Next Article in Journal
On a Nonlinear Fractional Langevin Equation of Two Fractional Orders with a Multiplicative Noise
Previous Article in Journal
Finite Time Stability of Fractional Order Systems of Neutral Type
Previous Article in Special Issue
On a Class of Partial Differential Equations and Their Solution via Local Fractional Integrals and Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Sharp Bounds of Hankel Determinants for the Families of Three-Leaf-Type Analytic Functions

1
Faculty of Physical and Numerical Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
2
Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 411, Jeddah 21911, Saudi Arabia
*
Author to whom correspondence should be addressed.
Submission received: 23 April 2022 / Revised: 21 May 2022 / Accepted: 24 May 2022 / Published: 26 May 2022
(This article belongs to the Special Issue Advanced Trends of Special Functions and Analysis of PDEs)

Abstract

:
The theory of univalent functions has shown strong significance in the field of mathematics. It is such a vast and fully applied topic that its applications exist in nearly every field of applied sciences such as nonlinear integrable system theory, fluid dynamics, modern mathematical physics, the theory of partial differential equations, engineering, and electronics. In our present investigation, two subfamilies of starlike and bounded turning functions associated with a three-leaf-shaped domain were considered. These classes are denoted by BT 3 l and S 3 l * , respectively. For the class BT 3 l , we study various coefficient type problems such as the first four initial coefficients, the Fekete–Szegö and Zalcman type inequalities and the third-order Hankel determinant. Furthermore, the existing third-order Hankel determinant bounds for the second class will be improved here. All the results that we are going to prove are sharp.

1. Introduction, Definitions and Preliminaries

For a better understanding of the work studied in this article, we have to provide certain elementary geometric function theory literature. In this regard, we first express the classes of normalized analytic and univalent functions by the letters A and S , respectively. These classes are defined in the following set-builder form by
A : = f : f H E and f ( z ) = j = 1 a j z j a 1 = 1
and
S : = f : f A and f is univalent in E ,
where H E stands for the set of analytic functions in the region E = z C : z < 1 . The set S was developed by Köebe [1] in 1907, and it has become a key component of advanced study in this subject. Later in 1916, Bieberbach [2] conjectured the coefficient estimate for the class S and proved it for the second coefficient. The proof of this conjecture attracted researchers, whose work developed this field immensely. In 1985, de-Branges [3] proved this famous conjecture. From 1916 to 1985, many of the world’s most distinguished scholars sought to prove or disprove this claim. As a result, they investigated a number of subfamilies of the class S of univalent functions that are associated with various image domains. The most fundamental and significant subclasses of the set S are the families of starlike and convex functions, represented by S * and C , respectively.
It is worth noting that Aleman and Constantin [4] recently gave a beautiful interaction between univalent function theory and fluid dynamics. In fact, they demonstrated a simple method for how to use a univalent harmonic map to obtain explicit solutions of incompressible two-dimensional Euler equations.
For the given functions g 1 , g 2 A , we say g 1 g 2 , if an analytic function v exists in E with the restrictions v 0 = 0 and v ( z ) < 1 such that g 1 ( z ) = g 2 v ( z ) . If g 2 in E is univalent, then we have the following relationship given by
g 1 z g 2 z z E g 1 ( E ) g 2 ( E ) with g 1 ( 0 ) = g 2 ( 0 ) .
In 1992, Ma and Minda [5] presented a unified version of the class S * ψ using subordination terminology. They introduce the S * ψ defined by
S * ψ : = f S : z f z f z ψ z z E ,
where ψ is a univalent function with ψ 0 > 0 and ψ > 0 . In addition, the region ψ E is star-shaped about the point ψ 0 = 1 and is symmetric along the real line axis. They focused on distortion, growth, and covering theorems, among other interesting properties of functions in this class. Later in 2007, Rosihan et al. [6] determined the sharp bounds of problems involving coefficients for a generalized class of Ma-Minda type starlike functions. The class S * ψ unifies various sub-families of starlike functions, which are attained by an appropriate choice of ψ . For instance:
(i).
By choosing the function
ψ ( z ) = 1 + M z 1 + N z ( M C , 1 N 0 , M N ) ,
we achieve the class
S * [ M , N ] S * 1 + M z 1 + N z
which was studied in [7]. The above described class, with the limitation 1 N < M 1 , represents the class of Janowski starlike functions investigated in [8]. The special case by taking M = 1 2 ξ 1 and N = 1 with 0 ξ 1 < 1 leads to the class S * ξ 1 S * [ 1 2 ξ 1 , 1 ] of starlike function of order ξ 1 .
(ii).
The below listed class
SS * ξ 2 S * ψ ( z ) , with ψ ( z ) = 1 + z 1 z ξ 2 ,
for 0 < ξ 2 1 was introduced as the collection of strongly starlike functions of order ξ 2 investigated in [9].
(iii).
In [10], Sharma et al. discussed the class S c a r * defined by
S c a r * : = S * ( ψ ( z ) ) ψ ( z ) = 1 + 4 3 z + 2 3 z 2 .
Geometrically, it is a subclass of functions f A with
Q z = z f ( z ) f ( z )
contained in the cardioid domain given by
( 9 x 2 + 9 y 2 18 x + 5 ) 2 16 ( 9 x 2 + 9 y 2 6 x + 1 ) = 0 .
(iv).
By setting ψ ( z ) = 1 + sin z , we attain the class S * ψ ( z ) S sin * of starlike functions connected with the eight-shaped domain which was introduced by Cho et al. [11]. Moreover, the below mentioned classes
S cos * S * ( cos z ) & S cosh * S * ( cosh z ) ,
were analyzed, respectively, by Raza and Bano [12] and Alotaibi et al. [13].
(v).
By picking ψ ( z ) = 1 + tanh z , we obtain the class S tanh *
S tanh * : = S * 1 + tanh z ,
which was established by Ullah et al. [14]. Moreover, they examined the radii results for the class S tanh * . Further, in [15] the authors computed third-order Hankel determinant sharp bounds for this class.
Finding bounds for the function coefficients in a given collection has been one of the most fundamental problems in geometric function theory since it impacts geometric features. The constraint on the second coefficient, for example, provides the growth and distortion features. The general form of the Hankel determinant Δ q , n f with n , q N = 1 , 2 , for the function f S was explored by Pommerenke [16,17] in the form of
Δ q , n f : = a n a n + 1 a n + q 1 a n + 1 a n + 2 a n + q a n + q 1 a n + q a n + 2 q 2 .
In fact, the determinants listed below are referred to as first-, second-, and third-order Hankel determinants, respectively.
Δ 2 , 1 f = a 3 a 2 2 ,
Δ 2 , 2 f = a 2 a 4 a 3 2 ,
Δ 3 , 1 f = 2 a 2 a 3 a 4 a 3 3 a 4 2 + a 3 a 5 a 2 2 a 5 .
Only a few articles on the Hankel determinant for the class S can be found in the literature. The earliest recorded sharp inequality for f S is stated by
Δ 2 , n f ν n , ν is a constant .
This outcome is due to Hayman [18]. Likewise, for the same set S , the following bounds were derived in [19]:
Δ 2 , 2 f ν 1 ν 11 3 ,
and
Δ 3 , 1 f ν 4 9 ν 32 + 285 15 .
The problem of determining the sharp inequalities of Hankel determinants for a certain set of functions attracted the minds of many experts. Janteng et al. [20,21] computed the sharp bound of Δ 2 , 2 f for the S sub-families C , S * and BT , where C and BT are the sets of convex and bounded turning functions. These results are based on estimations provided by
Δ 2 , 2 f 1 8 , for f C , 1 , for f S * , 4 9 , for f BT .
For the following two families S * ξ 1 0 ξ 1 < 1 , and SS * ξ 2 0 < ξ 2 1 , the experts [22,23] obtained that Δ 2 , 2 f is bounded by 1 ξ 1 2 and ξ 2 2 , respectively. This problem was also investigated for different families of bi-univalent functions in [24,25,26,27,28,29].
The formulae in (3)–(5) make it quite evident that calculating the bound for Δ 3 , 1 f is significantly more difficult than calculating the bound for Δ 2 , 2 f . Babalola [30] was the first mathematician who studied third-order Hankel determinant for the C , S * and BT families. Though after the Babalola’s article, several papers appeared on obtaining the bounds of the determinant Δ 3 , 1 f for various subclasses of analytic functions. However, Zaprawa’s article [31] gained the attention of the readers in which he enhanced Babalola’s conclusions by employing a new approach to demonstrate that
Δ 3 , 1 f 49 540 , for f C , 1 , for f S * , 41 60 , for f BT .
In addition, he points out that such bounds are not sharp. Later, in 2018, Kwon et al. [32] enhanced the Zaprawa inequality for f S * by achieving Δ 3 , 1 f 8 9 , and Zaprawa et al. [33] polished this bound even further in 2021 by proving that Δ 3 , 1 f 5 9 for f S * . Moreover, for q-starlike type functions classes, such problems were determined in [34]. Furthermore, the non-sharp bounds of this determinant for the sets S sin * and S c a r * were also computed in the articles [35,36], respectively. They achieved
Δ 3 , 1 f 0.51856 , for f S sin * , 1.1989 , for f S c a r * .
The sharp bounds of the determinant have been sought by many experts, but none have succeeded. Eventually, in 2018, Kowalczyk et al. [37] and Lecko et al. [38] achieved the following sharp bounds of Δ 3 , 1 f for the sets C and S * 1 2 :
Δ 3 , 1 f 4 135 , for f C , 1 9 , for f S * 1 2 .
Barukab et al. [39], in the year 2021, computed the sharp bounds of Δ 3 , 1 f for functions of bounded turning set related with the petal-shaped domain. Later at the end of 2021, Ullah et al. [15] and Wang et al. [40] contributed the following sharp bounds of this determinant:
Δ 3 , 1 f 1 16 , for f BT L , 1 9 , for f S tanh * ,
where the family BT L is given by
BT L = f A : f z 1 + z ( z E ) .
The interested readers can look at the work of Srivastava et al. [41] for further contributions in this area. They successfully obtained the bounds of the fourth-order Hankel determinant for various analytic and univalent functions.
In [42], Gandhi introduced a subclass of starlike functions defined by
S 3 l * : = f S : z f z f z 1 + 4 5 z + 1 5 z 4 z E .
For functions belonging to this class, it means that z f ( z ) f ( z ) lie in a three-leaf-shaped region in the right-half plane. From the definition of the family S 3 l * , the authors [42] deduced that:
f S 3 l * f z = z exp 0 z u t 1 t d t ,
for some u z u 0 z . By substituting u z = u 0 z in (6), we acquire the function
f 0 z = z exp 0 z 4 5 + 1 5 t 3 d t = z + 4 5 z 2 + .
Similar to the definition of S 3 l * , we now define a new subfamily of bounded turning functions by the following set builder notation:
BT 3 l : = f : f A and f z 1 + 4 5 z + 1 5 z 4 ( z E ) .
For g ( z ) = z , it can be noted that BT 3 l is a subclass of functions f S satisfying the condition
z f ( z ) g ( z ) 1 + 4 5 z + 1 5 z 4 ( z E ) .
In [43], Shi et al. gave some coefficient estimates on functions belonging to the class S 3 l * . However, the bound Δ 3 , 1 f 242 1125 that they obtained for the third Hankel determinant is not sharp. In the current paper, we aim to prove some sharp bounds on the coefficient problems associated with S 3 l * and BT 3 l using a new method. The main results are organized as follows. The first part ais coefficient problems connected with the newly defined subclass BT 3 l of bounded turning functions. In the second part, we give some sharp bounds of third Hankel determinant for the functions in the class S 3 l * which improve the known results.

2. A Set of Lemmas

Before stating the results that are applied in the main contributions, we define the class P in terms of a set-builder notation:
P = q A : q z 1 + z 1 z ( z E ) ,
where the function q has the below series form:
q z = 1 + n = 1 c n z n z E .
The subsequent Lemma is essential for the proofs of our main findings. It includes the well-known c 2 formula [44], the c 3 formula credited to Libera and Złotkiewicz [45], and the c 4 formula proven in [46].
Lemma 1.
Let q P be in the form of (9). Then, for x , σ , ρ E ¯ we have
2 c 2 = c 1 2 + x 4 c 1 2 ,
4 c 3 = c 1 3 + 2 4 c 1 2 c 1 x c 1 4 c 1 2 x 2 + 2 4 c 1 2 1 x 2 σ , 8 c 4 = c 1 4 + ( 4 c 1 2 ) x c 1 2 x 2 3 x + 3 + 4 x 4 ( 4 c 1 2 ) ( 1 x 2 )
c ( x 1 ) σ + x ¯ σ 2 ( 1 σ 2 ) ρ .
Lemma 2.
If q P has the form of (9), then
c n 2 ( n 1 ) .
and
c n + k μ c n c k 2 max 1 , 2 μ 1 = 2 f o r 0 μ 1 ; 2 2 μ 1 o t h e r w i s e . .
Moreover, if B 0 , 1 with B 2 B 1 D B , we have
c 3 2 B c 1 c 2 + D c 1 3 2 .
The inequalities (13)–(15) in the last Lemma are taken from [44,47] and [35,36], respectively.
Lemma 3
([48]). Let α , β , γ and a satisfy the inequalities 0 < α < 1 , 0 < a < 1 and
8 a 1 a α β 2 γ 2 + α a + α β 2 + α 1 α β 2 a α 2 4 a α 2 1 α 2 1 a .
If q P is of the form (9), then
γ c 1 4 + a c 2 2 + 2 α c 1 c 3 3 2 β c 1 2 c 2 c 4 2 .

3. Coefficient Inequalities and Second Hankel Determinant for the Function Class B T 3 l

Theorem 1.
If f BT 3 l has the series expansion (1), then
a 2 2 5 ,
a 3 4 15 ,
a 4 1 5 ,
a 5 4 25 .
These bounds are sharp with the extremal functions given by
f 1 z = 0 z 1 + 4 5 t + 1 5 t 4 d t = z + 2 5 z 2 + 1 25 z 5 , f 2 z = 0 z 1 + 4 5 t 2 + 1 5 t 8 d t = z + 4 15 z 3 + 1 45 z 9 , f 3 z = 0 z 1 + 4 5 t 3 + 1 5 t 12 d t = z + 1 5 z 4 + 1 65 z 13 , f 4 z = 0 z 1 + 4 5 t 4 + 1 5 t 16 d t = z + 4 25 z 5 + 1 85 z 17 .
Proof. 
Let f BT 3 l . Then from the definition, there exists a Schwarz function ω such that
f z = 1 + 4 5 ω z + 1 5 ω z 4 , z E .
Suppose that p P be described in terms of the Schwarz function ω as
p z = 1 + ω z 1 ω z = 1 + c 1 z + c 2 z 2 + c 3 z 3 + .
Equivalently, we have
ω z = p z 1 p z + 1 = c 1 z + c 2 z 2 + c 3 z 3 + c 4 z 4 + 2 + c 1 z + c 2 z 2 + c 3 z 3 + c 4 z 4 + .
From (1), we obtain
f z = 1 + 2 a 2 z + 3 a 3 z 2 + 4 a 4 z 3 + 5 a 5 z 4 + .
Using the series expansion of (22), we obtain
1 + 4 5 ω z + 1 5 ω z 4 = 1 + 2 5 c 1 z + 2 5 c 2 1 5 c 1 2 z 2 + 1 10 c 1 3 2 5 c 1 c 2 + 2 5 c 3 z 3 + 3 80 c 1 4 + 3 10 c 1 2 c 2 1 5 c 2 2 2 5 c 1 c 3 + 2 5 c 4 z 4 + .
Comparing (23) and (24), we find that
a 2 = 1 5 c 1 ,
a 3 = 1 3 2 5 c 2 1 5 c 1 2 ,
a 4 = 1 4 1 10 c 1 3 2 5 c 1 c 2 + 2 5 c 3 ,
a 5 = 1 5 3 80 c 1 4 + 3 10 c 1 2 c 2 1 5 c 2 2 2 5 c 1 c 3 + 2 5 c 4 .
The inequalities on a 2 , a 3 and a 4 follow directly by using Lemma 2. For a 5 , we can rewrite (28) as
a 5 = 2 25 3 32 c 1 4 + 1 2 c 2 2 + 2 1 2 c 1 c 3 3 2 1 2 c 1 2 c 2 c 4 . = 2 25 γ c 1 4 + a c 2 2 + 2 α c 1 c 3 3 2 β c 1 2 c 2 c 4 ,
where
γ = 3 32 , a = 1 2 , α = 1 2 , β = 1 2 .
It can be easily verified that 0 < α < 1 , 0 < a < 1 and
8 a 1 a α β 2 γ 2 + α a + α β 2 + α 1 α β 2 a α 2 4 a α 2 1 α 2 1 a .
Therefore, from Lemma 3 we have
a 5 4 25 .
The proof of Theorem 1 is thus completed.
Theorem 2.
Let γ C and f BT 3 l be the form of (1). Then the sharp bound of the Fekete–Szegö inequality is
a 3 γ a 2 2 max 4 15 , 12 75 γ .
Proof. 
By employing (25) and (26), we have
a 3 γ a 2 2 = 2 15 c 2 1 15 c 1 2 γ 1 25 c 1 2 .
An application of Lemma 2 leads to the desired result. The inequality is sharp with the extremal function given by
f 2 z = 0 z 1 + 4 5 t 2 + 1 5 t 8 d t = z + 4 15 z 3 + 1 45 z 9 .
Theorem 3.
If f BT 3 l has the form (1), then
a 2 a 3 a 4 1 5 .
This result is sharp.
Proof. 
Using (25)–(27), we have
a 2 a 3 a 4 = 1 10 c 3 2 19 30 c 1 c 2 + 23 60 c 1 3 .
Let B = 19 30 and D = 23 60 . It can seen that 0 B 1 , B D and
B 2 B 1 = 38 225 D = 23 60 .
Applying Lemma 2, we obtain the inequality in Theorem 3. This result is sharp with the extremal function given by
f 3 z = 0 z 1 + 4 5 t 3 + 1 5 t 12 d t = z + 1 5 z 4 + 1 65 z 13 .
The second-order Hankel determinant Δ 2 , 2 f for f BT 3 l will be estimated next.
Theorem 4.
If f BT 3 l , then
Δ 2 , 2 f = a 2 a 4 a 3 2 16 225 .
The result is sharp.
Proof. 
By the virtue of (25)–(27), we have
Δ 2 , 2 f = 1 1800 c 1 4 4 225 c 2 2 + 1 50 c 1 c 3 1 450 c 1 2 c 2 .
Using (10) and (11) to express c 2 and c 3 in terms of c 1 = c and x , σ in E ¯ , we obtain
Δ 2 , 2 f = 1 200 c 2 4 c 2 x 2 1 225 4 c 2 2 x 2 + 1 100 c 4 c 2 1 x 2 σ .
Applying the triangle inequality and using x = b , σ 1 , we have
Δ 2 , 2 f 1 200 c 2 4 c 2 b 2 + 1 225 4 c 2 2 b 2 + 1 100 c 4 c 2 1 b 2 : = Θ c , b .
It is an easy task to illustrate that Θ b 0 for b 0 , 1 . This means that Θ c , b Θ c , 1 . Thus
Δ 2 , 2 f 1 200 c 2 4 c 2 + 1 225 4 c 2 2 : = ϖ ( c ) .
By observing that ϖ ( c ) < 0 for c [ 0 , 2 ] , we see that ϖ c ϖ 0 . Thus, we have
Δ 2 , 2 f 16 225 .
Equality is attained by the function given by
f 2 z = 0 z 1 + 4 5 t 2 + 1 5 t 8 d t = z + 4 15 z 3 + 1 45 z 9 .

4. Results on the Third Hankel Determinant of Functions f BT 3 l

Now we study the determinant Δ 3 , 1 f for f BT 3 l .
Theorem 5.
If f BT 3 l has the series expansion (1), then
Δ 3 , 1 f 1 25 .
The bound is sharp.
Proof. 
Let c 1 = c and put the values of a i ’s from (25)–(28) into (5), we obtain that
Δ 3 , 1 f = 1 1080000 211 c 6 192 c 4 c 2 + 936 c 3 c 3 + 528 c 2 c 2 2 9216 c 2 c 4 + 15840 c c 2 c 3 8320 c 2 3 + 11520 c 2 c 4 10800 c 3 2 .
For some ρ , x , σ E ¯ , by substituting t = 4 c 2 in (10)–(12), we have
192 c 4 c 2 = 96 c 6 + c 4 t x , 936 c 3 c 3 = 234 c 4 t x 2 + 468 c 3 t 1 x 2 σ + 468 c 4 t x + 234 c 6 , 528 c 2 c 2 2 = 132 c 6 + 264 c 4 t x + 132 c 2 t 2 x 2 , 9216 c 2 c 4 = 1152 c 4 t x 3 4608 c 3 t x 1 x 2 σ 4608 c 2 t x ¯ 1 x 2 σ 2 3456 c 4 t x 2 + 4608 c 2 t 1 x 2 1 σ 2 ρ + 4608 c 3 t 1 x 2 σ + 3456 c 4 t x + 1152 c 6 + 4608 c 2 t x 2 , 15840 c c 2 c 3 = 1980 c 2 t 2 x 3 1980 c 4 t x 2 + 3960 c t 2 x 1 x 2 σ + 3960 c 2 t 2 x 2 + 3960 c 3 t 1 x 2 σ + 5940 c 4 t x + 1980 c 6 , 8320 c 2 3 = 1040 c 6 + 3120 c 4 t x + 3120 c 2 t 2 x 2 + 1040 t 3 x 3 , 11520 c 2 c 4 = 2880 c 2 t x 2 + 2880 t 2 x 3 + 720 c 6 + 2880 c 4 t x + 2880 c 3 t 1 x 2 σ + 2880 c 2 t 1 x 2 1 σ 2 ρ + 2160 c 2 t 2 x 2 + 2880 c t 2 x 1 x 2 σ + 2880 t 2 x 1 x 2 1 σ 2 ρ 2160 c 4 t x 2 2880 c 2 t x ¯ 1 x 2 σ 2 2880 c 3 t x 1 x 2 σ 2160 c 2 t 2 x 3 2880 t 2 x x ¯ 1 x 2 σ 2 2880 c t 2 x 2 1 x 2 σ + 720 c 4 t x 3 + 720 c 2 t 2 x 4 , 10800 c 3 2 = 675 c 2 t 2 x 4 2700 c t 2 x 2 1 x 2 σ 2700 c 2 t 2 x 3 1350 c 4 t x 2 + 2700 t 2 1 x 2 2 σ 2 + 5400 c t 2 x 1 x 2 σ + 2700 c 2 t 2 x 2 + 2700 c 3 t 1 x 2 σ + 2700 c 4 t x + 675 c 6 .
Putting the above expressions in (30) yields to
Δ 3 , 1 f = 1 1080000 108 c 6 + 1728 c 3 t x 1 x 2 σ + 1728 c 2 t x ¯ 1 x 2 σ 2 1728 c 2 t 1 x 2 1 σ 2 ρ 180 c t 2 x 2 1 x 2 σ 2880 t 2 x x ¯ 1 x 2 σ 2 + 2880 t 2 x 1 x 2 1 σ 2 ρ + 1440 c t 2 x 1 x 2 σ + 2880 t 2 x 3 1040 t 3 x 3 + 180 c 4 t x + 45 c 2 t 2 x 4 1440 c 2 t 2 x 3 + 432 c 2 t 2 x 2 2700 t 2 1 x 2 2 σ 2 1728 c 2 t x 2 432 c 4 t x 3 + 432 c 4 t x 2 .
By virtue of t = 4 c 2 , we see that
Δ 3 , 1 f = 1 1080000 v 1 c , x + v 2 c , x σ + v 3 c , x σ 2 + Ψ c , x , σ ρ ,
where
v 1 c , x = 108 c 6 + 4 c 2 4 c 2 400 c 2 x 3 1280 x 3 + 45 c 2 x 4 + 432 c 2 x 2 1728 c 2 x 2 + 432 c 4 x 2 432 c 4 x 3 + 180 c 4 x , v 2 c , x = 4 c 2 1 x 2 4 c 2 180 c x 2 + 1440 c x + 1728 c 3 x , v 3 c , x = 4 c 2 1 x 2 4 c 2 180 x 2 2700 + 1728 c 2 x ¯ , Ψ c , x , σ = 4 c 2 1 x 2 1 σ 2 2880 x 4 c 2 1728 c 2 .
By setting x = x , σ = y and utilizing the fact ρ 1 , we obtain
Δ 3 , 1 f 1 1080000 v 1 c , x + v 2 c , x y + v 3 c , x y 2 + Ψ c , x , σ . 1 1080000 G c , x , y ,
where
G c , x , y = g 1 c , x + g 2 c , x y + g 3 c , x y 2 + g 4 c , x 1 y 2 ,
with
g 1 c , x = 108 c 6 + 4 c 2 [ 4 c 2 400 c 2 x 3 + 1280 x 3 + 45 c 2 x 4 + 432 c 2 x 2 + 1728 c 2 x 2 + 432 c 4 x 2 + 432 c 4 x 3 + 180 c 4 x ] , g 2 c , x = 4 c 2 1 x 2 4 c 2 180 c x 2 + 1440 c x + 1728 c 3 x , g 3 c , x = 4 c 2 1 x 2 4 c 2 180 x 2 + 2700 + 1728 c 2 x , g 4 c , x = 4 c 2 1 x 2 2880 x 4 c 2 + 1728 c 2 .
Now, we have to maximize G c , x , y in the closed cuboid Υ : 0 , 2 × 0 , 1 × 0 , 1 . For this, we have to discuss the maximum values of G c , x , y in the interior of Υ , in the interior of its 6 faces and on its 12 edges.
1. Interior points of cuboid Υ :
Let c , x , y 0 , 2 × 0 , 1 × 0 , 1 , and differentiating partially G c , x , y with respect to y, we have
G y = 4 c 2 ( 1 x 2 ) 360 y ( x 1 ) 4 c 2 x 15 + 48 5 c 2 + 180 c x 4 c 2 8 + x + 48 5 c 2 x .
Plugging G y = 0 , we obtain
y = 180 c x 4 c 2 8 + x + 48 5 c 2 x 360 ( x 1 ) 4 c 2 15 x 48 5 c 2 = y 0 .
If y 0 is a critical point within Υ , then y 0 0 , 1 , which is only achievable if
1728 c 3 x + 180 c x 4 c 2 8 + x + 360 ( 1 x ) 4 c 2 15 x < 3456 c 2 ( 1 x ) .
and
c 2 > 20 15 x 123 5 x .
Now, we must find solutions that meet both inequality (32) and (33) for the existence of critical points.
Let g ( x ) = 20 15 x 123 5 x . As g ( x ) < 0 in 0 , 1 , it is noted that g ( x ) is decreasing over 0 , 1 . Hence c 2 > 140 59 and an easy calculation indicates that (32) is impossible for all x [ 1 2 , 1 ) ,Ṫhus there are no critical points of G in 0 , 2 × [ 1 2 , 1 ) × 0 , 1 .
Suppose that there is a critical point ( c ˜ , x ˜ , y ˜ ) of G existing in the interior of cuboid Υ . Clearly it must satisfy that x ˜ < 1 2 . From the above discussion, it can also be known that c ˜ 2 > 580 241 and y ˜ ( 0 , 1 ) . In the following, we will prove that G ( c ˜ , x ˜ , y ˜ ) < 43200 in this situation. For ( c , x , y ) 580 241 , 2 × ( 0 , 1 2 ) × 0 , 1 , by invoking x < 1 2 and 1 x 2 < 1 , it is not hard to observe that
g 1 c , x 108 c 6 + 4 c 2 [ 4 c 2 400 c 2 ( 1 / 2 ) 3 + 1280 ( 1 / 2 ) 3 + 45 c 2 ( 1 / 2 ) 4 + 432 c 2 ( 1 / 2 ) 2 + 1728 c 2 ( 1 / 2 ) 2 + 432 c 4 ( 1 / 2 ) 2 + 432 c 4 ( 1 / 2 ) 3 + 180 c 4 ( 1 / 2 ) ] , = 108 c 6 + 1 16 4 c 2 1459 c 4 + 14644 c 2 + 10240 : = φ 1 ( c ) , g 2 c , x 4 c 2 4 c 2 180 c ( 1 / 2 ) 2 + 1440 c ( 1 / 2 ) + 1728 c 3 ( 1 / 2 ) , = ( 4 c 2 ) 99 c 3 + 3060 c : = φ 2 ( c ) , g 3 c , x 4 c 2 4 c 2 180 ( 1 / 2 ) 2 + 2700 + 1728 c 2 ( 1 / 2 ) , = ( 4 c 2 ) 1881 c 2 + 10980 : = φ 3 ( c ) , g 4 c , x 4 c 2 2880 ( 1 / 2 ) 4 c 2 + 1728 c 2 . = ( 4 c 2 ) 288 c 2 + 5760 : = φ 4 ( c ) .
Therefore, we have
G ( c , x , y ) φ 1 ( c ) + φ 4 ( c ) + φ 2 ( c ) y + φ 3 ( c ) φ 4 ( c ) y 2 : = Ξ 1 ( c , y ) .
Obviously, it can be seen that
Ξ 1 y = φ 2 ( c ) + 2 φ 3 ( c ) φ 4 ( c ) y
and
2 Ξ 1 y 2 = 2 φ 3 ( c ) φ 4 ( c ) = 2 ( 4 c 2 ) ( 2169 c 2 + 5220 ) .
Since φ 3 ( c ) φ 4 ( c ) 0 for c 580 241 , 2 , we obtain that 2 Ξ 1 y 2 0 for y ( 0 , 1 ) , and thus it follows that
Ξ 1 y Ξ 1 y | y = 1 = ( 4 c 2 ) ( 99 c 3 4338 c 2 + 3060 c + 10440 ) 0 , c 580 241 , 2 .
This implies that
Ξ 1 ( c , y ) Ξ 1 ( c , 1 ) = φ 1 ( c ) + φ 2 ( c ) + φ 3 ( c ) : = ι 1 ( c ) .
It is easy to calculate that ι 1 ( c ) attains its maximum value 25,311.25 at c 1.551335 . Thus, we have
G ( c , x , y ) < 43200 , ( c , x , y ) 580 241 , 2 × ( 0 , 1 2 ) × 0 , 1 .
Hence G ( c ˜ , x ˜ , y ˜ ) < 43,200. This implies that G is less than 43,200 at all the critical points in the interior of Υ . Therefore, G has no optimal solution in the interior of Υ .
2. Interior of all the six faces of cuboid Υ :
(i) On the face c = 0 , G ( c , x , y ) becomes to
T 1 ( x , y ) = G ( 0 , x , y ) = 640 32 x 3 + 9 2 ( 1 x 2 ) ( 16 x + y 2 ( x 1 ) ( x 15 ) ) , x , y 0 , 1 .
Differentiating partially with respect to y , we obtain
T 1 y = 5760 y ( 1 x 2 ) ( x 1 ) ( x 15 ) , x , y 0 , 1 .
It is easy to see that T 1 ( x , y ) has no critical point in the interval 0 , 1 × 0 , 1 .
(ii) On the face c = 2 , G ( c , x , y ) yields
G ( 2 , x , y ) 6912 < 43200 .
(iii) On the face x = 0 , G ( c , x , y ) becomes
T 2 ( c , y ) = G ( c , 0 , y ) = 108 c 6 + ( 4 c 2 ) ( ( 10800 2700 c 2 ) y 2 + 1728 c 2 ( 1 y 2 ) ) .
Differentiating T 2 ( c , y ) partially with respect to y, we know that
T 2 y = ( 4 c 2 ) ( 21600 y 8856 c 2 y ) .
Also derivative of T 2 ( c , y ) partially with respect to c is
T 2 c = 648 c 5 + ( 4 c 2 ) ( 5400 c y 2 + 3456 c ( 1 y 2 ) ) 3456 c 3 ( 1 y 2 ) + 5400 c 3 21600 c y 2 .
By using Newton’s methods for the system of nonlinear equations in Maple, we have found no solution to the system of equations in the interval 0 , 2 × 0 , 1 . That is, T 2 ( c , y ) has no optimal solution in 0 , 2 × 0 , 1 .
(iv) On the face x = 1 , G ( c , x , y ) takes the form
T 3 ( c , y ) = G ( c , 1 , y ) = 108 c 6 + ( 4 c 2 ) ( ( 4 c 2 ) ( 1280 + 877 c 2 ) + 1728 c 2 + 1044 c 4 ) .
Then
T 3 c = 354 c 5 13152 c 3 + 21408 c .
Putting T 3 c = 0 and solving we obtain c 1.2498244295 . Thus we have
G ( c , 1 , y ) max T 3 ( c , y ) = 28952.5898 < 43200 , ( c , y ) ( 0 , 2 ) × ( 0 , 1 ) .
(v) On the face y = 0 , G ( c , x , y ) yields
T 4 ( c , x ) = G ( c , x , 0 ) = 45 c 6 x 4 32 c 6 x 3 360 c 4 x 4 180 c 6 x 3072 c 4 x 3 + 108 c 6 1728 c 4 x 2 + 720 c 2 x 4 + 3600 c 4 x + 19200 c 2 x 3 1728 c 4 + 6912 c 2 x 2 23040 c 2 x 25600 x 3 + 6912 c 2 + 46080 x .
Now differentiating partially with respect to c , then with respect to x and simplifying we have
T 4 c = 270 c 5 x 4 192 c 5 x 3 1440 c 3 x 4 1080 c 5 x 12288 c 3 x 3 + 648 c 5 6912 c 3 x 2 + 1440 c x 4 + 14400 c 3 x + 38400 c x 3 6912 c 3 + 13824 c x 2 46080 c x + 13824 c .
and
T 4 x = 180 c 6 x 3 96 c 6 x 2 1440 c 4 x 3 180 c 6 9216 c 4 x 2 3456 c 4 x + 2880 c 2 x 3 + 3600 c 4 + 57600 c 2 x 2 + 13824 c 2 x 23040 c 2 76800 x 2 + 46080 .
Applying Newton’s methods to the system of nonlinear Equations (34) and (35) in Maple Software, we noticed that the given system of equations has no solution in 0 , 2 × 0 , 1 .
(vi) On the face y = 1 , G ( c , x , y ) reduces to G ( c , x , 1 ) given by
T 5 ( c , x ) = G ( c , x , 1 ) = 45 c 6 x 4 32 c 6 x 3 180 c 5 x 4 + 288 c 5 x 3 540 c 4 x 4 180 c 6 x + 180 c 5 x 2 + 1536 c 4 x 3 + 1440 c 3 x 4 + 108 c 6 288 c 5 x 5976 c 4 x 2 + 4608 c 3 x 3 + 2160 c 2 x 4 1008 c 4 x 1440 c 3 x 2 10752 c 2 x 3 2880 c x 4 + 2700 c 4 4608 c 3 x + 33984 c 2 x 2 23040 c x 3 2880 x 4 + 6912 c 2 x + 2880 c x 2 + 20480 x 3 21600 c 2 + 23040 c x 40320 x 2 + 43200 .
Partial derivative of T 5 ( c , x ) with respect to c and then with respect to x, we have
T 5 c = 270 c 5 x 4 192 c 5 x 3 900 c 4 x 4 + 1440 c 4 x 3 2160 c 3 x 4 1080 c 5 x + 900 c 4 x 2 + 6144 c 3 x 3 + 4320 c 2 x 4 + 648 c 5 1440 c 4 x 23904 c 3 x 2 + 13824 c 2 x 3 + 4320 c x 4 4032 c 3 x 4320 c 2 x 2 21504 c x 3 2880 x 4 + 10800 c 3 13824 c 2 x + 67968 c x 2 23040 x 3 + 13824 c x + 2880 x 2 43200 c + 23040 x .
and
T 5 x = 180 c 6 x 3 96 c 6 x 2 720 c 5 x 3 + 864 c 5 x 2 2160 c 4 x 3 180 c 6 + 360 c 5 x + 4608 c 4 x 2 + 5760 c 3 x 3 288 c 5 11952 c 4 x + 13824 c 3 x 2 + 8640 c 2 x 3 1008 c 4 2880 c 3 x 32256 c 2 x 2 11520 c x 3 4608 c 3 + 67968 c 2 x 69120 c x 2 11520 x 3 + 6912 c 2 + 5760 c x + 61440 x 2 + 23040 c 80640 x .
In Maple Software, we used Newton’s techniques to solve the system of nonlinear Equations (36) and (37) and observed that the above system of equations has no solution in 0 , 2 × 0 , 1 . Thus T 5 ( c , x ) has no optimal solution in 0 , 2 × 0 , 1 .
3. On the Edges of Cuboid Υ :
(i) On the edge x = 0 and y = 0 , then G ( c , x , y ) becomes
G ( c , 0 , 0 ) = 108 c 6 1728 c 4 + 6912 c 2 = U 1 ( c ) .
Clearly,
U 1 ( c ) = 648 c 5 6912 c 3 + 13824 c .
Putting U 1 ( c ) = 0 gives the critical point c 0 1.632993161 at which G ( c , 0 , 0 ) = U 1 ( c ) obtains its maximum. Hence
G ( c , 0 , 0 ) max U 1 ( c ) = U 1 ( c 0 ) = 8192 < 43200 , c [ 0 , 2 ] .
(ii) On the edge x = 0 and y = 1 , then G ( c , x , y ) takes the form
G ( c , 0 , 1 ) = 108 c 6 + 2700 c 4 21600 c 2 + 43200 = U 2 ( c ) .
It follows that
U 2 ( c ) = 648 c 5 + 10800 c 3 43200 c .
As U 2 ( c ) < 0 in 0 , 2 , we see that U 2 ( c ) is decreasing over 0 , 2 . Thus U 2 ( c ) has its maxima at c = 0 . Therefore max U 2 ( c ) = U 2 ( 0 ) = 43200 . Thus
G ( c , 0 , 1 ) max U 2 ( c ) = U 2 ( 0 ) = 43200 .
(iii) On the edge c = 0 and x = 0 , then G ( c , x , y ) yields
G ( 0 , 0 , y ) = 43200 y 2 = U 3 y 43200 , y [ 0 , 1 ] .
(iv) On the edges G ( c , 1 , 0 ) and G ( c , 1 , 1 ) , it is noted that G ( c , 1 , y ) is free of y , therefore
G ( c , 1 , 0 ) = G ( c , 1 , 1 ) = 59 c 6 3288 c 4 + 10704 c 2 + 20480 = U 4 ( c ) .
Then
U 4 ( c ) = 354 c 5 13152 c 3 + 21408 c .
Putting U 4 ( c ) = 0 , we obtain the critical point c 0 1.249824429 at which G ( c , 1 , 0 ) = G ( c , 1 , 1 ) = U 4 ( c ) attains its maximum. Therefore max U 4 ( c ) = U 4 ( c 0 ) = 28,952.5898. Thus
G ( c , 1 , 0 ) = G ( c , 1 , 1 ) max U 4 ( c ) = U 4 ( c 0 ) = 28952.5898 < 43200 , c [ 0 , 2 ] .
(v) On the edge c = 0 and x = 1 , then G ( c , x , y ) reduces to
G ( 0 , 1 , y ) = 20480 < 43200 , y [ 0 , 1 ] .
(vi) On the edge c = 2 , then G ( c , x , y ) becomes
G ( 2 , x , y ) 6912 .
G ( 2 , x , y ) is independent of x and y; therefore
G ( 2 , 0 , y ) = G ( 2 , 1 , y ) = G ( 2 , x , 0 ) = G ( 2 , x , 1 ) = 6912 < 43200 , x , y [ 0 , 1 ] .
(vii) On the edge c = 0 and y = 1 , then G ( c , x , y ) yields
G ( 0 , x , 1 ) = 2880 x 4 + 20480 x 3 40320 x 2 + 43200 = U 5 ( x ) .
Then
U 5 ( x ) = 11520 x 3 + 61440 x 2 80640 x .
Since U 5 ( x ) < 0 in 0 , 1 , it follows that U 5 ( x ) is decreasing over 0 , 1 . Thus U 5 x has its maxima at x = 0 . Therefore max U 5 ( x ) = U 5 ( 0 ) = 43,200. Hence
G ( 0 , x , 1 ) max U 5 ( x ) = U 5 ( 0 ) = 43200 , x [ 0 , 1 ] .
(viii) On the edge c = 0 and y = 0 then G ( c , x , y ) takes the form
G ( 0 , x , 0 ) = 25600 x 3 + 46080 x = U 6 ( x ) .
Then
U 6 ( x ) = 76800 x 2 + 46080 .
The equation U 6 ( x ) = 0 gives the critical point x 0 0.774596669 at which U 6 ( x ) obtains its maximum. Therefore max U 6 ( x ) = U 6 ( x 0 ) = 23,795.60968. Hence
G ( 0 , x , 0 ) max U 6 ( x ) = U 6 ( x 0 ) = 23795.60968 , x [ 0 , 1 ] .
From above cases we conclude that
G c , x , y 43200 on 0 , 2 × 0 , 1 × 0 , 1 .
Using (31), it is clear that
Δ 3 , 1 f 1 1080000 G c , x , y 1 25 .
The bound is sharp with the extremal function given by
f 3 z = 0 z 1 + 4 5 t 3 + 1 5 t 12 d t = z + 1 5 z 4 + 1 65 z 13 .

5. Zalcman Functional

In 1960, Lawrence Zalcman proposed the following conjecture based on a coefficient for the functions belonging to the class S .
a n 2 a 2 n 1 n 1 2 .
Equality will be obtained when taking the Köebe function or its rotations. The particular case of the familiar Fekete–Szegö inequality will be achieved when we put n = 2 . For more contributions on this particular topic, see the work [49,50].
Theorem 6.
Let f belong to BT 3 l and be of the form (1). Then
a 5 a 3 2 4 25 .
The inequality is sharp.
Proof. 
From (26) and (28), we obtain
a 5 a 3 2 = 43 3600 c 1 4 13 225 c 2 2 2 25 c 1 c 3 + 7 90 c 1 2 c 2 + 2 25 c 4 .
It follows that
a 5 a 3 2 = 2 25 43 288 c 1 4 + 13 18 c 2 2 + 2 1 2 c 1 c 3 3 2 35 54 c 1 2 c 2 c 4 .
Let γ = 43 288 , a = 13 18 , α = 1 2 , β = 35 54 . It can be found that 0 < α < 1 , 0 < a < 1 and
8 a 1 a α β 2 γ 2 + α a + α β 2 + α 1 α β 2 a α 2 4 a α 2 1 α 2 1 a .
From Lemma 3, we have
a 5 a 3 2 4 25 .
The inequality is sharp and is achieved by
f 4 z = 0 z 1 + 4 5 t 4 + 1 5 t 16 d t = z + 4 25 z 5 + 1 85 z 17 .
Theorem 7.
If f belongs to BT 3 l , and has the form (1). Then
a 3 a 5 a 4 2 1 25 .
This result is sharp.
Proof. 
Setting (26)–(28) with c 1 = c , we obtain
a 3 a 5 a 4 2 = 1 8000 c 6 + 8 3 c 3 c 3 + 16 3 c 2 c 2 2 128 3 c 2 c 4 + 224 3 c c 2 c 3 128 3 c 2 3 + 256 3 c 2 c 4 80 c 3 2 .
Using t = 4 c 2 in (10)–(12), some basic calculations show that
8 3 c 3 c 3 = 2 3 c 6 + 4 3 c 4 t x 2 3 c 4 t x 2 + 4 3 c 3 t 1 x 2 σ , 16 3 c 2 c 2 2 = 4 3 c 6 + 8 3 c 4 t x + 4 3 c 2 t 2 x 2 , 128 3 c 2 c 4 = 16 3 c 6 + 16 3 c 4 t x 3 16 c 4 t x 2 + 16 c 4 t x + 64 3 t c 2 x 2 64 3 c 3 t x 1 x 2 σ 64 3 c 2 t x ¯ 1 x 2 σ 2 + 64 3 c 2 t 1 x 2 1 σ 2 ρ + 64 3 c 3 t 1 x 2 σ , 224 3 c c 2 c 3 = 28 6 c 6 + 28 c 4 t x 28 3 c 4 t x 2 + 56 3 c 3 t 1 x 2 σ + 56 3 c 2 x 2 t 2 28 3 c 2 x 3 t 2 + 56 3 c x t 2 1 x 2 σ , 128 3 c 2 3 = 16 3 c 6 + 16 c 4 x t + 16 c 2 x 2 t 2 + 16 3 x 3 t 3 , 256 3 c 2 c 4 = 16 3 c 6 + 16 3 c 4 x 3 t 16 c 4 x 2 t + 64 3 c 4 x t + 64 3 c 2 x 2 t 64 3 c 3 x t 1 x 2 σ 64 3 c 2 t x ¯ 1 x 2 σ 2 + 64 3 c 2 t 1 x 2 1 σ 2 ρ + 64 3 c 3 t 1 x 2 σ + 16 3 c 2 x 4 t 2 16 c 2 x 3 t 2 + 16 c 2 x 2 t 2 + 64 3 x 3 t 2 64 3 c x 2 t 2 1 x 2 σ 64 3 x t 2 x ¯ 1 x 2 σ 2 + 64 3 x t 2 1 x 2 1 σ 2 ρ + 64 3 c x t 2 1 x 2 σ , 80 c 3 2 = 5 c 2 x 4 t 2 20 c x 2 t 2 1 x 2 σ 20 c 2 x 3 t 2 10 c 4 x 2 t + 20 t 2 1 x 2 2 σ 2 + 40 c x t 2 1 x 2 σ + 20 c 2 x 2 t 2 + 20 c 3 t 1 x 2 σ + 20 c 4 x t + 5 c 6 .
Putting the above expressions in (39), we obtain
a 3 a 5 a 4 2 = 1 8000 64 3 x 3 t 2 16 3 x 3 t 3 + 4 3 c 4 t x + 1 3 x 4 t 2 c 2 16 3 x 3 t 2 c 2 20 t 2 1 x 2 2 σ 2 4 3 x 2 t 2 1 x 2 c σ 64 3 x t 2 1 x 2 x ¯ σ 2 + 64 3 x t 2 1 x 2 1 σ 2 ρ .
It can be noted that
a 3 a 5 a 4 2 = 1 8000 u 1 c , x + u 2 c , x σ + u 3 c , x σ 2 + ϕ c , x , σ ρ ,
where
u 1 c , x = 4 c 2 4 c 2 1 3 c 2 x 4 + 4 3 c 4 x , u 2 c , x = 4 c 2 1 x 2 4 c 2 4 3 c x 2 , u 3 c , x = 4 c 2 1 x 2 4 c 2 4 3 x 2 20 , ϕ c , x , σ = 4 c 2 1 x 2 1 σ 2 64 3 x 4 c 2 .
By taking x = x , σ = y and utilizing the fact ρ 1 , we obtain
a 3 a 5 a 4 2 1 8000 u 1 c , x + u 2 c , x y + u 3 c , x y 2 + ϕ c , x , σ . 1 8000 F c , x , y ,
where
F c , x , y = f 1 c , x + f 2 c , x y + f 3 c , x y 2 + f 4 c , x 1 y 2 ,
with
f 1 c , x = 4 c 2 4 c 2 1 3 c 2 x 4 + 4 3 c 4 x , f 2 c , x = 4 c 2 1 x 2 4 c 2 4 3 c x 2 , f 3 c , x = 4 c 2 1 x 2 4 c 2 4 3 x 2 + 20 , f 4 c , x = 4 c 2 1 x 2 64 3 x 4 c 2 .
Obviously, it can be seen that
F y = f 2 ( c , x ) + 2 f 3 ( c , x ) f 4 ( c , x ) y
and
2 F y 2 = 2 f 3 ( c , x ) f 4 ( c , x ) = 8 3 ( 4 c 2 ) 2 ( 1 x ) 2 ( 15 x ) .
Since f 3 ( c , x ) f 4 ( c , x ) 0 for ( c , x ) [ 0 , 2 ] × [ 0 , 1 ] , we obtain that 2 F y 2 0 for y ( 0 , 1 ) , and thus it follows that
F y F y | y = 0 = f 2 ( c , x ) 0 , ( c , x ) [ 0 , 2 ] × [ 0 , 1 ] .
Therefore, we have
F ( c , x , y ) F ( c , x , 1 ) = f 1 ( c , x ) + f 2 ( c , x ) + f 3 ( c , x ) : = τ ( c , x ) .
It is not hard to calculate that
τ ( c , x ) = F ( c , x , 1 ) = 1 3 c 6 x 4 4 c 4 x 4 + 16 c 2 x 4 4 3 c 6 x + 16 3 c 4 x 4 3 c 5 x 4 + 4 3 c 5 x 2 + 32 3 c 3 x 4 32 3 c 3 x 2 64 3 c x 4 + 64 3 c x 2 56 3 c 4 x 2 + 20 c 4 + 448 3 c 2 x 2 160 c 2 896 3 x 2 + 320 64 3 x 4 .
Partial derivative of τ ( c , x ) with respect to c and then with respect to x , we have
τ c = 2 c 5 x 4 16 c 3 x 4 + 32 c x 4 8 c 5 x + 64 3 c 3 x 20 3 c 4 x 4 + 20 3 c 4 x 2 + 32 c 2 x 4 32 c 2 x 2 64 3 x 4 + 64 3 x 2 224 3 c 3 x 2 + 80 c 3 + 896 3 c x 2 320 c
and
τ x = 4 3 c 6 x 3 16 c 4 x 3 + 64 c 2 x 3 4 3 c 6 + 16 3 c 4 16 3 c 5 x 3 + 8 3 c 5 x + 128 3 c 3 x 3 64 3 c 3 x 256 3 c x 3 + 128 3 c x 112 3 c 4 x + 896 3 c 2 x 1792 3 x 256 3 x 3 .
A numerical calculation, using Maple Software, shows that the system of Equations (41) and (42) has no solution in 0 , 2 × 0 , 1 .
For x = 0 , then τ ( c , x ) takes the form
τ ( c , 0 ) = 20 c 4 160 c 2 + 320 = B 1 ( c ) .
Then
B 1 ( c ) = 80 c 3 320 c .
Since B 1 ( c ) < 0 in 0 , 2 , it follows that B 1 ( c ) is decreasing over 0 , 2 . Thus B 1 ( c ) has its maxima at c = 0 . Therefore max B 1 ( c ) = B 1 ( 0 ) = 320 . Thus
τ ( c , x ) max B 1 ( c ) = B 1 ( 0 ) = 320 , ( c , x ) [ 0 , 2 ] × [ 0 , 1 ] .
For x = 1 , it is easy to calculate that
τ ( c , 1 ) = c 6 + 8 3 c 4 + 16 3 c 2 = B 2 ( c )
and
B 2 ( c ) = 6 c 5 + 32 3 c 3 + 32 3 c .
Putting B 2 ( c ) = 0 , we obtain the critical point c 0 1.57840302 at which B 2 ( c ) obtains its maximum. Therefore max B 2 ( c ) = B 2 ( c 0 ) = 14.37535984 . Thus
τ ( c , 1 ) max B 2 ( c ) = B 2 ( c 0 ) = 14.37535984 < 320 , c [ 0 , 2 ] .
For c = 2 , then τ ( c , x ) becomes
τ ( 2 , x ) 0 < 320 , x [ 0 , 1 ] .
For c = 0 , then τ ( c , x ) reduces to
τ ( 0 , x ) = 64 3 x 4 896 3 x 2 + 320 = B 3 ( x ) .
Then
B 3 ( x ) = 256 3 x 3 1792 3 x .
Since B 3 ( x ) < 0 in 0 , 1 , it is clear that B 3 ( x ) is decreasing over 0 , 1 . Thus B 3 ( x ) has its maxima at x = 0 . Hence
τ ( 0 , x ) max B 3 ( x ) = B 3 ( 0 ) = 320 , x [ 0 , 1 ] .
Thus from the above cases, we conclude that
F c , x , y 320 on 0 , 2 × 0 , 1 × 0 , 1 .
From (31), we know that
a 3 a 5 a 4 2 1 8000 F c , x , y 1 25 .
The bound can be achieved with the extremal function given by
f 3 z = 0 z 1 + 4 5 t 3 + 1 5 t 12 d t = z + 1 5 z 4 + 1 65 z 13 .

6. Sharp Bounds on the Third Hankel Determinant for Functions f S 3 l *

Next, we will improve the bound Δ 3 , 1 f 242 1125 of third Hankel determinant for f S 3 l * which was obtained by Shi et al. in [43].
Theorem 8.
If f S 3 l * and has the series expansion (1), then
Δ 3 , 1 f 16 225 .
This result is sharp.
Proof. 
Let f S 3 l * . From the definition, there exists a Schwarz function ω such that
z f z f ( z ) = 1 + 4 5 ω z + 1 5 ω z 4 , z E .
Assuming that p P . Then it can be written in terms of the Schwarz function ω z as
p z = 1 + ω z 1 ω z = 1 + c 1 z + c 2 z 2 + c 3 z 3 + ,
or equivalently,
ω z = p z 1 p z + 1 = c 1 z + c 2 z 2 + c 3 z 3 + c 4 z 4 + 2 + c 1 z + c 2 z 2 + c 3 z 3 + c 4 z 4 + .
From (1), we obtain
z f z f ( z ) = 1 + a 2 z + ( 2 a 3 a 2 2 ) z 2 + ( 3 a 4 3 a 2 a 3 + a 2 3 ) z 3 + ( 4 a 5 2 a 3 2 4 a 2 a 4 + 4 a 2 2 a 3 a 2 4 ) z 4 + .
By simplification and using the series expansion of (44), we obtain
1 + 4 5 ω z + 1 5 ω z 4 = 1 + 2 5 c 1 z + 2 5 c 2 1 5 c 1 2 z 2 + 2 5 c 3 + 1 10 c 1 3 2 5 c 1 c 2 z 3 + 2 5 c 4 1 5 c 2 2 3 80 c 1 4 + 3 10 c 1 2 c 2 2 5 c 1 c 3 z 4 + .
Comparing like powers of z, z 2 , z 3 and z 4 in (45) and (46), we obtain
a 2 = 2 5 c 1 ,
a 3 = 1 5 c 2 1 50 c 1 2 ,
a 4 = 2 15 c 3 + 1 250 c 1 3 4 75 c 1 c 2 ,
a 5 = 1 10 c 4 + 81 40000 c 1 4 + 53 3000 c 1 2 c 2 7 150 c 1 c 3 3 100 c 2 2 .
The third Hankel determinant can be written as
Δ 3 , 1 f = 2 a 2 a 3 a 4 a 3 3 a 4 2 + a 3 a 5 a 2 2 a 5 .
Let c 1 = c . It follows that
Δ 3 , 1 f = 1 18000000 7857 c 6 19710 c 4 c 2 + 93600 c 3 c 3 800 c 2 c 2 2 324000 c 2 c 4 + 472000 c c 2 c 3 252000 c 2 3 + 360000 c 2 c 4 320000 c 3 2 .
Using t = 4 c 2 in (10)–(12), for some ρ , x , σ E ¯ we obtain
19710 c 4 c 2 = 9855 c 6 + c 4 t x , 93600 c 3 c 3 = 23400 c 6 + 46800 c 4 t x 23400 c 4 t x 2 + 46800 c 3 t 1 x 2 σ , 800 c 2 c 2 2 = 200 c 6 + 400 c 4 t x + 200 c 2 t 2 x 2 , 324000 c 2 c 4 = 40500 c 4 t x 3 162000 c 3 t x 1 x 2 σ 162000 c 2 t x ¯ 1 x 2 σ 2 + 162000 c 2 t 1 x 2 1 σ 2 ρ + 162000 c 3 t 1 x 2 σ + 40500 c 6 + 162000 c 2 t x 2 121500 c 4 t x 2 + 121500 c 4 t x , 472000 c c 2 c 3 = 59000 c 2 t 2 x 3 59000 c 4 t x 2 + 118000 c t 2 x 1 x 2 σ + 59000 c 6 + 118000 c 2 t 2 x 2 + 118000 c 3 t 1 x 2 σ + 177000 c 4 t x , 252000 c 2 3 = 31500 t 3 x 3 + 94500 c 2 t 2 x 2 + 94500 c 4 t x + 31500 c 6 , 360000 c 2 c 4 = 90000 c 2 t x 2 + 90000 t 2 x 3 + 22500 c 6 + 90000 c 4 t x + 90000 c 3 t 1 x 2 σ + 90000 c 2 t 1 x 2 1 σ 2 ρ + 67500 c 2 t 2 x 2 + 90000 t 2 x 1 x 2 1 σ 2 ρ 67500 c 4 t x 2 90000 c 3 t x 1 x 2 σ 67500 c 2 t 2 x 3 90000 t 2 x x ¯ 1 x 2 σ 2 + 22500 c 2 t 2 x 4 90000 c t 2 x 2 1 x 2 σ + 22500 c 4 t x 3 + 90000 c t 2 x 1 x 2 σ 90000 c 2 t x ¯ 1 x 2 σ 2 , 320000 c 3 2 = 20000 c 2 t 2 x 4 80000 c t 2 x 2 1 x 2 σ 80000 c 2 t 2 x 3 + 80000 t 2 1 x 2 2 σ 2 + 160000 c t 2 x 1 x 2 σ + 80000 c 2 t 2 x 2 + 80000 c 3 t 1 x 2 σ + 80000 c 4 t x + 20000 c 6 40000 c 4 t x 2 .
Setting the above expressions in (51), we obtain
Δ 3 , 1 f = 1 18000000 5012 c 6 + 90000 t 2 x 3 31500 t 3 x 3 72000 c 2 t x 2 18000 c 4 t x 3 + 7545 c 4 t x + 2500 c 2 t 2 x 4 46500 c 2 t 2 x 3 80000 t 2 1 x 2 2 σ 2 + 12800 c 3 t 1 x 2 σ + 72000 c 3 t x 1 x 2 σ + 72000 c 2 t x ¯ 1 x 2 σ 2 72000 c 2 t 1 x 2 1 σ 2 ρ 10000 c t 2 x 2 1 x 2 σ 90000 t 2 x x ¯ 1 x 2 σ 2 + 48000 c t 2 x 1 x 2 σ + 90000 t 2 x 1 x 2 1 σ 2 ρ + 10800 c 2 x 2 t 2 + 11600 c 4 t x 2 .
Thus, we see
Δ 3 , 1 f = 1 18000000 k 1 c , x + k 2 c , x σ + k 3 c , x σ 2 + ζ c , x , σ ρ ,
where
k 1 c , x = 5012 c 6 + 4 c 2 4 c 2 10800 c 2 x 2 + 2500 c 2 x 4 15000 c 2 x 3 36000 x 3 + 11600 c 4 x 2 72000 c 2 x 2 + 7545 c 4 x 18000 c 4 x 3 , k 2 c , x = 4 c 2 1 x 2 4 c 2 10000 c x 2 + 48000 c x + 12800 c 3 + 72000 c 3 x , k 3 c , x = 4 c 2 1 x 2 4 c 2 10000 x 2 80000 + 72000 c 2 x ¯ , ζ c , x , σ = 4 c 2 1 x 2 1 σ 2 90000 x 4 c 2 72000 c 2 .
Taking x = x , σ = y and utilizing the fact ρ 1 , we obtain
Δ 3 , 1 f 1 18000000 k 1 c , x + k 2 c , x y + k 3 c , x y 2 + ζ c , x , σ . 1 18000000 Q c , x , y ,
where
Q c , x , y = q 1 c , x + q 2 c , x y + q 3 c , x y 2 + q 4 c , x 1 y 2
with
q 1 c , x = 5012 c 6 + 4 c 2 4 c 2 10800 c 2 x 2 + 2500 c 2 x 4 + 15000 c 2 x 3 + 36000 x 3 + 11600 c 4 x 2 + 72000 c 2 x 2 + 7545 c 4 x + 18000 c 4 x 3 , q 2 c , x = 4 c 2 1 x 2 4 c 2 10000 c x 2 + 48000 c x + 12800 c 3 + 72000 c 3 x , q 3 c , x = 4 c 2 1 x 2 4 c 2 10000 x 2 + 80000 + 72000 c 2 x , q 4 c , x = 4 c 2 1 x 2 90000 x 4 c 2 + 72000 c 2 .
Now, we have to maximize Q c , x , y in the closed cuboid Υ : 0 , 2 × 0 , 1 × 0 , 1 . For this, we have to discuss the maximum values of Q c , x , y in the interior of Υ , of its 6 faces and on its 12 edges.
1. Interior points of cuboid Υ :
Let c , x , y 0 , 2 × 0 , 1 × 0 , 1 . Differentiating partially Q c , x , y with respect to y , we obtain
Q y = 4 c 2 ( 1 x 2 ) 2 y 2000 4 c 2 5 x 2 + 40 + 36 c 2 x 72000 c 2 + 90000 x 4 c 2 + c x 4 c 2 48000 + 10000 x + c 2 72000 x + 12800 .
Plugging Q y = 0 , we find
y = c 5 x 4 c 2 24 + 5 x + 4 c 2 45 x + 8 10 ( x 1 ) 5 4 c 2 8 x 36 c 2 = y 0 .
If y 0 is a critical point inside Υ , then y 0 0 , 1 , and this is only achievable if
4 c 3 45 x + 8 + 5 c x 4 c 2 24 + 5 x + 50 ( 1 x ) 4 c 2 8 x < 360 c 2 ( 1 x ) .
and
c 2 > 20 ( 8 x ) 76 5 x .
For the existence of critical points, we must now find solutions that meet both inequalities (53) and (54).
Let g ( x ) = 20 ( 8 x ) 76 5 x . As g ( x ) < 0 in 0 , 1 , it can be seen that g ( x ) is decreasing over 0 , 1 . Hence c 2 > 40 19 . It is not hard to verify that the inequality (53) cannot hold true in this situation for x [ 1 2 , 1 ) . Thus, there is no such critical point of Q c , x , y existing in 0 , 2 × 1 2 , 1 × 0 , 1 .
Suppose that there is a critical point ( c ˜ , x ˜ , y ˜ ) of Q existing in the interior of cuboid Υ . Clearly it must satisfy that x ˜ 1 2 . From the above discussion, it can also be known that c ˜ 2 300 147 and y ˜ ( 0 , 1 ) . Now we will prove that Q ( c ˜ , x ˜ , y ˜ ) < 1,280,000. For ( c , x , y ) 300 147 , 2 × ( 0 , 1 2 ) × 0 , 1 , by invoking x < 1 2 and 1 x 2 < 1 it is not hard to observe that
q 1 c , x 5012 c 6 + 4 c 2 [ 4 c 2 10800 c 2 ( 1 / 2 ) 2 + 2500 c 2 ( 1 / 2 ) 4 + 15000 c 2 ( 1 / 2 ) 3 + 36000 ( 1 / 2 ) 3 + 11600 c 4 ( 1 / 2 ) 2 + 72000 c 2 ( 1 / 2 ) 2 + 7548 c 4 ( 1 / 2 ) + 18000 c 4 ( 1 / 2 ) 3 ] = 5012 c 6 + 1 4 4 c 2 16765 c 4 + 129700 c 2 + 72000 : = ϕ 1 ( c ) , q 2 c , x 4 c 2 4 c 2 10000 c ( 1 / 2 ) 2 + 48000 c ( 1 / 2 ) + 12800 c 3 + 72000 c 3 ( 1 / 2 ) , = ( 4 c 2 ) 22300 c 3 + 106000 c : = ϕ 2 ( c ) , q 3 c , x ( 4 c 2 ) 4 c 2 10000 ( 1 / 2 ) 2 + 80000 + 72000 c 2 ( 1 / 2 ) , = ( 4 c 2 ) 46500 c 2 + 330000 : = ϕ 3 ( c ) , q 4 c , x ( 4 c 2 ) 72000 c 2 + 90000 ( 1 / 2 ) 4 c 2 = ( 4 c 2 ) ( 180000 + 27000 c 2 ) : = ϕ 4 ( c ) .
Therefore, we have
Q ( c , x , y ) ϕ 1 ( c ) + ϕ 4 ( c ) + ϕ 2 ( c ) y + ϕ 3 ( c ) ϕ 4 ( c ) y 2 : = Ξ 2 ( c , y ) .
Obviously, it can be seen that
Ξ 2 y = ϕ 2 ( c ) + 2 ϕ 3 ( c ) ϕ 4 ( c ) y
and
2 Ξ 2 y 2 = 2 ϕ 3 ( c ) ϕ 4 ( c ) = 2 ( 4 c 2 ) ( 73500 c 2 + 150000 ) .
Since ϕ 3 ( c ) ϕ 4 ( c ) 0 for c ( 300 147 , 2 ) , we obtain that 2 Ξ 2 y 2 0 for y ( 0 , 1 ) , and thus it follows that
Ξ 2 y Ξ 2 y | y = 1 = ( 4 c 2 ) ( 22300 c 3 147000 c 2 + 106000 c + 300000 ) 0 , c ( 300 147 , 2 ) .
Therefore, we have
Ξ 2 ( c , y ) Ξ 2 ( c , 1 ) = ϕ 1 ( c ) + ϕ 2 ( c ) + ϕ 3 ( c ) : = ι 2 ( c ) .
It is easy to calculate that ι 2 ( c ) attains its extremal value 1,126,373 at c 1.428571 . Thus, we have
Q ( c , x , y ) < 1280000 , ( c , x , y ) 300 147 , 2 × ( 0 , 1 2 ) × 0 , 1 .
Hence Q ( c ˜ , x ˜ , y ˜ ) < 1,280,000. This implies that Q is less than 1,280,000 at all the critical points in the interior of Υ . Therefore, Q has no optimal solution in the interior of Υ .
2. Interior of all the six faces of cuboid Υ :
(i) On the face c = 0 , Q ( c , x , y ) reduces to
h 1 ( x , y ) = Q ( 0 , x , y ) = 576000 x 3 + ( 1 x 2 ) y 2 160000 x 2 + 1440000 x + 1280000 + 1440000 x ) , x , y 0 , 1 .
Now h 1 ( x , y ) differentiating partially with respect to y , we obtain
h 1 y = 2 y ( 1 x 2 ) 160000 x 2 + 1440000 x + 1280000 , x , y 0 , 1 .
Thus h 1 ( x , y ) has no critical point in the interval 0 , 1 × 0 , 1 .
(ii) On the face c = 2 , Q ( c , x , y ) yields
Q 2 , x , y 320768 < 1280000 , x , y 0 , 1 .
(iii) On the face x = 0 , Q ( c , x , y ) becomes
h 2 ( c , y ) = Q c , 0 , y = 5012 c 6 + ( 4 c 2 ) 12800 c 3 y 72000 c 2 ( 1 y 2 ) + 80000 c 4 640000 c 2 + 1280000 y 2 .
Differentiating h 2 ( c , y ) partially with respect to y
h 2 y = ( 4 c 2 ) 12800 c 3 144000 c 2 y + 160000 c 4 1280000 c 2 + 2560000 y .
Taking h 2 y = 0 and solving, we obtain
y = 4 c 3 5 ( 19 c 2 40 ) = y 1 .
For the provided range of y , y 1 would be a member of 0 , 1 if c > c 0 with c 0 1.49903072734 . Also the derivative of h 2 ( c , y ) partially with respect to c is
h 2 c = 30072 c 5 25600 c 4 y + 4 c 2 38400 c 2 y + 144000 c 1 y 2 144000 c 3 1 y 2 c 1280000 320000 c 2 y 2 .
By substituting the value of y in (55), plugging h 2 c = 0 and simplifying, we obtain
h 2 c = 72 c 142671 c 8 2034480 c 6 + 9568000 c 4 18560000 c 2 + 12800000 = 0 .
A calculation gives the solution of (56) in the interval 0 , 1 that is c 1.360226043 . Thus h 2 ( c , y ) has no optimal solution in the interval 0 , 2 × 0 , 1 .
(iv) On the face x = 1 , Q ( c , x , y ) takes the form
h 3 ( c , y ) = Q ( c , 1 , y ) = 5012 c 6 + 4 c 2 4 c 2 28300 c 2 + 36000 + 37145 c 4 + 72000 c 2 .
Then
h 3 c = 22998 c 5 455280 c 3 + 905600 c .
Taking h 3 c = 0 and solving, we obtain c 1.34963183573 . Therefore max h 3 ( c , y ) = 999,971.4325. Thus we have
Q ( c , 1 , y ) max h 3 ( c , y ) = 999971.4325 < 1280000 , ( c , y ) ( 0 , 2 ) × ( 0 , 1 ) .
(v) On the face y = 0 , Q ( c , x , y ) yields
h 4 ( c , x ) = Q ( c , x , 0 ) = 2500 c 6 x 4 3000 c 6 x 3 800 c 6 x 2 20000 c 4 x 4 7545 c 6 x 102000 c 4 x 3 + 5012 c 6 40000 c 4 x 2 + 40000 c 2 x 4 + 120180 c 4 x + 672000 c 2 x 3 72000 c 4 + 172800 c 2 x 2 720000 c 2 x 864000 x 3 + 288000 c 2 + 1440000 x .
Now, differentiating partially with respect to c , then with respect to x and simplifying, we have
h 4 c = 15000 c 5 x 4 18000 c 5 x 3 4800 c 5 x 2 80000 c 3 x 4 45270 c 5 x 408000 c 3 x 3 + 30072 c 5 160000 c 3 x 2 + 80000 c x 4 + 480720 c 3 x + 1344000 c x 3 288000 c 3 + 345600 c x 2 1440000 c x + 576000 c .
and
h 4 x = 10000 c 6 x 3 9000 c 6 x 2 1600 c 6 x 80000 c 4 x 3 7545 c 6 306000 c 4 x 2 80000 c 4 x + 160000 c 2 x 3 + 120180 c 4 + 2016000 c 2 x 2 + 345600 c 2 x 720000 c 2 2592000 x 2 + 1440000 .
Applying Newton’s methods to the system of nonlinear Equations (57) and (58) in Maple Software, we found that the given system of equations has no solution in 0 , 2 × 0 , 1 .
(vi) On the face y = 1 , Q ( c , x , y ) reduces to
h 5 ( c , x ) = Q ( c , x , 1 ) = 2500 c 6 x 4 3000 c 6 x 3 10000 c 5 x 4 800 c 6 x 2 + 24000 c 5 x 3 30000 c 4 x 4 7545 c 6 x + 22800 c 5 x 2 + 60000 c 4 x 3 + 80000 c 3 x 4 + 5012 c 6 24000 c 5 x 182000 c 4 x 2 + 96000 c 3 x 3 + 120000 c 2 x 4 12800 c 5 41820 c 4 x 131200 c 3 x 2 336000 c 2 x 3 160000 c x 4 + 80000 c 4 96000 c 3 x + 1020800 c 2 x 2 768000 c x 3 160000 x 4 + 51200 c 3 + 288000 c 2 x + 160000 c x 2 + 576000 x 3 640000 c 2 + 768000 c x 1120000 x 2 + 1280000 .
Partial derivative of h 5 c , x with respect to c and then with respect to x , we have
h 5 c = 15000 c 5 x 4 18000 c 5 x 3 50000 c 4 x 4 4800 c 5 x 2 + 120000 c 4 x 3 120000 c 3 x 4 45270 c 5 x + 114000 c 4 x 2 + 240000 c 3 x 3 + 240000 c 2 x 4 + 30072 c 5 120000 c 4 x 728000 c 3 x 2 + 288000 c 2 x 3 + 240000 c x 4 64000 c 4 167280 c 3 x 393600 c 2 x 2 672000 c x 3 160000 x 4 + 320000 c 3 288000 c 2 x + 2041600 c x 2 768000 x 3 + 153600 c 2 + 576000 c x + 160000 x 2 1280000 c + 768000 x .
and
h 5 x = 10000 c 6 x 3 9000 c 6 x 2 40000 c 5 x 3 1600 c 6 x + 72000 c 5 x 2 120000 c 4 x 3 7545 c 6 + 45600 c 5 x + 180000 c 4 x 2 + 320000 c 3 x 3 24000 c 5 364000 c 4 x + 288000 c 3 x 2 + 480000 c 2 x 3 41820 c 4 262400 c 3 x 1008000 c 2 x 2 640000 c x 3 96000 c 3 + 2041600 c 2 x 2304000 c x 2 640000 x 3 + 288000 c 2 + 320000 c x + 1728000 x 2 + 768000 c 2240000 x .
As mentioned in the above case, we conclude that for the face y = 0 , the system of Equations (59) and (60) has no solution in 0 , 2 × 0 , 1 . Thus Q ( c , x , 1 ) has no optimal solution in 0 , 2 × 0 , 1 .
3. On the Edges of Cuboid Υ :
(i) On the edge x = 0 and y = 0 , then Q c , x , y becomes
Q c , 0 , 0 = 5012 c 6 72000 4 c 2 c 2 = m 1 c .
It is clear that
m 1 c = 30072 c 5 288000 c 3 + 57600 c .
Putting m 1 c = 0 gives the critical point c 0 1.686823152 at which Q c , 0 , 0 = m 1 c obtains its maximum. Therefore max m 1 c = m 1 c 0 = 352,004.0398. Hence
Q ( c , 0 , 0 ) max m 1 c = m 1 c 0 = 352004.0398 < 1280000 , c [ 0 , 2 ] .
(ii) On the edge x = 0 and y = 1 , then Q ( c , x , y ) takes the form
Q ( c , 0 , 1 ) = 5012 c 6 12800 c 5 + 80000 c 4 + 51200 c 3 640000 c 2 + 1280000 = m 2 ( c ) .
Then
m 2 c = 30072 c 5 64000 c 4 + 320000 c 3 + 153600 c 2 1280000 c .
As m 2 c < 0 in 0 , 2 , it is noted that m 2 c is decreasing over 0 , 2 . Thus m 2 c has its maxima at c = 0 . Therefore max m 2 c = m 2 0 = 1,280,000. Hence
Q ( c , 0 , 1 ) max m 2 c = m 2 0 = 1280000 c [ 0 , 1 ] .
(iii) On the edge c = 0 and x = 0 , then Q c , x , y yields
Q 0 , 0 , y = 1280000 y 2 1280000 , y [ 0 , 1 ] .
(iv) For Q c , 1 , 0 and Q c , 1 , 1 , as Q c , 1 , y is free of y , it follows that
Q c , 1 , 0 = Q c , 1 , 1 = 3833 c 6 113820 c 4 + 452800 c 2 + 576000 = m 4 c .
Then
m 4 c = 22998 c 5 455280 c 3 + 905600 c .
Putting m 4 c = 0 , we obtain the critical point c 0 1.34963183 at which Q c , 1 , 0 = Q c , 1 , 1 = m 4 c maximizes, therefore max m 4 c = m 4 c 0 = 999,971.435. Thus
Q c , 1 , 0 = Q c , 1 , 1 max m 4 c = m 4 c 0 = 999971.435 < 12080000 , c [ 0 , 2 ] .
(v) On the edge c = 0 and x = 1 , then Q ( c , x , y ) reduces to
Q ( 0 , 1 , y ) 576000 < 1280000 , y [ 0 , 1 ] .
(vi) On the edge c = 2 , then Q ( c , x , y ) becomes
Q 2 , x , y 320768 < 1280000 , ( x , y ) [ 0 , 1 ] × [ 0 , 1 ] .
(vii) On the edge c = 0 and y = 0 , then Q ( c , x , y ) yields
Q 0 , x , 0 = 864000 x 3 + 1440000 x = m 5 x .
Then
m 5 x = 2592000 x 2 + 1440000 .
The equation m 5 x = 0 gives the critical point x 0 0.74535599 at which m 5 x obtains its maximum. Therefore max m 5 x = m 5 x 0 = 715,541.7526. Hence
Q 0 , x , 0 max m 5 x = m 5 x 0 = 715541.7526 < 1280000 , x [ 0 , 1 ] .
(viii) On the edge c = 0 and y = 1 , then Q ( c , x , y ) takes the form
Q 0 , x , 1 = 160000 x 4 + 576000 x 3 1120000 x 2 + 1280000 = m 6 x .
Then
m 6 x = 640000 x 3 + 1728000 x 2 2240000 x .
Noting that m 6 x < 0 in 0 , 1 , m 6 x is decreasing over 0 , 1 . Thus m 6 x has its maxima at x = 0 . Therefore max m 6 x = m 6 0 = 1,280,000. Hence
Q 0 , x , 1 max m 6 x = m 6 0 = 1280000 , x [ 0 , 1 ] .
From the above cases, we conclude that
Q c , x , y 1280000 on 0 , 2 × 0 , 1 × 0.1 .
Using (52) we see that
Δ 3 , 1 f 1 18000000 Q c , x , y 16 225 .
Equality is determined by the extremal function given by
z exp 0 z 4 5 t 2 + 1 5 t 11 d t = z + 4 15 z 4 + .
Theorem 9.
Let f belong to S 3 l * with the form (1). Then
a 5 a 3 2 1 5 .
This inequality is the best one.
Proof. 
From (48) and (50), we obtain
a 5 a 3 2 = 13 8000 c 1 4 7 100 c 2 2 7 150 c 1 c 3 + 77 3000 c 1 2 c 2 + 1 10 c 4 .
After simplification, we have
a 5 a 3 2 = 1 10 13 800 c 1 4 + 7 10 c 2 2 + 2 7 30 c 1 c 3 3 2 77 450 c 1 2 c 2 c 4 .
Let γ = 13 800 , a = 7 10 , α = 7 30 and β = 77 450 . It can be easily verified that 0 < α < 1 , 0 < a < 1 and
8 a 1 a α β 2 γ 2 + α a + α β 2 + α 1 α β 2 a α 2 4 a α 2 1 α 2 1 a .
An application of Lemma 3 leads to
a 5 a 3 2 1 5 .
The equality is obtained by
z exp 0 z 4 5 t 3 + 1 5 t 15 d t = z + 1 5 z 5 + .
Theorem 10.
If f belongs to S 3 l * and has the expansion (1), then
a 3 a 5 a 4 2 16 225 .
This result is sharp.
Proof. 
Putting (48)–(50) with c 1 = c , we obtain
a 3 a 5 a 4 2 = 1 18000000 1017 c 6 2400 c 3 c 3 + 23200 c 2 c 2 2 36000 c 2 c 4 + 8610 c 4 c 2 + 88000 c c 2 c 3 108000 c 2 3 + 360000 c 2 c 4 320000 c 3 2 .
Let t = 4 c 2 in (10), (11) and (12). Now using Lemma 1, we obtain
2400 c 3 c 3 = 600 c 6 + 1200 c 4 t x 600 c 4 t x 2 + 1200 c 3 t 1 x 2 σ , 23200 c 2 c 2 2 = 5800 c 6 + 11600 c 4 t x + 5800 c 2 t 2 x 2 , 36000 c 2 c 4 = 4500 c 6 + 4500 c 4 t x 3 13500 c 4 t x 2 + 13500 c 4 t x + 18000 t c 2 x 2 18000 c 3 t x 1 x 2 σ 18000 c 2 t x ¯ 1 x 2 σ 2 + 18000 c 2 t 1 x 2 1 σ 2 ρ + 18000 c 3 t 1 x 2 σ , 88000 c c 2 c 3 = 11000 c 6 + 33000 c 4 t x 11000 c 4 t x 2 + 22000 c 3 t 1 x 2 σ + 22000 c 2 t 2 x 2 11000 c 2 t 2 x 3 + 22000 c x t 2 1 x 2 σ , 8610 c 4 c 2 = 4305 c 6 + 4305 c 4 x t , 108000 c 2 3 = 90000 c 6 + 40500 c 4 x t + 40500 c 2 x 2 t 2 + 13500 x 3 t 3 , 360000 c 2 c 4 = 22500 c 6 + 22500 c 4 x 3 t 67500 c 4 x 2 t + 90000 c 4 x t + 90000 c 2 x 2 t 90000 c 3 x t 1 x 2 σ 90000 c 2 t x ¯ 1 x 2 σ 2 + 90000 c 2 t 1 x 2 1 σ 2 ρ + 90000 c 3 t 1 x 2 σ + 22500 c 2 x 4 t 2 67500 c 2 x 3 t 2 + 67500 c 2 x 2 t 2 + 90000 x 3 t 2 10000 c x 2 t 2 1 x 2 σ 90000 x t 2 x ¯ 1 x 2 σ 2 + 90000 x t 2 1 x 2 1 σ 2 ρ + 90000 c x t 2 1 x 2 σ , 320000 c 3 2 = 20000 c 6 + 80000 c 4 x t 40000 c 4 x 2 t + 80000 c 3 t 1 x 2 σ + 80000 c 2 x 2 t 2 80000 c 2 x 3 t 2 + 160000 c x t 2 1 x 2 σ + 20000 c 2 x 4 t 2 80000 c x 2 t 2 1 x 2 σ + 80000 t 2 1 x 2 2 σ 2 .
Putting the above expressions in (62), we obtain
a 3 a 5 a 4 2 = 1 18000000 80000 t 2 1 x 2 2 σ 2 24400 c 4 x 2 t + 2500 c 2 x 4 t 2 + 1500 c 2 x 3 t 2 25200 c 2 x 2 t 2 + 3705 c 4 x t + 72000 c 2 x 2 t + 18000 c 4 x 3 t + 90000 x 3 t 2 13500 x 3 t 3 72000 c 3 x t 1 x 2 σ 72000 c 2 t x ¯ 1 x 2 σ 2 + 72000 c 2 t 1 x 2 1 σ 2 ρ 10000 c x 2 t 2 1 x 2 σ 90000 x t 2 x ¯ 1 x 2 σ 2 + 90000 x t 2 1 x 2 1 σ 2 ρ 48000 c x t 2 1 x 2 σ + 12800 c 3 t 1 x 2 σ + 3988 c 6 .
In view of t = 4 c 2 , we obtain that
a 3 a 5 a 4 2 = 1 18000000 l 1 c , x + l 2 c , x σ + l 3 c , x σ 2 + ς c , x , σ ρ ,
where
l 1 c , x = 3988 c 6 + 4 c 2 4 c 2 2500 c 2 x 4 + 15000 c 2 x 3 + 36000 x 3 25200 c 2 x 2 24400 c 4 x 2 + 3705 c 4 x + 72000 c 2 x 2 + 18000 c 4 x 3 , l 2 c , x = 4 c 2 1 x 2 4 c 2 48000 c x 10000 c x 2 72000 c 3 x + 12800 c 3 , l 3 c , x = 4 c 2 1 x 2 4 c 2 80000 10000 x 2 72000 c 2 x ¯ , ς c , x , σ = 4 c 2 1 x 2 1 σ 2 90000 x 4 c 2 + 72000 c 2 .
Utilizing x = x , σ = y and also observing the fact ρ 1 , we obtain
a 3 a 5 a 4 2 1 18000000 l 1 c , x + l 2 c , x y + l 3 c , x y 2 + ς c , x , σ . 1 18000000 S c , x , y ,
where
S c , x , y = s 1 c , x + s 2 c , x y + s 3 c , x y 2 + s 4 c , x 1 y 2 ,
with
s 1 c , x = 3988 c 6 + 4 c 2 4 c 2 2500 c 2 x 4 + 15000 c 2 x 3 + 36000 x 3 + 25200 c 2 x 2 + 24400 c 4 x 2 + 3705 c 4 x + 72000 c 2 x 2 + 18000 c 4 x 3 , s 2 c , x = 4 c 2 1 x 2 4 c 2 48000 c x + 10000 c x 2 + 72000 c 3 x + 12800 c 3 , s 3 c , x = 4 c 2 1 x 2 4 c 2 80000 + 10000 x 2 + 72000 c 2 x , s 4 c , x = 4 c 2 1 x 2 90000 x 4 c 2 + 72000 c 2 .
Now we have to maximize S c , x , y in the closed cuboid Υ : 0 , 2 × 0 , 1 × 0 , 1 . For this, we have to discuss the maximum values of S c , x , y in the interior of Υ , in the interior of its 6 faces and on its 12 edges.
In the following, we will prove that the maximum value of S c , x , y is 1,280,000 in the closed cuboid Υ . To prove this, we first discuss the maximum values of S c , x , y in the interior of 6 faces and 12 edges of Υ .
It is not hard to note that s 2 ( c , x ) = q 2 ( c , x ) , s 3 ( c , x ) = q 3 ( c , x ) and s 4 ( c , x ) = q 4 ( c , x ) for all ( c , x ) [ 0 , 2 ] × [ 0 , 1 ] . A simple calculation shows that
s 1 ( c , x ) q 1 ( c , x ) = 1024 c 6 + ( 4 c 2 ) 14400 ( 4 c 2 ) c 2 x 2 + 12800 c 4 x 2 3840 c 4 x .
It is clear that
ϖ ( c , 0 ) = 1024 c 6 0 , c [ 0 , 2 ]
and thus
s 1 ( c , 0 ) q 1 ( c , 0 ) .
For ( c , y ) [ 0 , 2 ] × [ 0 , 1 ] , it follows that
S ( c , 0 , y ) = s 1 ( c , 0 ) + s 2 ( c , 0 ) y + s 3 ( c , 0 ) y 2 + s 4 ( c , 0 ) ( 1 y 2 ) Q ( c , 0 , y ) 1280000 .
For x = 1 , it is noted that
s 2 ( c , 1 ) = s 3 ( c , 1 ) = s 4 ( c , 1 ) 0 , c [ 0 , 2 ] .
Therefore, we have
S ( c , 1 , y ) = s 1 ( c , 1 ) = L 1 ( c ) = 3988 c 6 + 4 c 2 4 c 2 42700 c 2 + 36000 + 46105 c 4 + 72000 c 2 .
Then
L 1 c = 3498 c 5 772720 c 3 + 1366400 c .
Putting L 1 c = 0 and solving, we obtain c 1.335172357 . Hence, we obtain that
S ( c , 1 , y ) max L 1 ( c ) = 1183313.834 < 1280000 , ( c , y ) [ 0 , 2 ] × [ 0 , 1 ] .
Now we only need to prove that S c , x , y does not exceed 1,280,000 in the inside of Υ . By observing that
S ( c , x , y ) y = s 2 ( c , x ) + 2 s 3 ( c , x ) s 4 ( c , x ) y = Q ( c , x , y ) y ,
we easily find that there are no critical points of S in 0 , 2 × [ 1 2 , 1 ) × 0 , 1 from the proof of Theorem 8.
Suppose that there is a critical point ( c ˜ , x ˜ , y ˜ ) of S existing in the interior of cuboid Υ . It is clear that x ˜ 1 2 . Moreover, it can be seen that c ˜ 2 300 147 and y ˜ ( 0 , 1 ) . For ( c , x , y ) 300 147 , 2 × ( 0 , 1 2 ) × 0 , 1 , by invoking x < 1 2 and 1 x 2 < 1 it is not hard to observe that
s 1 c , x 3988 c 6 + 4 c 2 4 c 2 2500 c 2 ( 1 / 2 ) 4 + 15000 c 2 ( 1 / 2 ) 3 + 36000 ( 1 / 2 ) 3 + 25200 c 2 ( 1 / 2 ) 2 + 24400 c 4 ( 1 / 2 ) 2 + 3705 c 4 ( 1 / 2 ) + 72000 c 2 ( 1 / 2 ) 2 + 18000 c 4 ( 1 / 2 ) 3 , = 3988 c 6 + 1 4 4 c 2 7485 c 4 + 187300 c 2 + 72000 : = ϕ ^ 1 ( c ) ,
and
s 2 c , x ϕ 2 ( c ) , s 3 c , x ϕ 3 ( c ) , s 4 c , x ϕ 4 ( c ) .
Therefore, we have
S ( c , x , y ) ϕ ^ 1 ( c ) + ϕ 4 ( c ) + ϕ 2 ( c ) y + ϕ 3 ( c ) ϕ 4 ( c ) y 2 : = Ξ 3 ( c , y ) .
It is easily to be seen that
Ξ 3 y = ϕ 2 ( c ) + 2 ϕ 3 ( c ) ϕ 4 ( c ) y = Ξ 2 y 0 , y ( 0 , 1 ) .
Thus, we obtain
Ξ 3 ( c , y ) Ξ 3 ( c , 1 ) = ϕ ^ 1 ( c ) + ϕ 2 ( c ) + ϕ 3 ( c ) : = ι 3 ( c ) , c ( 300 147 , 2 ) .
It is easy to calculate that ι 3 ( c ) attains its extremal value 1,156,314 at c 1.428571 . Thus, we have
S ( c , x , y ) < 1280000 , ( c , x , y ) 300 147 , 2 × ( 0 , 1 2 ) × 0 , 1 .
Hence S ( c ˜ , x ˜ , y ˜ ) < 1,280,000. This implies that S is less than 1,280,000 at all the critical points in the interior of Υ . Therefore, S has no optimal solution in the interior of Υ .
From the above discussion, we conclude that
S c , x , y 1280000 on 0 , 2 × 0 , 1 × 0 , 1 .
In virtue of (63), we can write
a 3 a 5 a 4 2 1 18000000 S c , x , y 16 225 .
Equality is achieved by an extremal function
z exp 0 z 4 5 t 2 + 1 5 t 11 d t = z + 4 15 z 4 + .
Example 1.
From (6), one can easily deduce the following functions
f 0 z = z exp 16 z 3 + z 12 60 = z + 4 15 z 4 + 8 225 z 7 +
and
f 1 z = z exp 16 z 4 + z 16 80 = z + 1 5 z 5 + 1 50 z 9 + .
Both these functions belong to the class S 3 l * . Comparing coefficients of like powers of (64) and (1), we have
a 2 = a 3 = a 5 = 0 , a 4 = 4 15 .
Then, it follows that
a 3 a 5 a 4 2 = 16 225
and
Δ 3 , 1 f = 16 225 .
Similarly, using (65), we easily obtain that
a 3 2 a 5 = 1 5 .

7. Concluding Remarks and Observations

Due to the great importance of coefficients in the field of function theory, Pommerenke [16,17] proposed the topic of studying the Hankel determinant with entry of coefficients. In the current article, we considered two subfamilies of starlike and bounded turning functions, denoted by S 3 l * and BT 3 l , respectively. These families of univalent functions were connected by a three-leaf-shaped domain with the quantities z f z / f z and f z being subordinated to 1 + 4 5 z + 1 5 z 4 . For functions belonging to these classes, we investigated various intriguing problems containing initial coefficients. Among these problems, the sharp bounds of the Hankel determinant are extremely difficult to investigate, and we determined the sharp estimate of this determinant for functions belonging to both classes.
In proving our main results, finding the upper bounds of the Hankel determinant for functions belonging to S 3 l * or BT 3 l was transformed into a maximum value problem of a function with three variables in the domain of a cuboid. Based on an analysis of all the possibilities that the maxima might occur, we were able to determine the sharp upper bounds for these families. Numerical analysis was applied since some of the computations are quite complicated. Clearly, this approach may be used to calculate bounds for functions belonging to various subfamilies of univalent functions. However, in most cases, it is not so lucky to obtain such sharp results.
Furthermore, the application of the familiar quantum or fundamental (or q-) calculus, as (for example) in similar recent publications [51,52,53,54], might be a promising route for additional research based on our current findings.

Author Contributions

This manuscript’s work has been contributed equally by all writers. All authors have read and agreed to the published version of the manuscript.

Funding

This research work was funded by Institutional Fund Projects under grant no. (IFPIP: 369-830-1442). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors state that they have no conflict of interest.

References

  1. Köebe, P. Über die Uniformisierrung der algebraischen Kurven, durch automorphe Funktionen mit imaginärer Substitutionsgruppe. Nachr. Akad. Wiss. Göttingen Math. Phys. 1909, 1909, 68–76. [Google Scholar]
  2. Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
  3. De-Brages, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
  4. Aleman, A.; Constantin, A. Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 2012, 204, 479–513. [Google Scholar] [CrossRef]
  5. Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; International Press Inc.: Somerville, MA, USA, 1992. [Google Scholar]
  6. Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Coefficient bounds for p-valent functions. Appl. Math. Comput. 2007, 187, 35–46. [Google Scholar] [CrossRef]
  7. Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Naukowe Politechniki Rzeszowskiej Matematyka Fizyka 1996, 19, 101–105. [Google Scholar]
  8. Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
  9. Brannan, D.A.; Kirwan, W.E. On some classes of bounded univalent functions. J. Lond. Math. Soc. 1969, 2, 431–443. [Google Scholar] [CrossRef]
  10. Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afrika Matematika 2016, 27, 923–939. [Google Scholar] [CrossRef]
  11. Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
  12. Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
  13. Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
  14. Ullah, K.; Zainab, S.; Arif, M.; Darus, M.; Shutaywi, M. Radius problems for starlike functions associated with the tan hyperbolic function. J. Funct. Spaces 2021, 2021, 9967640. [Google Scholar] [CrossRef]
  15. Ullah, K.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. A study of sharp coefficient bounds for a new subfamily of starlike functions. J. Inequal. Appl. 2021, 1, 194. [Google Scholar] [CrossRef]
  16. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
  17. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
  18. Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
  19. Obradović, M.; Tuneski, N. Hankel determinants of second and third order for the class S of univalent functions. Math. Slovaca 2021, 71, 649–654. [Google Scholar] [CrossRef]
  20. Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
  21. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
  22. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. 2017, 11, 429–439. [Google Scholar] [CrossRef]
  23. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2018, 41, 523–535. [Google Scholar] [CrossRef]
  24. Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef] [Green Version]
  25. Ebadian, A.; Bulboacă, T.; Cho, N.E.; Adegani, E.A. Coefficient bounds and differential subordinations for analytic functions associated with starlike functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 128. [Google Scholar] [CrossRef]
  26. Altınkaya, Ş.; Yalçın, S. Upper bound of second Hankel determinant for bi-Bazilevic functions. Mediterr. J. Math. 2016, 13, 4081–4090. [Google Scholar] [CrossRef]
  27. Çaglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
  28. Güney, H.Ö.; Murugusundaramoorthy, G.; Srivastava, H.M. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019, 74, 93. [Google Scholar] [CrossRef]
  29. Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
  30. Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
  31. Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
  32. Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef] [Green Version]
  33. Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 49. [Google Scholar] [CrossRef]
  34. Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
  35. Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
  36. Shi, L.; Ali, I.; Arif, M.; Cho, N.E.; Hussain, S.; Khan, H. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain. Mathematics 2019, 7, 418. [Google Scholar] [CrossRef] [Green Version]
  37. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
  38. Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1 2 . Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
  39. Barukab, O.; Arif, M.; Abbas, M.; Khan, S.K. Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain. J. Funct. Spaces 2021, 2021, 5535629. [Google Scholar] [CrossRef]
  40. Wang, Z.-G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants for a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
  41. Srivastava, H.M.; Kaur, G.; Singh, G. Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains. J. Nonlinear Convex Anal. 2021, 22, 511–526. [Google Scholar]
  42. Gandhi, S. Radius estimates for three leaf function and convex combination of starlike functions. In Proceedings of the International Conference on Recent Advances in Pure and Applied Mathematics, New Delhi, India, 23–25 December 2018; Springer: Singapore, 2018; pp. 173–184. [Google Scholar]
  43. Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain coefficient estimate problems for three-leaf-type starlike functions. Fractal Fract 2021, 5, 137. [Google Scholar] [CrossRef]
  44. Pommerenke, C. Univalent Function; Vanderhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
  45. Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
  46. Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
  47. Keough, F.; Merkes, E. A coefficient inequality for certain subclasses of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
  48. Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 505–510. [Google Scholar] [CrossRef]
  49. Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlikness and typically real functions. Math. Z. 1986, 191, 467–474. [Google Scholar] [CrossRef]
  50. Bansal, D.; Sokół, J. Zalcman conjecture for some subclass of analytic functions. J. Fract. Calculus Appl. 2017, 8, 1–5. [Google Scholar]
  51. Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
  52. Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Kiran, S. An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers. Symmetry 2020, 12, 1043. [Google Scholar] [CrossRef]
  53. Srivastava, H.M.; Altınkaya, S.; Yalcın, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
  54. Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Arif, M.; Barukab, O.M.; Afzal Khan, S.; Abbas, M. The Sharp Bounds of Hankel Determinants for the Families of Three-Leaf-Type Analytic Functions. Fractal Fract. 2022, 6, 291. https://0-doi-org.brum.beds.ac.uk/10.3390/fractalfract6060291

AMA Style

Arif M, Barukab OM, Afzal Khan S, Abbas M. The Sharp Bounds of Hankel Determinants for the Families of Three-Leaf-Type Analytic Functions. Fractal and Fractional. 2022; 6(6):291. https://0-doi-org.brum.beds.ac.uk/10.3390/fractalfract6060291

Chicago/Turabian Style

Arif, Muhammad, Omar Mohammed Barukab, Sher Afzal Khan, and Muhammad Abbas. 2022. "The Sharp Bounds of Hankel Determinants for the Families of Three-Leaf-Type Analytic Functions" Fractal and Fractional 6, no. 6: 291. https://0-doi-org.brum.beds.ac.uk/10.3390/fractalfract6060291

Article Metrics

Back to TopTop