Next Issue
Volume 1, December
Previous Issue
Volume 1, June
 
 

Geomatics, Volume 1, Issue 3 (September 2021) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 4083 KiB  
Article
Cloud Optimized Raster Encoding (CORE): A Web-Native Streamable Format for Large Environmental Time Series
by Ionuț Iosifescu Enescu, Lucia de Espona, Dominik Haas-Artho, Rebecca Kurup Buchholz, David Hanimann, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Christian Ginzler, Niklaus E. Zimmermann and Loïc Pellissier
Geomatics 2021, 1(3), 369-382; https://0-doi-org.brum.beds.ac.uk/10.3390/geomatics1030021 - 18 Aug 2021
Cited by 1 | Viewed by 5616
Abstract
The Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent a major challenge for current environmental data portals. [...] Read more.
The Environmental Data Portal EnviDat aims to fuse data publication repository functionalities with next-generation web-based environmental geospatial information systems (web-EGIS) and Earth Observation (EO) data cube functionalities. User requirements related to mapping and visualization represent a major challenge for current environmental data portals. The new Cloud Optimized Raster Encoding (CORE) format enables an efficient storage and management of gridded data by applying video encoding algorithms. Inspired by the cloud optimized GeoTIFF (COG) format, the design of CORE is based on the same principles that enable efficient workflows on the cloud, addressing web-EGIS visualization challenges for large environmental time series in geosciences. CORE is a web-native streamable format that can compactly contain raster imagery as a data hypercube. It enables simultaneous exchange, preservation, and fast visualization of time series raster data in environmental repositories. The CORE format specifications are open source and can be used by other platforms to manage and visualize large environmental time series. Full article
(This article belongs to the Special Issue GIS Open Source Software Applied to Geosciences)
Show Figures

Graphical abstract

22 pages, 7311 KiB  
Article
The Results of Applying Different Methodologies to 10 Years of Quantitative Precipitation Estimation in Catalonia Using Weather Radar
by Tomeu Rigo, Maria Carmen Llasat and Laura Esbrí
Geomatics 2021, 1(3), 347-368; https://doi.org/10.3390/geomatics1030020 - 18 Jul 2021
Cited by 7 | Viewed by 2985
Abstract
The single polarization C-Band weather radar network of the Meteorological Service of Catalonia covers the entire region (32,000 km2), which allows it to apply a series of corrections that improve preliminary estimations of the rainfall field (hourly and daily). In addition, [...] Read more.
The single polarization C-Band weather radar network of the Meteorological Service of Catalonia covers the entire region (32,000 km2), which allows it to apply a series of corrections that improve preliminary estimations of the rainfall field (hourly and daily). In addition, an automatic re-processing using automatic weather stations helps to incorporate ground-based information. The last process of the quantitative precipitation estimation (QPE) is running the end-product again eight days later, when the data have been reviewed and corrected in the case of detecting anomalies in the radar or gauge data. These corrections are applied operationally, with the fields generated and stored automatically. The QPE fields are generated in the GeoTIFF format, allowing easy use with multiple applications and simplifying processes such as quality control. In this way, the analysis of a 10 year period of GeoTIFF QPE daily data compared with ground rainfall values is introduced. The results help to understand different points regarding the functioning of the network such as the dependance on the type of precipitation and the seasonality. In addition, the description of a heavy rainfall episode (22 October 2019) shows the variations and improvements in the different products. The main conclusions refer to how using GeoTIFF combined with point data (rain gauges), it is possible to ensure simple but effective quality control of an operational radar network. Full article
Show Figures

Figure 1

12 pages, 1363 KiB  
Article
Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation
by Do-Hyung Kim and Anupam Anand
Geomatics 2021, 1(3), 335-346; https://0-doi-org.brum.beds.ac.uk/10.3390/geomatics1030019 - 04 Jul 2021
Cited by 1 | Viewed by 2671
Abstract
Evaluation of the effectiveness of protected areas is critical for forest conservation policies and priorities. We used 30 m resolution forest cover change data from 1990 to 2010 for ~4000 protected areas to evaluate their effectiveness. Our results show that protected areas in [...] Read more.
Evaluation of the effectiveness of protected areas is critical for forest conservation policies and priorities. We used 30 m resolution forest cover change data from 1990 to 2010 for ~4000 protected areas to evaluate their effectiveness. Our results show that protected areas in the tropics avoided 83,500 ± 21,200 km2 of deforestation during the 2000s. Brazil’s protected areas have the largest amount of avoided deforestation at 50,000 km2. We also show the amount of international aid received by tropical countries compared to the effectiveness of protected areas. Thirty-four tropical countries received USD 42 billion during the 1990s and USD 62 billion during the 2000s in international aid for biodiversity conservation. The effectiveness of international aid was highest in Latin America, with 4.3 m2/USD, led by Brazil, while tropical Asian countries showed the lowest average effect of international aid, reaching only 0.17 m2/USD. Full article
Show Figures

Figure 1

11 pages, 584 KiB  
Article
Solving the Multilateration Problem without Iteration
by Thomas H. Meyer and Ahmed F. Elaksher
Geomatics 2021, 1(3), 324-334; https://0-doi-org.brum.beds.ac.uk/10.3390/geomatics1030018 - 29 Jun 2021
Cited by 2 | Viewed by 2736
Abstract
The process of positioning, using only distances from control stations, is called trilateration (or multilateration if the problem is over-determined). The observation equation is Pythagoras’s formula, in terms of the summed squares of coordinate differences and, thus, is nonlinear. There is one observation [...] Read more.
The process of positioning, using only distances from control stations, is called trilateration (or multilateration if the problem is over-determined). The observation equation is Pythagoras’s formula, in terms of the summed squares of coordinate differences and, thus, is nonlinear. There is one observation equation for each control station, at a minimum, which produces a system of simultaneous equations to solve. Over-determined nonlinear systems of simultaneous equations are typically solved using iterative least squares after forming the system as a truncated Taylor’s series, omitting the nonlinear terms. This paper provides a linearization of the observation equation that is not a truncated infinite series—it is exact—and, thus, is solved exactly, with full rigor, without iteration and, thus, without the need of first providing approximate coordinates to seed the iteration. However, there is a cost of requiring an additional observation beyond that required by the non-linear approach. The examples and terminology come from terrestrial land surveying, but the method is fully general: it works for, say, radio beacon positioning, as well. The approach can use slope distances directly, which avoids the possible errors introduced by atmospheric refraction into the zenith-angle observations needed to provide horizontal distances. The formulas are derived for two- and three-dimensional cases and illustrated with an example using total-station and global navigation satellite system (GNSS) data. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop