Application of Nerve Stimulation: Current Status and Future Directions

A special issue of Brain Sciences (ISSN 2076-3425). This special issue belongs to the section "Neurotechnology and Neuroimaging".

Deadline for manuscript submissions: 15 October 2024 | Viewed by 3134

Special Issue Editors


E-Mail Website
Guest Editor
Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
Interests: acupuncture; neuroimaging; neuromodulation; pain; placebo
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
Interests: acupuncture; visceral organ; mechanical stimulation; mesolimbic dopamine system
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Neuromodulation is often employed to directly affect nerves, typically those in the peripheral nervous system. However, to develop more advanced approaches to precision treatment, understanding the interplay between nerves and organs is rather important. Within large densities of nerve terminals or receptive fields, acupuncture can stimulate myocutaneous nerve systems that overlap with neuromodulation techniques.

For an upcoming Special Issue in Brain Sciences, we invite researchers and practitioners to submit original research papers using a variety of techniques (such as neuroimaging, neurobiology, clinical trials, or machine learning), as well as review articles that will advance the ongoing efforts to gain new insights into peripheral nerve stimulation, including neuromodulation and acupuncture.

Dr. Younbyoung Chae
Dr. Hee Young Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • acupuncture
  • neuroanatomy
  • neuroimaging
  • neuromodulation
  • peripheral nervous system

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 27681 KiB  
Article
Acupuncture Extended the Thrombolysis Window by Suppressing Blood–Brain Barrier Disruption and Regulating Autophagy–Apoptosis Balance after Ischemic Stroke
by Zhihui Zhang, Tianliang Lu, Shanshan Li, Ruyu Zhao, Honglei Li, Xinchang Zhang, Yiyang Li, Yawen Xia and Guangxia Ni
Brain Sci. 2024, 14(4), 399; https://0-doi-org.brum.beds.ac.uk/10.3390/brainsci14040399 - 19 Apr 2024
Viewed by 357
Abstract
Background: Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. The narrow therapeutic window (within 4.5 h) and severe hemorrhagic potential limits therapeutic efficacy of recombinant tissue type plasminogen activator (rt-PA) intravenous thrombolysis for patients. Xingnao Kaiqiao (XNKQ) [...] Read more.
Background: Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. The narrow therapeutic window (within 4.5 h) and severe hemorrhagic potential limits therapeutic efficacy of recombinant tissue type plasminogen activator (rt-PA) intravenous thrombolysis for patients. Xingnao Kaiqiao (XNKQ) acupuncture is an integral part of traditional Chinese medicine, specifically designed to address acute ischemic stroke by targeting key acupoints such as Shuigou (GV26) and Neiguan (PC6). In this study, we explored the therapeutic potential of XNKQ acupuncture in extending the time window for thrombolysis and interrogated the molecular mechanisms responsible for this effect. Methods: The effect of extending the thrombolysis window by acupuncture was evaluated via TTC staining, neuronal score evaluation, hemorrhagic transformation assay, and H&E staining. RNA sequencing (RNA-seq) technology was performed to identify the therapeutic targets and intervention mechanisms of acupuncture. Evans blue staining and transmission electron microscopy were used to assess blood–brain barrier (BBB) integrity. Immunofluorescence staining and co-immunoprecipitation were performed to evaluate the level of autophagy and apoptosis and validate their interactions with BBB endothelial cells. Results: Acupuncture alleviated infarction and neurological deficits and extended the thrombolysis window to 6 h. The RNA-seq revealed 16 potential therapeutic predictors for acupuncture intervention, which related to suppressing inflammation and restoring the function of BBB and blood vessels. Furthermore, acupuncture suppressed BBB leakage and preserved tight junction protein expression. The protective effect was associated with regulation of the autophagy–apoptosis balance in BBB endothelial cells. Acupuncture intervention dissociated the Beclin1/Bcl-2 complex, thereby promoting autophagy and reducing apoptosis. Conclusion: XNKQ acupuncture could serve as an adjunctive therapy for rt-PA thrombolysis, aiming to extend the therapeutic time window and mitigate ischemia–reperfusion injury. Acupuncture suppressed BBB disruption by regulating the autophagy–apoptosis balance, which in turn extended the therapeutic window of rt-PA in IS. These findings provide a rationale for further exploration of acupuncture as a complementary candidate co-administered with rt-PA. Full article
Show Figures

Graphical abstract

14 pages, 3028 KiB  
Article
The Role of p38 Mitogen-Activated Protein Kinase-Mediated F-Actin in the Acupuncture-Induced Mitigation of Inflammatory Pain in Arthritic Rats
by Xu Zhou, Yu-Chen Zhang, Kai-Qiu Lu, Ran Xiao, Wen-Chao Tang and Fan Wang
Brain Sci. 2024, 14(4), 380; https://0-doi-org.brum.beds.ac.uk/10.3390/brainsci14040380 - 14 Apr 2024
Viewed by 391
Abstract
The analgesic efficacy of acupuncture has been widely recognized. However, the mechanism by which manual acupuncture-generated mechanical stimuli translate into biological signals remains unclear. This study employed a CFA-induced inflammatory pain rat model. Acupuncture intervention was then performed following standardized procedures. Enzyme-linked immunosorbent [...] Read more.
The analgesic efficacy of acupuncture has been widely recognized. However, the mechanism by which manual acupuncture-generated mechanical stimuli translate into biological signals remains unclear. This study employed a CFA-induced inflammatory pain rat model. Acupuncture intervention was then performed following standardized procedures. Enzyme-linked immunosorbent assay (ELISA) assessed inflammatory cytokines levels, while immunofluorescence and qRT-PCR screened the level of p38 and F-actin expression in the ST36 acupoint area of rats. Results indicated increased inflammatory factors, including IL-1β and TNFα, with reduced paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) in CFA rats compared to unmodeled rats. After acupuncture intervention, the heightened expression level of F-actin and p38 mRNA and the phosphorylation of p38 in the acupoint area was observed alongside decreased inflammatory factors in diseased ankle joints. The application of lifting and thrusting manipulations further enhanced the effect of acupuncture, in which the molecular expression level of muscle and connective tissue increased most significantly, indicating that these two tissues play a major role in the transformation of acupuncture stimulation. Moreover, antagonizing p38 expression hindered acupuncture efficacy, supporting the hypothesis that p38 MAPK-mediated F-actin transduces mechanical signals generated by acupuncture and related manipulation into biological signals. Full article
Show Figures

Figure 1

13 pages, 1615 KiB  
Article
Sensory Stimulation of the Triceps Surae Muscle Complex Modulates Spinal Reflex Responses—A Comparison between Tapotement Massage and Repetitive Peripheral Magnetic Stimulation (rPMS)
by Volker R. Zschorlich, Fengxue Qi, Jörg Schorer and Dirk Büsch
Brain Sci. 2024, 14(2), 119; https://0-doi-org.brum.beds.ac.uk/10.3390/brainsci14020119 - 24 Jan 2024
Viewed by 898
Abstract
Background: The reduction of muscular hypertonia is important in the treatment of various diseases or rehabilitation. This study aims to test the efficacy of a 5 Hz mechanical muscle stimulation (tapotement massage) in comparison to a 5 Hz repetitive peripheral magnetic stimulation (rPMS) [...] Read more.
Background: The reduction of muscular hypertonia is important in the treatment of various diseases or rehabilitation. This study aims to test the efficacy of a 5 Hz mechanical muscle stimulation (tapotement massage) in comparison to a 5 Hz repetitive peripheral magnetic stimulation (rPMS) on the neuromuscular reflex response. Methods: In a randomized control trial, 15 healthy volunteers were administered with either 5 Hz rPMS, tapotement massage, or rPMS sham stimulation. The posterior tibial nerve was stimulated with rPMS and sham stimulation. The Achilles tendon was exposed to a mechanically applied high-amplitude 5 Hz repetitive tendon tapotement massage (rTTM). The tendon reflex (TR) was measured for the spinal response of the soleus muscle. Results: After rPMS, there was a reduction of the TR response (−9.8%, p ≤ 0.034) with no significant changes after sham stimulation. Likewise, TR decreased significantly (−17.4%, p ≤ 0.002) after Achilles tendon tapotement intervention. Conclusions: These findings support the hypothesis that both afferent 5 Hz sensory stimulations contributed to a modulation within the spinal and/or supraspinal circuits, which resulted in a reduction of the spinal reflex excitability. The effects could be beneficial for patients with muscle hypertonia and could improve the functional results of rehabilitation programs. Full article
Show Figures

Graphical abstract

11 pages, 1169 KiB  
Article
Efficacy of Transcranial Direct Current Stimulation (tDCS) on Cognition, Anxiety, and Mobility in Community-Dwelling Older Individuals: A Controlled Clinical Trial
by Nathalia Oliveira Rodrigues, Anna Alice Vidal Bravalhieri, Tatiane Pereira de Moraes, Jorge Aparecido Barros, Juliana Hotta Ansai and Gustavo Christofoletti
Brain Sci. 2023, 13(12), 1614; https://0-doi-org.brum.beds.ac.uk/10.3390/brainsci13121614 - 21 Nov 2023
Viewed by 1023
Abstract
Transcranial direct current stimulation (tDCS) has gained popularity as a method of modulating cortical excitability in people with physical and mental disabilities. However, there is a lack of consensus on its effectiveness in older individuals. This study aimed to assess the efficacy of [...] Read more.
Transcranial direct current stimulation (tDCS) has gained popularity as a method of modulating cortical excitability in people with physical and mental disabilities. However, there is a lack of consensus on its effectiveness in older individuals. This study aimed to assess the efficacy of a 2-month tDCS program for improving physical and mental performance in community-dwelling older individuals. In this single-blinded, controlled clinical trial, forty-two participants were allocated to one of three groups: (1) the tDCS group, which received, twice a week, 20 min sessions of 2 mA electric current through electrodes placed on the dorsolateral prefrontal cortex; (2) the tDCS-placebo group, which underwent the same electrode placement as the tDCS group but without actual electric stimulation; and (3) the cognitive-control group, which completed crossword puzzles. Main outcome measures were cognition, mobility, and anxiety. Multivariate analyses of variance were employed. Significance was set at 5% (p < 0.05). Regarding the results, no significant benefits were observed in the tDCS group compared with the tDCS-placebo or cognitive-control groups for cognition (p = 0.557), mobility (p = 0.871), or anxiety (p = 0.356). Cognition exhibited positive oscillations during the assessments (main effect of time: p = 0.001). However, given that all groups showed similar variations in cognitive scores (main effect of group: p = 0.101; group × time effect: p = 0.557), it is more likely that the improvement reflects the learning response of the participants to the cognitive tests rather than the effect of tDCS. In conclusion, a 2-month tDCS program with two sessions per week appears to be ineffective in improving physical and mental performance in community-dwelling older individuals. Further studies are necessary to establish whether or not tDCS is effective in healthy older individuals. Full article
Show Figures

Figure 1

Back to TopTop