ( 0 ( x y ) k ) > 0 , and thus y x . Hence, ≈ is an equivalence relation on X. Let a , y , z X be such that y z . Then
( 0 ( ( y a ) ( z a ) ) k ) ( 0 ( y z ) k ) = ( ( ( 0 y k ) ( 0 a k ) ) ( ( 0 z k ) ( 0 a k ) ) ) ( 0 ( y z ) k ) ( ( 0 y k ) ( 0 z k ) ) ( 0 ( y z ) k ) = 0 ,
and so
( π i ^ ) ( 0 ( ( y a ) ( z a ) ) k ) inf { ( π i ^ ) ( ( 0 ( ( y a ) ( z a ) ) k ) ( 0 ( y z ) k ) ) , ( π i ^ ) ( 0 ( y z ) k ) } > 0 .
By a similar way, we get ( π i ^ ) ( 0 ( ( z a ) ( y a ) ) k ) > 0 . Hence, y a z a . Now, we have
( 0 ( ( a y ) ( a z ) ) k ) ( 0 ( z y ) k ) = ( ( ( 0 a k ) ( 0 y k ) ) ( ( 0 a k ) ( 0 z k ) ) ) ( 0 ( z y ) k ) ( ( 0 z k ) ( 0 y k ) ) ( 0 ( z y ) k ) = 0 ,
which implies from Lemma 3 that
( π i ^ ) ( 0 ( ( a y ) ( a z ) ) k ) inf { ( π i ^ ) ( ( 0 ( ( a y ) ( a z ) ) k ) ( 0 ( z y ) k ) ) , ( π i ^ ) ( 0 ( z y ) k ) } > 0 .
Similarly, we obtain ( π i ^ ) ( 0 ( ( a z ) ( a y ) ) k ) > 0 . Thus, a y a z . It follows that if y z and a b for all a , b , y , z X , then y a z a z b . Therefore, ≈ is a congruence on X. □
Denote by [ y ] the equivalence class of an element y in X, and the quotient set of X by ^ is denoted by X / ^ , and so
X / ^ = { [ y ] y X } .
Theorem 12.
Let ^ be an m-polar ( , ) -fuzzy ideal of a BCI-algebra X. Define a binary operationon X / ^ by
( [ y ] , [ z ] X / ^ ) [ y ] [ z ] = [ y z ] .
Then ( X / ^ , , [ 0 ] ) is a BCI-algebra.
Proof. 
We first show that the binary operation ⊛ on X / ^ is well-defined. Assume that [ y ] = [ a ] and [ z ] = [ b ] for a , b , y , z X . Then y a and z b . If x [ y ] [ z ] , then x y z a b , and so x [ a ] [ b ] . Thus, [ y ] [ z ] [ a ] [ b ] . Similarly, we get [ a ] [ b ] [ y ] [ z ] . Therefore, ⊛ is well-defined. Let [ y ] , [ z ] , [ x ] X / ^ . Then
( ( [ y ] [ z ] ) ( [ y ] [ x ] ) ) ( [ x ] [ z ] ) = ( [ y z ] [ y x ] ) [ x z ] = [ ( y z ) ( y x ) ] [ x z ] = [ ( ( y z ) ( y x ) ) ( x z ) ] = [ 0 ] .
By a similar way, we have ( [ y ] ( [ y ] [ z ] ) ) [ z ] = [ 0 ] and [ y ] [ y ] = [ 0 ] . Suppose that [ y ] [ z ] = [ 0 ] and [ z ] [ y ] = [ 0 ] . Then [ y z ] = [ 0 ] = [ z y ] , and so y z 0 z y . It follows that ( π i ^ ) ( 0 ( y z ) k ) = ( π i ^ ) ( 0 ( ( y z ) 0 ) k ) > 0 and ( π i ^ ) ( 0 ( z y ) k ) = ( π i ^ ) ( 0 ( ( z y ) 0 ) k ) > 0 . Thus, y z , and so [ y ] = [ z ] . Consequently, ( X / ^ , , [ 0 ] ) is a BCI-algebra. □
Theorem 13.
If ^ is an m-polar ( , ) -fuzzy ideal of a BCI-algebra X, then the mapping
f : X / U ( ^ , r ^ ) X / ^ , U ( ^ , r ^ ) y [ y ]
is an epimorphism. Moreover, if ^ ( y ) = 0 ^ for all y X \ U ( ^ , r ^ ) , then f is an isomorphism.
Proof. 
Let y , z X be such that U ( ^ , r ^ ) y = U ( ^ , r ^ ) z . Then y z and so 0 ( y z ) k U ( ^ , r ^ ) and 0 ( z y ) k U ( ^ , r ^ ) for k N . It follows that ( π i ^ ) ( 0 ( y z ) k ) r i > 0 and ( π i ^ ) ( 0 ( z y ) k ) r i > 0 . Thus y z , and so [ y ] = [ z ] . This shows that the map f is well-defined. For every U ( ^ , r ^ ) y , U ( ^ , r ^ ) z X / U ( ^ , r ^ ) , we get
f U ( ^ , r ^ ) y ˜ U ( ^ , r ^ ) z = f U ( ^ , r ^ ) y z = [ y z ] = [ y ] [ z ] = f U ( ^ , r ^ ) y f U ( ^ , r ^ ) z .
Therefore, f is a homomorphism. It is clear that f is onto. Suppose that U ( ^ , r ^ ) y U ( ^ , r ^ ) z for some y , z X . Then 0 ( z y ) k U ( ^ , r ^ ) or 0 ( z y ) n U ( ^ , r ^ ) for some k , n N . It follows from the hypothesis that ^ ( 0 ( z y ) k ) = 0 ^ or ^ ( 0 ( z y ) n ) = 0 ^ . Hence, [ y ] [ z ] . This completes the proof. □

5. Conclusions

Zhang introduced the notion of bipolar fuzzy sets, which is an extension of fuzzy sets. As an extension of bipolar fuzzy sets, Chen et al. have introduced an m-polar fuzzy set. The purpose of this paper is to apply the notion of m-polar fuzzy sets to p-ideals in BCI-algebras. We have introduced the concept of (normal) m-polar ( , ) -fuzzy p-ideals of BCI-algebras and have investigated several properties. We have discussed relations between an m-polar ( , ) -fuzzy p-ideal and an m-polar ( , ) -fuzzy ideal. We have provided an example of an m-polar ( , ) -fuzzy ideal that is not an m-polar ( , ) -fuzzy p-ideal. We have given conditions for an m-polar ( , ) -fuzzy ideal to be an m-polar ( , ) -fuzzy p-ideal and have considered the characterization of m-polar ( , ) -fuzzy p-ideals. Given an m-polar ( , ) -fuzzy ideal (resp., m-polar ( , ) -fuzzy p-ideal), we have defined a normal m-polar ( , ) -fuzzy ideal (resp., normal m-polar ( , ) -fuzzy p-ideal). Using an m-polar ( , ) -fuzzy ideal, we have constructed the quotient structure of BCI-algebras. There are several kinds of ideals in BCI-algebras, for example, p-ideal, q-ideal, a-ideal, BCI-implicative ideal, BCI-positive implicative ideal, BCI-commutative ideal, sub-implicative ideal, etc. These different kinds of ideals are basically very relevant to the ideal. Thus, the polarity of p-ideals as studied in this paper will be the basic step in the polarity study of other ideals. The purpose of our research in the future is to continue to think about these things and define new concepts in some algebraic structures.

Author Contributions

Create and conceptualize ideas, Y.B.J. and R.A.B.; writing—original draft preparation, Y.B.J.; writing—review and editing, S.S.A. and M.M.T.

Funding

This research received no external funding.

Acknowledgments

We would like to thank the anonymous reviewers for their very careful reading and valuable comments/suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  2. Iséki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 1966, 42, 26–29. [Google Scholar] [CrossRef]
  3. Imai, Y.; Iséki, K. On axiom systems of propositional calculi. Proc. Jpn. Acad. 1966, 42, 19–21. [Google Scholar] [CrossRef]
  4. Iséki, K. On BCI-algebras. Math. Semin. Notes 1980, 8, 125–130. [Google Scholar]
  5. Iséki, K.; Tanaka, S. An introduction to the theory of BCK-algebras. Math. Jpn. 1978, 23, 1–26. [Google Scholar]
  6. Meng, J. On ideals in BCK-algebras. Math. Jpn. 1994, 40, 143–154. [Google Scholar]
  7. Huang, Y. BCI-Algebra; Science Press: Beijing, China, 2006. [Google Scholar]
  8. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoonsa Co.: Seoul, Korea, 1994. [Google Scholar]
  9. Zhang, X.H.; Hao, J.; Bhatti, S.A. On p-ideals of a BCI-algebra. Punjab Univ. J. Math. (Lahore) 1994, 27, 121–128. [Google Scholar]
  10. Zhang, W.R. Bipolar fuzzy sets and relations: A computational framework for cognitive and modeling and multiagent decision analysis. In Proceedings of the Fuzzy Information Processing Society Biannual Conference, San Antonio, TX, USA, 18–21 December 1994; pp. 305–309. [Google Scholar]
  11. Yaqoob, N.; Aslam, M.; Davvaz, B.; Ghareeb, A. Structures of bipolar fuzzy G-hyperideals in G-semihypergroups. J. Intell. Fuzzy Syst. 2014, 27, 3015–3032. [Google Scholar]
  12. Jun, Y.B.; Kavikumar, J. Bipolar fuzzy finite state machines. Bull. Malays. Math. Sci. Soc. 2011, 34, 181–188. [Google Scholar]
  13. Subramaniyan, S.; Rajasekar, M. Homomorphism in bipolar fuzzy finite state machines. Int. Math. Forum 2012, 7, 1505–1516. [Google Scholar]
  14. Yang, J.K. Algebraic characterizations of a bipolar fuzzy finite state machine. (Chinese). Mohu Xitong Yu Shuxue 2014, 28, 46–52. [Google Scholar]
  15. Yang, J.K. Semigroups of bipolar fuzzy finite state machines. (Chinese). Mohu Xitong Yu Shuxue 2014, 28, 86–90. [Google Scholar]
  16. Ibrar, M.; Khan, A.; Abbas, F. Generalized bipolar fuzzy interior ideals in ordered semigroups. Honam Math. J. 2019, 41, 285–300. [Google Scholar]
  17. Arulmozhi, K.; Chinnadurai, V.; Swaminathan, A. Interval valued bipolar fuzzy ideals in ordered Γsemigroups. J. Int. Math. Virtual Inst. 2019, 9, 1–17. [Google Scholar]
  18. Chinnadurai, V.; Arulmozhi, K. Characterization of bipolar fuzzy ideals in ordered gamma semigroups. J. Int. Math. Virtual Inst. 2018, 8, 141–156. [Google Scholar]
  19. Sardar, S.K.; Majumder, S.K.; Pal, P. Bipolar valued fuzzy translation in semigroups. Math. Aeterna 2012, 2, 597–607. [Google Scholar]
  20. Al-Masarwah, A.; Ahmad, A.G. Doubt bipolar fuzzy subalgebras and ideals in BCK/BCI-algebras. J. Math. Anal. 2018, 9, 9–27. [Google Scholar]
  21. Jun, Y.B.; Kang, M.S.; Song, S.Z. Several types of bipolar fuzzy hyper BCK-ideals in hyper BCK-algebras. Honam Math. J. 2012, 34, 145–159. [Google Scholar] [CrossRef]
  22. Jun, Y.B.; Kang, M.S.; Kim, H.S. Bipolar fuzzy hyper BCK-ideals in hyper BCK-algebras. Iran. J. Fuzzy Syst. 2011, 8, 105–120. [Google Scholar]
  23. Lee, K.J. Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras. Bull. Malays. Math. Sci. Soc. 2009, 32, 361–373. [Google Scholar]
  24. Jun, Y.B.; Kang, M.S.; Kim, H.S. Bipolar fuzzy structures of some types of ideals in hyper BCK-algebras. Sci. Math. Jpn. 2009, 70, 109–121. [Google Scholar]
  25. Jun, Y.B.; Kang, M.S.; Kim, H.S. Bipolar fuzzy implicative hyper BCK-ideals in hyper BCK-algebras. Sci. Math. Jpn. 2009, 69, 175–186. [Google Scholar]
  26. Chen, J.; Li, S.; Ma, S.; Wang, X. m-polar fuzzy sets: An extension of bipolar fuzzy sets. Sci. World J. 2014, 2014, 416530. [Google Scholar] [CrossRef] [PubMed]
  27. Akram, M.; Waseem, N.; Liu, P. Novel approach in decision making with m-polar fuzzy ELECTRE-I. Int. J. Fuzzy Syst. 2019, 21, 1117–1129. [Google Scholar] [CrossRef]
  28. Akram, M.; Sarwar, M. New applications of m-polar fuzzy competition graphs. New Math. Nat. Comput. 2018, 14, 249–276. [Google Scholar] [CrossRef]
  29. Akram, M.; Adeel, A. m-polar fuzzy graphs and m-polar fuzzy line graphs. J. Discrete Math. Sci. Cryptogr. 2017, 20, 1597–1617. [Google Scholar] [CrossRef]
  30. Akram, M.; Waseem, N.; Davvaz, B. Certain types of domination in m-polar fuzzy graphs. J. Mult.-Valued Logic Soft Comput. 2017, 29, 619–646. [Google Scholar]
  31. Sarwar, M.; Akram, M. Representation of graphs using m-polar fuzzy environment. Ital. J. Pure Appl. Math. 2017, 38, 291–312. [Google Scholar]
  32. Al-Masarwah, A.; Ahmad, A.G. m-polar fuzzy ideals of BCK/BCI-algebras. J. King Saud Univ.-Sci. 2019, in press. [Google Scholar] [CrossRef]
Table 1. Cayley table for the binary operation “*”.
Table 1. Cayley table for the binary operation “*”.
*0123
00123
11032
22301
33210
Table 2. Cayley table for the binary operation “*”.
Table 2. Cayley table for the binary operation “*”.
*01abc
000cba
110cba
aaa0cb
bbba0c
cccba0

Share and Cite

MDPI and ACS Style

Takallo, M.M.; Ahn, S.S.; Borzooei, R.A.; Jun, Y.B. Multipolar Fuzzy p-Ideals of BCI-Algebras. Mathematics 2019, 7, 1094. https://0-doi-org.brum.beds.ac.uk/10.3390/math7111094

AMA Style

Takallo MM, Ahn SS, Borzooei RA, Jun YB. Multipolar Fuzzy p-Ideals of BCI-Algebras. Mathematics. 2019; 7(11):1094. https://0-doi-org.brum.beds.ac.uk/10.3390/math7111094

Chicago/Turabian Style

Takallo, Mohammad Mohseni, Sun Shin Ahn, Rajab Ali Borzooei, and Young Bae Jun. 2019. "Multipolar Fuzzy p-Ideals of BCI-Algebras" Mathematics 7, no. 11: 1094. https://0-doi-org.brum.beds.ac.uk/10.3390/math7111094

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop