Photochem, Volume 1, Issue 1 (March 2021) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessFeature PaperArticle
Infrared Spectrum and UV-Induced Photochemistry of Matrix-Isolated Phenyl 1-Hydroxy-2-Naphthoate
Photochem 2021, 1(1), 10-25; https://0-doi-org.brum.beds.ac.uk/10.3390/photochem1010002 - 26 Feb 2021
Abstract
The conformational stability, infrared spectrum, and photochemistry of phenyl 1-hydroxy-2-naphthoate (PHN) were studied by matrix isolation infrared spectroscopy and theoretical computations performed at the DFT(B3LYP)/6-311++G(d,p) level of theory. The main intramolecular interactions determining the relative stability of seven conformers of the molecule were [...] Read more.
The conformational stability, infrared spectrum, and photochemistry of phenyl 1-hydroxy-2-naphthoate (PHN) were studied by matrix isolation infrared spectroscopy and theoretical computations performed at the DFT(B3LYP)/6-311++G(d,p) level of theory. The main intramolecular interactions determining the relative stability of seven conformers of the molecule were evaluated. According to the calculations, the twofold degenerated O–H···O=C intramolecularly hydrogen-bonded conformer with the phenyl ring ester group ±68.8° out of the plane of the substituted naphtyl moiety is the most stable conformer of the molecule. This conformer is considerably more stable than the second most stable form (by ~15 kJ mol−1), in which a weaker O–H···O–C intramolecular hydrogen bond exists. The compound was isolated in cryogenic argon and N2 matrices, and the conformational composition in the matrices was investigated by infrared spectroscopy. In agreement with the predicted relative energies of the conformers, the analysis of the spectra indicated that only the most stable conformer of PHN was present in the as-deposited matrices. The matrices were then irradiated at various wavelengths by narrowband tunable UV light within the 331.7–235.0 nm wavelength range. This resulted in the photodecarbonylation of PHN, yielding 2-phenoxynaphthalen-1-ol, together with CO. The extension of the decarbonylation was found to depend on the excitation wavelength. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry)
Show Figures

Graphical abstract

Open AccessArticle
V-Substituted ZnIn2S4: A (Visible+NIR) Light-Active Photocatalyst
Photochem 2021, 1(1), 1-9; https://0-doi-org.brum.beds.ac.uk/10.3390/photochem1010001 - 07 Jan 2021
Viewed by 239
Abstract
ZnIn2S4 is known to be a visible light-active photocatalyst. In this work, it is shown that by substituting part of the In atoms with vanadium, the visible light range of photocatalytic activity of such material can be extended, using the [...] Read more.
ZnIn2S4 is known to be a visible light-active photocatalyst. In this work, it is shown that by substituting part of the In atoms with vanadium, the visible light range of photocatalytic activity of such material can be extended, using the so-called in-gap band scheme that has been shown to enhance photovoltaic characteristics. Characterization of this material using several techniques, complemented by DFT calculations, will support this statement. While here only the degradation of aqueous HCOOH in well-aerated conditions is discussed, the same material may be used, with an adequate sacrificial reagent, for photocatalytic H2 generation. Full article
Show Figures

Figure 1

Back to TopTop