Previous Issue
Volume 3, March
 
 

Powders, Volume 3, Issue 2 (June 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 4371 KiB  
Review
A Comprehensive Review of the Rheological Properties of Powders in Pharmaceuticals
by Jack Brubaker and Sara Moghtadernejad
Powders 2024, 3(2), 233-254; https://0-doi-org.brum.beds.ac.uk/10.3390/powders3020015 (registering DOI) - 25 Apr 2024
Viewed by 282
Abstract
The perpetual significance of the pharmaceutical industry in society necessitates ongoing research efforts to enhance the efficacy of its manufacturing processes. Given that drug product manufacturing typically involves powder processing, a thorough understanding of powder characterization is needed for optimal process performance. Powder [...] Read more.
The perpetual significance of the pharmaceutical industry in society necessitates ongoing research efforts to enhance the efficacy of its manufacturing processes. Given that drug product manufacturing typically involves powder processing, a thorough understanding of powder characterization is needed for optimal process performance. Powder rheology is commonly examined in pharmaceutical manufacturing to elucidate the relationship between powder properties and the performance of pharmaceutical processes. This paper provides a brief discussion of recent literature regarding the various powder properties and characterization techniques encompassed in powder rheology. The powder properties are categorized into particle size, particle morphology, friability, electrostatics, permeability, wettability, cohesion, bulk density, and agglomeration sections. A distinct focus is placed on the segment about powder wettability. This review informs readers about the fundamental properties of powders known to influence pharmaceutical processes. It discusses the interrelationships among these properties, powder characterization techniques, and ideal states of powder properties that lead to optimal process performance. Full article
Show Figures

Figure 1

16 pages, 1750 KiB  
Article
Multidimensional Separation by Magnetic Seeded Filtration: Theoretical Study
by Frank Rhein, Haoran Ji and Hermann Nirschl
Powders 2024, 3(2), 217-232; https://0-doi-org.brum.beds.ac.uk/10.3390/powders3020014 - 22 Apr 2024
Viewed by 299
Abstract
Magnetic seeded filtration (MSF) is a multidimensional solid–liquid separation process capable of fractionating a multimaterial suspension based on particle size and surface properties. It relies on the selective hetero-agglomeration between nonmagnetic target and magnetic seed particles followed by a magnetic separation. Experimental investigations [...] Read more.
Magnetic seeded filtration (MSF) is a multidimensional solid–liquid separation process capable of fractionating a multimaterial suspension based on particle size and surface properties. It relies on the selective hetero-agglomeration between nonmagnetic target and magnetic seed particles followed by a magnetic separation. Experimental investigations of multimaterial suspensions are challenging and limited. Therefore, a Monte Carlo model for the simulation of hetero-agglomeration processes is developed, validated, and compared to a discrete population balance model. The numerical investigation of both charge-based and hydrophobicity-based separation in an 11-material system, using synthetic agglomeration kernels based on real-world observations, yields results consistent with prior experimental studies and expectations: Although a multidimensional separation is indeed possible, unwanted hetero-agglomeration between target particles results in a reduced selectivity. This effect is more pronounced when separation is based on a dissimilarity rather than a similarity in the separation criterion and emphasizes the advantages of hydrophobicity-based systems. For the first time, 2D grade efficiency functions T(φ,d) are presented for MSF. However, it is shown that these functions strongly depend on the initial state of the suspension, which casts doubt on their general definition for agglomeration-based processes and underlines the importance of a simulation tool like the developed MC model. Full article
Show Figures

Figure 1

15 pages, 5730 KiB  
Article
Using Chia Powder as a Binder to Obtain Chewable Tablets Containing Quinoa for Dietary Fiber Supplementation
by Rosana Pereira da Silva, Fanny Judhit Vereau Reyes, Josiane Souza Pereira Daniel, Julia Estevam da Silva Pestana, Samara de Almeida Pires and Humberto Gomes Ferraz
Powders 2024, 3(2), 202-216; https://0-doi-org.brum.beds.ac.uk/10.3390/powders3020013 - 07 Apr 2024
Viewed by 341
Abstract
The consumption of fiber in the human diet is a global recommendation to ensure a healthy diet. Quinoa (Chenopodium quinoa Willd.), a gluten-free grain, and chia (Salvia hispanica), a seed, contain a high fiber content, and both have the [...] Read more.
The consumption of fiber in the human diet is a global recommendation to ensure a healthy diet. Quinoa (Chenopodium quinoa Willd.), a gluten-free grain, and chia (Salvia hispanica), a seed, contain a high fiber content, and both have the potential to be used in the development of nutraceutical and pharmaceutical formulations. An interesting characteristic of chia is its ability to form viscous mucilage when in contact with water, making it a potential binder in solid formulations. However, there are no studies on chia as a binder, and therefore, the objective of the present study was to evaluate the feasibility of using chia as a binder to produce quinoa granules and, subsequently, develop chewable tablet formulations. The quinoa and chia were in a powder form and then transformed into a wet mass with the help of mixer torque rheometer (MTR) equipment. In the wet granulation form, the following parameters were tested: multiple additions, 15 g of material, and 25 timepoints for the addition of 1 mL of water. An experimental design was carried out to evaluate the impact of the variables on the MTR results for subsequent granulation. The granulation point was possible for T1–T9, and most formulations gave satisfactory results, such as an acceptable resistance of the granules. In the end, a formulation was selected for the development of chewable tablets containing quinoa and chia fibers. Full article
Show Figures

Figure 1

12 pages, 990 KiB  
Perspective
Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods?
by Ecevit Bilgili
Powders 2024, 3(2), 190-201; https://0-doi-org.brum.beds.ac.uk/10.3390/powders3020012 - 03 Apr 2024
Viewed by 509
Abstract
Population balance models (PBMs) for milling processes are based on two fundamental concepts: specific breakage rate function and breakage distribution function, which vary with particle size as well as design–operation conditions. The solution of the inverse problem, i.e., the estimation of these two [...] Read more.
Population balance models (PBMs) for milling processes are based on two fundamental concepts: specific breakage rate function and breakage distribution function, which vary with particle size as well as design–operation conditions. The solution of the inverse problem, i.e., the estimation of these two functions’ parameters, may cause falsified kinetics and breakage distribution mechanisms. This perspective article aims to expose and mitigate various aspects of potential falsification, thus enabling the development of a robust PBM. Through an in-depth analysis of historical approaches to the PBM inverse problem and experimental observations, as well as the author’s recent contributions to the inverse methodology within the context of back-calculation methods, six principles have been offered: (i) include the governing physical phenomena and reduce errors in model building; (ii) reduce the number of model parameters via size–operation-dependent functional forms, hybrid approaches for back-calculation, and combination with CFD–DEM and other mechanistic models; (iii) generate a dense particle size distribution data set obtained at various milling times and/or locations; (iv) ensure a grid-independent solution with a sufficient number of size classes; (v) use a global optimization-based back-calculation method for parameter estimation and provide standard errors of the estimates; and (vi) test the predictive capability of the PBM. This perspective article boosts awareness of various challenges involved in the solution of the inverse PBM problem as pertinent to milling processes and provides researchers with six principles to minimize falsified kinetics. Full article
Show Figures

Figure 1

22 pages, 10817 KiB  
Article
Hygroscopicity in Epoxy Powder Composites
by James M. Maguire, Jin-Yu Wang and Conchúr M. Ó Brádaigh
Powders 2024, 3(2), 168-189; https://0-doi-org.brum.beds.ac.uk/10.3390/powders3020011 - 03 Apr 2024
Viewed by 543
Abstract
Epoxy powders offer a low-cost way of manufacturing thick-section composite parts, such as those found in wind and tidal turbines. Currently, their processing cycle includes a lengthy drying stage (≥15 h) to remove ambient moisture. This drying stage prevents void defect formation and, [...] Read more.
Epoxy powders offer a low-cost way of manufacturing thick-section composite parts, such as those found in wind and tidal turbines. Currently, their processing cycle includes a lengthy drying stage (≥15 h) to remove ambient moisture. This drying stage prevents void defect formation and, thereby, a reduction in mechanical properties; however, it constitutes up to 60% of the processing time. Little research has been published which studies the drying stage or its optimisation. In the present work, experimental and simulated analyses are used to investigate the effects of hygroscopicity in epoxy powder composites. Tests are performed to quantify the void content of dried and undried laminates and to measure its impact on transverse flexural strength. Dynamic vapour sorption analysis is used to study the sorption behaviour of the epoxy powder. It is shown that the epoxy powder is slightly hygroscopic (1.36 wt%) and exhibits sorption behaviour that is characteristic of glassy polymers. This results in up to 4.8% voids (by volume) if processed in an undried state, leading to a 43% reduction in transverse flexural strength. A modified linear driving force model is fitted to the desorption data and then implemented in existing process-simulation tools. The drying of a thick epoxy powder composite section is simulated to investigate the influence of powder sintering on the duration of the drying stage. Process simulations reveal that a standard drying cycle prematurely sinters the powder, which inhibits moisture release. By maintaining the powder state, simulations show that the drying cycle can be reduced to 5 h. Full article
(This article belongs to the Special Issue Feature Papers in Powders 2023)
Show Figures

Figure 1

14 pages, 3352 KiB  
Article
Reuse of Smoulder in Laser Powder-Bed Fusion of AlSi10Mg—Powder Characterization and Sample Analysis
by Oliver Maurer, Heiko Jacob and Dirk Bähre
Powders 2024, 3(2), 154-167; https://0-doi-org.brum.beds.ac.uk/10.3390/powders3020010 - 27 Mar 2024
Viewed by 374
Abstract
Metal additive manufacturing technologies, such as Laser Powder-Bed Fusion, often rate as sustainable due to their high material efficiency. However, there are several drawbacks that reduce the overall sustainability and offer potential for improvement. One such drawback is waste emerging from the process. [...] Read more.
Metal additive manufacturing technologies, such as Laser Powder-Bed Fusion, often rate as sustainable due to their high material efficiency. However, there are several drawbacks that reduce the overall sustainability and offer potential for improvement. One such drawback is waste emerging from the process. These smoulder particles form when the laser hits the powder-bed surface, are blown away from the part by the shielding gas stream and accumulate on the edge of the build chamber. Usually, smoulder does not contribute to the circular reuse of powder that was part of the powder-bed but was not integrated into a part. Instead, it marks an end-of-life state of powder. Significant amounts of smoulder accumulate depending on the irradiated area or the build volume in one job, respectively. This results in the waste of powder that was produced with low energy efficiency. This study investigates the question of whether smoulder can transform from waste to resource via common powder characterization methods and first build jobs using processed smoulder. The investigation of process-relevant powder properties like apparent density and flowability showed no significant difference between virgin powder and smoulder. Sample characterization indicated that neither porosity, surface quality nor mechanical properties deteriorate when samples contain about 50% smoulder. This allows for the reuse of smoulder in terms of powder characterization and part quality. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop