Previous Issue
Volume 7, June
 
 

J, Volume 7, Issue 3 (September 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 7775 KiB  
Article
Enhancing Obscured Regions in Thermal Imaging: A Novel GAN-Based Approach for Efficient Occlusion Inpainting
by Mohammed Abuhussein, Iyad Almadani, Aaron L. Robinson and Mohammed Younis
J 2024, 7(3), 218-235; https://0-doi-org.brum.beds.ac.uk/10.3390/j7030013 (registering DOI) - 27 Jun 2024
Viewed by 73
Abstract
This research paper presents a novel approach for occlusion inpainting in thermal images to efficiently segment and enhance obscured regions within these images. The increasing reliance on thermal imaging in fields like surveillance, security, and defense necessitates the accurate detection of obscurants such [...] Read more.
This research paper presents a novel approach for occlusion inpainting in thermal images to efficiently segment and enhance obscured regions within these images. The increasing reliance on thermal imaging in fields like surveillance, security, and defense necessitates the accurate detection of obscurants such as smoke and fog. Traditional methods often struggle with these complexities, leading to the need for more advanced solutions. Our proposed methodology uses a Generative Adversarial Network (GAN) to fill occluded areas in thermal images. This process begins with an obscured region segmentation, followed by a GAN-based pixel replacement in these areas. The methodology encompasses building, training, evaluating, and optimizing the model to ensure swift real-time performance. One of the key challenges in thermal imaging is identifying effective strategies to mitigate critical information loss due to atmospheric interference. Our approach addresses this by employing sophisticated deep-learning techniques. These techniques segment, classify and inpaint these obscured regions in a patch-wise manner, allowing for more precise and accurate image restoration. We propose utilizing architectures similar to Pix2Pix and UNet networks for generative and segmentation tasks. These networks are known for their effectiveness in image-to-image translation and segmentation tasks. Our method enhances the segmentation and inpainting process by leveraging their architectural similarities. To validate our approach, we provide a quantitative analysis and performance comparison. We include a quantitative comparison between (Pix2Pix and UNet) and our combined architecture. The comparison focuses on how well each model performs in terms of accuracy and speed, highlighting the advantages of our integrated approach. This research contributes to advancing thermal imaging techniques, offering a more robust solution for dealing with obscured regions. The integration of advanced deep learning models holds the potential to significantly improve image analysis in critical applications like surveillance and security. Full article
(This article belongs to the Section Computer Science & Mathematics)
Show Figures

Figure 1

14 pages, 1317 KiB  
Review
Challenges and Advancements in All-Solid-State Battery Technology for Electric Vehicles
by Rajesh Shah, Vikram Mittal and Angelina Mae Precilla
J 2024, 7(3), 204-217; https://0-doi-org.brum.beds.ac.uk/10.3390/j7030012 (registering DOI) - 27 Jun 2024
Viewed by 260
Abstract
Recent advances in all-solid-state battery (ASSB) research have significantly addressed key obstacles hindering their widespread adoption in electric vehicles (EVs). This review highlights major innovations, including ultrathin electrolyte membranes, nanomaterials for enhanced conductivity, and novel manufacturing techniques, all contributing to improved ASSB performance, [...] Read more.
Recent advances in all-solid-state battery (ASSB) research have significantly addressed key obstacles hindering their widespread adoption in electric vehicles (EVs). This review highlights major innovations, including ultrathin electrolyte membranes, nanomaterials for enhanced conductivity, and novel manufacturing techniques, all contributing to improved ASSB performance, safety, and scalability. These developments effectively tackle the limitations of traditional lithium-ion batteries, such as safety issues, limited energy density, and a reduced cycle life. Noteworthy achievements include freestanding ceramic electrolyte films like the 25 μm thick Li0.34La0.56TiO3 film, which enhance energy density and power output, and solid polymer electrolytes like the polyvinyl nitrile boroxane electrolyte, which offer improved mechanical robustness and electrochemical performance. Hybrid solid electrolytes combine the best properties of inorganic and polymer materials, providing superior ionic conductivity and mechanical flexibility. The scalable production of ultrathin composite polymer electrolytes shows promise for high-performance, cost-effective ASSBs. However, challenges remain in optimizing manufacturing processes, enhancing electrode-electrolyte interfaces, exploring sustainable materials, and standardizing testing protocols. Continued collaboration among academia, industry, and government is essential for driving innovation, accelerating commercialization, and achieving a sustainable energy future, fully realizing the transformative potential of ASSB technology for EVs and beyond. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop